研究業績
学術論文 (査読あり)
論文をメールで送ることができます。興味を持たれた方は気軽に問い合わせください。
被引用論文についてはGoogle scholar をご覧ください。
* は Corresponding Author, + は Equal Contribution です。
[Open access] と書かれている論文はリンク先でダウンロードできます。
-
Yamamoto T, Nakao H, and *Kobayashi R.
Gaussian Process Phase Interpolation for estimating the asymptotic phase of a limit cycle oscillator from time series data.
Chaos, Solitons & Fractals (In press) [Open access] -
*Kobayashi R and Shinomoto S.
Inference of Monosynaptic Connections from Parallel Spike Trains: A Review.
Neuroscience Research (In press) [Open access] -
武富 有香, 中山 悠理, 須田 永遠, 宇野 毅明, 橋本 隆子, 豊田 正史, 吉永 直樹, 喜連川 優, *小林 亮太.
Twitterにおける新型コロナワクチンに関する話題の変化: ツイート本文の読解を通じた仮説構築による分析.
人工知能学会 論文誌 39: 5 (2024) [Open access] -
Matsuki A, Kori H, and *Kobayashi R.
An extended Hilbert transform method for reconstructing the phase from an oscillatory signal.
Scientific Reports 13: 3535 (2023) [Open access] -
Lee H, Kostal L, Kanzaki R, and *Kobayashi R.
Spike frequency adaptation facilitates the encoding of input gradient in insect olfactory projection neurons.
BioSystems 223: 104802 (2023) [Open access]
-
*+Kobayashi R, +Takedomi Y, +Nakayama Y, +Suda T, Uno T, Hashimoto T, Toyoda M, Yoshinaga N, Kitsuregawa M, and Rocha LEC.
Evolution of the public opinion on COVID-19 vaccination in Japan: Large-Scale Twitter Data Analysis.
Journal of Medical Internet Research, 24, 12, e41928 (2022) [Open access] -
*Namura N, Tanaka S, Yamaguchi K, Kobayashi R, and Nakao H.
Estimating asymptotic phase and amplitude functions of limit-cycle oscillators from time series data.
Physical Review E 106: 014204 (2022) Preprint (arXiv)
-
Hashimoto T, Uno T, Takedomi Y, Shepard D, Toyoda M, Yoshinaga N, Kitsuregawa M, and Kobayashi R.
Two-stage Clustering Method for Discovering People’s Perceptions: A Case Study of the COVID-19 Vaccine from Twitter.
BigData 2021 (Short paper): 614-621 (2021) [Open access]
-
Kobayashi R, Gildersleve P, Uno T, and Lambiotte R.
Modeling Collective Anticipation and Response on Wikipedia.
AAAI ICWSM-2021: 315-326 (2021), [Open access]
Video, データ, Cコード (Python にも移植予定) -
+Endo D, +Kobayashi R, Bartolo R, Averbeck BB, Sugase-Miyamoto Y, Hayashi K, Kawano K, Richmond BJ, and *Shinomoto S.
A convolutional neural network for estimating synaptic connectivity from spike trains.
Scientific Reports 11: 12087 (2021) [Open access]
Webアプリ CoNNECT (Pythonコード) GLMCC (Pythonコード) -
Murayama T, Wakamiya S, Aramaki E, and *Kobayashi R.
Modeling the Spread of Fake News on Twitter.
PLOS ONE 16(4): e0250419 (2021) Pythonコード [Open access]
-
Hashimoto T, Shepard D, Kuboyama T, Shin K, *Kobayashi R, and Uno T.
Analyzing Temporal Patterns of Topic Diversity using Graph Clustering.
The Journal of Supercomputing 77:4375-4388 (2021) [Open access] -
+Adelani DI, +Kobayashi R, Weber I, and *Grabowicz PA.
Estimating Community Feedback Effect on Topic Choice in Social Media with Predictive Modeling.
EPJ Data Science 9: 25 (2020) [Open access] -
Kostal L and Kobayashi R.
Critical size of neural population for reliable information transmission.
