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Motivated from a wide range of applications, various methods to control synchronization in coupled oscil-
lators have been proposed. Previous studies have demonstrated that global feedback typically induces three
macroscopic behaviors: synchronization, desynchronization, and oscillation quenching. However, analyzing all
of these transitions within a single theoretical framework is difficult, and thus the feedback effect is only partially
understood in each framework. Herein, we analyze a model of globally coupled phase oscillators exposed to
global feedback, which shows all of the typical macroscopic dynamical states. Analytical tractability of the model
enables us to obtain detailed phase diagrams where transitions and bistabilities between different macroscopic
states are identified. Additionally, we propose strategies to steer the oscillators into targeted states with minimal
feedback strength. Our study provides a useful overview of the effect of global feedback and is expected to serve
as a benchmark when more sophisticated feedback needs to be designed.
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I. INTRODUCTION

Synchronization is a self-organization phenomenon that
occurs in interacting oscillatory elements and is widely ob-
served [1–5]. The resultant coherent oscillation is desirable in
some systems. For example, synchronization is essential for
the normal functioning of power grids [6]. Other beneficial
effects of synchronization include the enhanced precision in
biological oscillatory systems [4,7–10], coordinated locomo-
tion of animals and robots [11], and reduced congestion in
models of traffic flow [12,13].

However, synchronization may also cause problems. At the
Millennium Footbridge in London, the steps of the pedestri-
ans were synchronized, and considerable lateral movement
of the bridge was observed [14]. Synchronization is also
associated with neurological disorders. The local field poten-
tials recorded from the brains of Parkinsonian patients and
model animals often display marked oscillations, which are
considered to be reflections of coherent neuronal activities
[15]. Although the mechanism of Parkinson’s disease is not
well understood yet, exaggerated synchronization is one of the
possible factors that induces related symptoms [16]. For some
types of Parkinsonian patients, deep brain stimulation (DBS),
which involves electrical stimulation to particular regions of
the brain, may suppress the pathological collective oscilla-
tion and motor symptoms [15,17]. However, this treatment
is sometimes accompanied by negative side effects [18,19].
Thus, milder ways of stimulation need to be developed.

The wide range of desirable and undesirable synchroniza-
tion phenomena has drawn substantial research attention to
the control of synchronization. As a control implementa-
tion, global feedback loops are known to be effective. In
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[20], the authors experimentally demonstrated that a syn-
chronously oscillating state can be stabilized in a surface
chemical reaction that inherently exhibits turbulent oscillatory
dynamics. Global feedback may also desynchronize oscillator
assemblies. Several types of mean-field feedback that effi-
ciently desynchronize oscillators have been proposed [21–29].
Moreover, other behaviors may be realized through global
feedback. It is proved that in a particular class of phase os-
cillators, the oscillation death state, in which the mean-field
oscillation terminates, can be stabilized via global mean-field
feedback [27]. Oscillation death is known to appear in various
coupled oscillator systems [30].

These extensive studies [20–29] elucidated that global
feedback typically stabilizes the synchronous, asynchronous,
or oscillation-death states. However, in the oscillator models
and feedback forms considered thus far, analytically treat-
ing all of these macroscopic states is difficult, and hence, a
comprehensive phase diagram has not been obtained. With
only partial knowledge being available on the phase diagram,
feedback control may fail to realize a desired state owing to
the unexpected stabilization of other states. Detailed phase
diagrams of an analytically tractable model would provide an
insight into a general principle of feedback control and help
design and tune the feedback scheme.

Herein, we consider the Sakaguchi-Kuramoto model,
which describes a population of nonidentical phase oscillators
with global coupling, as a coupled-oscillator model and incor-
porate a global mean-field feedback loop into the system.

We show that the system exhibits all three typical macro-
scopic states: the asynchronously oscillating state, the syn-
chronously oscillating state, and the oscillation-death state.
By invoking the Ott-Antonsen ansatz [31,32], we compre-
hensively perform the existence and stability analysis of the
macroscopic states, thus obtaining detailed phase diagrams
in the space of feedback parameters for different coupling
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strengths. Our analysis elucidates (1) the dependency of the
feedback effect on the parameters of the oscillator model;
(2) the optimal feedback parameters for stabilizing the asyn-
chronous state with minimal feedback strength; and (3) the
existence of the bistability between the oscillation-death state
and one of the other two states. The obtained phase diagrams
are numerically validated. In addition, we propose a strategy
for realizing the asynchronous state in the bistable region. Fi-
nally, to support the robustness of our results, we numerically
investigate another model that belongs to a more general class
of oscillator models.