Physical Review E, 100:050401(R) (2019)
Preprint (PDF) Supplementary material (PDF) -
Kobayashi R, Kurita S, Kurth A, Kitano K, Mizuseki K, Diesmann M, Richmond BJ, and *Shinomoto S.
Reconstructing neuronal circuitry from parallel spike trains.
Nature Communications, 10:4468 (2019) [Open access]
プレスリリース Webアプリ Pythonコード -
*Levakova M, Kostal L, Monsempès C, Lucas P, and Kobayashi R.
Adaptive integrate-and-fire model reproduces the dynamics of olfactory receptor neuron responses in moth.
Journal of the Royal Society Interface, 16:20190246 (2019) [Open access] -
Han X, Shinozaki T, and Kobayashi R.
Effective and Stable Neuron Model Optimization Based on Aggregated CMA-ES.
ICASSP 2019:1264-1268 (2019) -
*Kobayashi R, Nishimaru H, Nishijo H, and Lansky P.
A single spike deteriorates synaptic conductance estimation.
BioSystems, 161:41-45 (2017) [Open access] -
Proskurnia J, Grabowicz PA, Kobayashi R, Castillo C, Cudre-Mauroux P, and Aberer K.
Predicting the success of online petitions leveraging multidimensional time-series.
WWW-17:755-764 (2017) [Open access]
採択率: 17% (164/966 submissions) -
Aoki T, Takaguchi T, Kobayashi R, and Lambiotte R.
Input-output relationship in social communications characterized by spike train analysis.
Physical Review E, 94:042313 (2016), Preprint -
+*Kobayashi R, +*Nishimaru H, and Nishijo H.
Estimation of excitatory and inhibitory synaptic conductance variations in motoneurons during locomotor-like rhythmic activity.
Neuroscience, 335:72-81 (2016) -
*Kobayashi R and Kitano K.
Impact of slow K+ currents on spike generation can be described by an adaptive threshold model.
Journal of Computational Neuroscience, 40:347-362. (2016) [Open access] -
Kobayashi R and Lambiotte R.
TiDeH: Time-Dependent Hawkes Process for Predicting Retweet Dynamics.
AAAI ICWSM-2016: 191-200 (2016) [Open access]
採択率: 17% (52/306 submissions)
-
Kobayashi R and Kitano K.
A method for estimating of synaptic connectivity from spike data of multiple neurons.
Nonlinear Theory and Its Applications, IEICE, 7:156-163 (2016) [Open access] -
Koyama S and Kobayashi R.
Fluctuation scaling in neural spike trains.
Mathematical Biosciences and Engineering, 13:537-550 (2016) -
Kostal L and Kobayashi R.
Optimal decoding and information transmission in Hodgkin-Huxley neurons under metabolic cost constraints.
BioSystems, 136:3-10 (2015), Preprint -
*Kobayashi R, He J, and Lansky P.
Estimation of the synaptic input firing rates and characterization of the stimulation effects in an auditory neuron.
Frontiers in Computational Neuroscience, 9:59. (2015) [Open access] -
*Kobayashi R, Namiki S, Kanzaki R, Kitano K, Nishikawa I, and Lansky P.
Population coding is essential for rapid information processing in the moth antennal lobe.
Brain Research, 1536:88-96 (2013) -
Kobayashi R and *Kitano K.
Impact of network topology on inference of synaptic connectivity from multi-neuronal spike data simulated by a large-scale cortical network model.
Journal of Computational Neuroscience, 35:109-124 (2013) -
Kobayashi R, Tsubo Y, Lansky P, and Shinomoto S.
Estimating time-varying input signals and ion channel states from a single voltage trace of a neuron.
NIPS-11:217-225 (2011) [Open access]
採択率: 22% (305/1400 submissions) -
*Kobayashi R, Shinomoto S, and Lansky P.
Estimation of time-dependent input from neuronal membrane potential.
Neural Computation, 23:3070-3093 (2011) -
+Kobayashi R, +Tsubo Y, and *Shinomoto S.
Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold.
Frontiers in Computational Neuroscience, 3:9 (2009) [Open access] -
Kobayashi R.
Influence of firing mechanisms on gain modulation.
Journal of Statistical Mechanics, P01017 (2009) [Open access] -
Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, and Gerstner W.
A benchmark test for a quantitative assessment of simple neuron models.
Journal of Neuroscience Methods, 169:417-424 (2008) -
Kobayashi R and Shinomoto S.
State space method for predicting the spike times of a neuron.
Physical Review E, 75:011925 (2007) -
Kobayashi R and Shinomoto S.
Predicting spike times from subthreshold dynamics of a neuron.
NIPS-06:721-728 (2006) [Open access]
採択率: 24% (203/833 submissions) -
Kobayashi R, Miyazaki Y, and Shinomoto S.
Faithful and unfaithful students in time series learning.
IMA Journal of Applied Mathematics, 70:657-665 (2005)
著書
-
小林 亮太, 篠本 滋, 監修: 甘利 俊一 (2022)
AI新世 人工知能と人類の行方, 文春新書. -
小林 亮太, 新津 葵一 (監訳), 大前 奈月 (翻訳) (2022) 原著: Nan Zheng, Pinaki Mazumder
ニューロモルフィックコンピューティング: 省エネルギーな機械学習のハードウェア実装に向けて, エヌ・ティー・エス (監訳および4章付録の執筆を担当). - 小林 亮太 (2019) AI事典 第3版, 近代科学社 (Universal AI を担当).
- 小林 亮太 (2017) 人工知能の見る夢は AIショートショート集, 文春文庫 (脳のシミュレーション: コンピュータの中に人工脳を作る を担当).
解説論文
- 小林 亮太 (2023) 神経スパイクデータからシナプス結合を推定する, 神経回路学会誌 30, 66-72.
- 小林 亮太, 北野 勝則 (2021) 積分発火モデル, 脳科学辞典.
- 小林 亮太, 北野 勝則 (2021) ネットワーク結合推定, 脳科学辞典.
- 小林 亮太, 木村 睦, 三宅 陽一郎, 市瀬 龍太郎 (2019) 特集 「マテリアルズインフォマティクス」にあたって, 人工知能 34, 324.
- 小林 亮太, 岡本 洋, 山川 宏 (2018) 特集 「物理学とAI」にあたって, 人工知能 33, 391.
- 小林 亮太 (2015) 大規模脳シミュレーションについての研究動向, 人工知能 30, 647-651.
- 小林 亮太, 相澤 彰子 (2014) 汎用エージェントの理論的枠組み ─ Marcus Hutter が提唱するAIXI の紹介─, 人工知能 29, 253-257.
受賞
- Best Reviewer Award (SocInfo 2020) (2020).
- 電子情報通信学会 CCS研究会 CCS奨励賞 (2016).
- 船井情報科学振興財団 船井研究奨励賞 (2010).
- INCF Prize (2009).
- EPFL-Brain Mind Institute Neuron Modeling Award (2008).
査読委員 (論文誌)
Advances in Complex Systems; BioSystems; Brain Research; Chaos: An Interdisciplinary Journal of Nonlinear Science; Cognitive Neurodynamics; Communications Engineering; Computers in human behavior reports; eLife; Entropy; Frontiers in Computational Neuroscience; IEICE Transactions on Information and Systems; International Journal of Neural Systems; Journal of Medical Internet Research (JMIR); JMIR Infodemiology; Journal of Computational Neuroscience; Journal of the Physical Society of Japan; Mathematical Biosciences and Engineering; Neural Computation; Neural Networks; Neural Processing Letters; Neurocomputing; Neurons, Behavior, Data analysis, and Theory; Neuroscience Research; Physical Review E; PLoS Computational Biology; Science Advances; Scientific Reports.
人工知能学会誌; 電子情報通信学会誌.
プログラム委員 (国際会議)
AAAI Conference on Web and Social Media (ICWSM 2016-2023),
ACM Web Science Conference (WebSci 2020),
Advances in Neural Information Processing Systems (NIPS 2013, 2014),
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2021, 2022): Multidisciplinary Track,
International Conference on Social Informatics (SocInfo 2019, 2020),
International Workshop on Neural Coding (Neural Coding 2021, 2023),
LREC COLING 2024