II. MODEL

We consider globally coupled phase oscillators under
global feedback, given as

dθi

dt̃
= ω̃i + K̃

N

N∑
j=1

sin (θ j − θi + β ) + Ẽ sin(θi + α)F (θ),

(1)

where θi(t̃ ) and ω̃i (i = 1, . . . , N) represent the phase and
natural frequency of the ith oscillator, respectively; K̃ � 0
and Ẽ � 0 represent the strength of coupling and feedback,
respectively; and α and β are parameters, which are usually
nonvanishing in real oscillator systems [33,34]. The func-
tion F (θ) = F (θ1, . . . , θN ) describes a global feedback and
sin(θi + α) is the phase sensitivity to the feedback. In partic-
ular, we consider

F (θ) = 1

N

N∑
j=1

cos(θ j − δ), (2)

= R cos(� − δ), (3)

where δ is a parameter referred to as the phase offset in
the feedback, and R = R(t ) (0 � R � 1) and � = �(t ) (0 �
� < 2π ) are the order parameter and mean phase defined by

r := Rei� = 1

N

N∑
j=1

eiθ j . (4)

The R value indicates the synchronization level. The complex
valued function r = r(t ) is referred to as the complex order
parameter. Equation (1) reduces to the Kuramoto-Sakaguchi
model [35] in the absence of feedback, i.e., for Ẽ = 0.
See Appendix A for the derivation of Eq. (1) from a gen-
eral class of coupled limit-cycle oscillators. As discussed in
Appendix A, F (θ) corresponds to a linear function of mean
fields in the limit-cycle model introduced in Appendix A, and
the parameters Ẽ and δ can be tuned to arbitrary values when
two output signals are observed from individual oscillators.
Alternatively, it can be implemented when R(t ) and �(t ) are
inferred online.

For analytical tractability, we assume ω̃i to be drawn from
the Lorentzian distribution g̃(ω̃) = γ̃

π
1

(ω̃−ω0 )2+γ̃ 2 , where γ̃ >

0 and ω0 > 0. Without loss of generality, we decrease the
number of parameters by introducing nondimensional quanti-
ties t = ω0t̃, γ = γ̃

ω0
, K = K̃

ω0
, E = Ẽ

ω0
, and further replacing

θi + α by θi for i = 1, . . . , N and δ + α by δ. The resultant

equation is

dθi

dt
= ωi + K

N

N∑
j=1

sin (θ j − θi + β ) + E sin θiF (θ), (5)

or

θ̇i = ωi + KR sin (� − θi + β ) + ER cos(� − δ) sin θi, (6)

where ωi is drawn from

g(ω) = γ

π

1

(ω − 1)2 + γ 2
. (7)

Now the mean frequency is set to unity. Equation (6) with
Eqs. (2) and (7) is analyzed below. There are six parameters
involved: N, K > 0, E > 0, β, δ, and γ .

It is known that for N → ∞, a certain class of oscillator
assemblies including Eq. (6) has a low-dimensional mani-
fold, on which a reduced dynamical equation can be obtained
[31,32]. By following [36], we obtain a closed equation for r
on the manifold, given as

ṙ =
(

−γ + Keiβ

2
+ i

)
r − Ke−iβ

2
|r|2r

− ER cos(� − δ)

2
(1 − r2). (8)

Here we redefined r = Rei� as its continuous analog

r =
∫∫

ρ(θ, ω, t )eiθ dθ dω, (9)

where ρ(θ, ω, t )dθ dω is the fraction of the oscillators with
natural frequencies between ω and ω + dω and phases be-
tween θ and θ + dθ at time t . For finite but sufficiently large
N , Eq. (8) is expected to appropriately approximate the be-
havior of r(t ) in Eq. (6) after a transient time.

Henceforth, we assume |β| < π/2; the coupling promotes
synchronization.

III. EFFECT OF FEEDBACK ON THE
MACROSCOPIC STATE

A. Classification of macroscopic states

Dynamical properties of the system described by Eq. (8)
in the absence of feedback (E = 0) are evident. This system
always has a global attractor for any parameter values within
K � 0 and −π

2 < β < π
2 . There are two global attractors: the

steady solution r(t ) = 0 for K � Kc and the limit-cycle so-
lution r(t ) = r0ei�̃t for K > Kc, where Kc = 2γ / cos β, r0 =
[1 − Kc/K]1/2, and �̃ = 1 + K sin β − γ tan β. The former
corresponds to the asynchronous state, where the oscillators
rotate with their natural frequencies. The latter corresponds
to the synchronously oscillating state, where a subpopulation
of the oscillators is phase locked to the oscillating mean field.
Figures 1(a)–1(c) show typical dynamics of Eq. (6) for E = 0.

In addition to these two attractors, a stable steady solution
r(t ) = r∗ �= 0 may arise in the presence of the feedback (E >

0). We refer to the macroscopic state corresponding to this
solution as the oscillation-death state because of the cessation
of the microscopic and macroscopic oscillations explained
below. To understand the dynamics of individual oscillators in
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FIG. 1. Three types of macroscopic state of the N = 100 oscillators described by Eq. (6). (a) Time series of the real part of the complex
order parameter r for different parameter regimes. The black solid, red dashed, and blue dotted lines represent the solutions corresponding to
the asynchronously oscillating state, the synchronously oscillating state, and the oscillation-death state, respectively. The coupling strength and
feedback parameters are set to K = 0.01 and E = δ = 0 (solid black line), K = 0.3 and E = δ = 0 (red dashed line), and K = 0.3, E = 3.0,
and δ = −π/3 (blue dotted line). The other parameters are γ = 0.1 and β = 0. (b)–(d) Time series of the individual oscillators. The vertical
axis is the index of the oscillator, and the color scale represents its phase. The natural frequency ωi is set to be monotonically increasing with
the oscillator index i: ωi = 1 + γ tan[ iπ

N − (N+1)π
2N ]. The parameters for (b), (c), and (d) are identical to those of the black solid, red dashed, and

blue dotted lines in Fig. 1(a), respectively.

the oscillation-death state (r(t ) = r∗), let us consider Eq. (6).
Inserting r∗ = R∗ei�∗

into Eq. (6), we obtain

θ̇i = ωi + A sin (θi + B), (10)

where

A = R∗{[E cos (�∗ − δ) − K cos(�∗ + β )]2

+ [K sin (�∗ + β )]2}1/2, (11)

tan B = K sin (�∗ + β )

E cos (�∗ − δ) − K cos (�∗ + β )
. (12)

A stable fixed point of Eq. (10) exists for |ωi| < |A|, which
implies that the oscillators with |ωi| < |A| cease their oscil-
lations. Thus, the solution r(t ) = r∗ �= 0 corresponds to the
oscillation-death state, where a subpopulation of the oscil-
lators and the mean field quit oscillations. Figure 1(d) and
the blue dotted line in Fig. 1(a) exemplify the dynamics of
the oscillators and the order parameter, respectively, in the
oscillation-death state.

B. Bifurcation analysis and phase diagrams

The following bifurcation analysis of Eq. (8) enables us to
obtain the phase diagrams shown in Fig. 2.

First, we analyze the bifurcation of the fixed point r =
0, the asynchronous state. Substituting r = x + iy (x, y ∈ R)
into Eq. (8) and linearizing the equations for dx/dt and dy/dt
around (x, y) = (0, 0), we obtain the stability matrix

L =
[
� − E

2 cos δ −� − E
2 sin δ

� �

]
, (13)

where � = −γ + K
2 cos β and � = 1 + K

2 sin β. The quantity
� represents the frequency of collective oscillation at its on-
set, at K = Kc, in the absence of feedback.

The saddle-node (SN), transcritical, pitchfork, and Hopf
bifurcations are the codimension-one bifurcations that al-
ter the local stability and/or number of fixed points. The
first three bifurcations occur when one of the eigenvalues of
the stability matrix vanishes, which can be captured by its
necessary condition |L| = 0. Hopf bifurcation occurs when
both eigenvalues of L become purely imaginary, TrL = 0 and
|L| > 0.
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FIG. 2. Phase diagrams of the macroscopic state based on the stable solutions of Eq. (8) for (a) K = 0.1 < Kc, (b) K = 0.3 > Kc, and
(c) K = 1.8 � Kc, where Kc = 2γ / cos β = 0.2. Other parameters are γ = 0.1 and β = 0. The black, green, and shaded regions correspond
to the asynchronous, synchronously oscillating, and oscillation-death states, respectively. The curves labeled as HB, SN, SNIC, and HC
represent the Hopf bifurcation of the origin, the saddle-node bifurcation involving nonzero fixed points, the saddle-node bifurcation on an
invariant circle, and the heteroclinic bifurcation, respectively. The curve labeled as PFs corresponds to the pitchfork bifurcation involving the
stable fixed point at the origin, while the one labeled as PFu corresponds to the pitchfork bifurcation involving only unstable fixed points. In
Fig. 2(c) the approximate SN (aSN) curve defined as E = Elower, where Elower is given by Eq. (24), is also illustrated.

Solving TrL = 0 for E under the condition |L| > 0 yields
the Hopf bifurcation (HB) curve

Ehopf = 4�

cos δ
, (14)

where δ satisfies

−�2 + �2 + 2�� tan δ > 0. (15)

The curve defined by Eqs. (14) and (15) is depicted by the
orange dashed line in Figs. 2(a)–2(c). Because TrL = 2�(1 −
E/Ehopf ), the asynchronous state is unstable for E < Ehopf

(resp. E > Ehopf ) when � > 0 (resp. � < 0). The bifurcation
is revealed to be supercritical by the weakly nonlinear analysis
performed in Appendix C. Therefore, a continuous transition
between the asynchronous and synchronous states occurs on
this curve.

The condition |L| = 0 yields another bifurcation curve:

Epf = 2(�2 + �2)

� cos δ − � sin δ
. (16)

On this curve, the pitchfork bifurcation occurs because Eq. (8)
is invariant under the change of r → −r. See Appendix B for
the transformation of Eq. (8) to a normal form and for a brief

explanation of why this bifurcation cannot be a transcritical
or SN bifurcation. Because |L| can be described as |L| =
(�2 + �2)(1 − E/Epf ), the asynchronous state is unstable for
E > Epf when �� �= 0. The stability of a fixed point changes
through this bifurcation if the nonzero eigenvalue of the sta-
bility matrix is negative, i.e., TrL < 0, or

2� <
�2 + �2

� − � tan δ
. (17)

The curve defined by Eqs. (16) and (17) is highlighted using a
magenta solid line labeled as PFs in Fig. 2. On this bifurcation
curve, the asynchronous state loses its stability. Moreover,
weakly nonlinear analysis performed in Appendix B implies
that this bifurcation is subcritical in the parameter region
considered in Fig. 2.

This suggests the existence of the bistability between
the asynchronous and oscillation-death states near the curve,
which will be numerically confirmed in Sec. III C.

The pitchfork bifurcation occurs to an unstable fixed point
if the nonzero eigenvalue of the stability matrix on the bifur-
cation curve is positive, TrL > 0. We thus obtain the curve for
this bifurcation, which is defined by Eqs. (16) and (17) but
with the opposite inequality. The obtained curve is shown by
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the dot-dashed line labeled as PFu in Fig. 2. Because no stable
state emerges with this bifurcation, the curve is not relevant to
the phase diagram.

Next, we investigate the bifurcation of the fixed point r∗ �=
0, the oscillation-death state. For convenience, we express
Eq. (8) using polar coordinates:

dR

dt
= R

(
− γ + (1 − R2)

{
K

2
cos β − E

4
[cos(δ − 2�) + cos δ]

})
, (18a)

d�

dt
= 1 + (1 + R2)

{
K

2
sin β + E

4
[sin δ − sin (δ − 2�)]

}
. (18b)

A fixed point r∗ = R∗ei�∗
is given as a solution to dR/dt = 0 and d�/dt = 0; however, this is difficult to solve explicitly.

Nevertheless, we can still obtain the stability matrix by linearizing Eq. (18) around (R,�) = (R∗,�∗), as

M =
[
− 2R∗2γ

1−R∗2 −E
2 R∗(1 − R∗2) sin(δ − 2�∗)

− 2R∗
R∗2+1

E
2 (R∗2 + 1) cos(δ − 2�∗)

]
. (19)

Below we show that the bifurcation curve can be obtained as a function of R∗ and drawn in the phase diagram by varying R∗ in
the range of 0 < R∗ < 1.

By solving |M| = 0 and using the identity sin2(δ − 2�∗) + cos2(δ − 2�∗) = 1, we obtain

sin (δ − 2�∗) = ± 1√
1 + ξ 2

, (20a)

cos (δ − 2�∗) = ∓ ξ√
1 + ξ 2

, (20b)

where

ξ = (R∗2 − 1)2

γ (R∗2 + 1)
2 . (21)

By substituting Eq. (20) into Eq. (18) and inserting dR/dt = d�/dt = 0, we obtain

E = ±
√

ξ 2 + 1[(2γ + KQ− cos β )2 + γ ξ (KQ+ sin β + 2)2]

ξ (4γ − KQ−2 cos β + γ KQ+2 sin β )
, (22a)

cos δ = ±2ξ (2γ + KQ− cos β )(4γ − KQ−2 cos β + γ KQ+2 sin β )√
ξ 2 + 1Q−[(2γ + KQ− cos β )2 + γ ξ (KQ+ sin β + 2)2]

± ξ√
ξ 2 + 1

, (22b)

sin δ = ∓ 2ξ (KQ+ sin β + 2)(4γ − KQ−2 cos β + γ KQ+2 sin β )√
ξ 2 + 1Q+[(2γ + KQ− cos β )2 + γ ξ (KQ+ sin β + 2)2]

± 1√
ξ 2 + 1

, (22c)

where Q+ = 1 + R∗2 and Q− = −1 + R∗2. Inserting 0 <

R∗ < 1 into Eq. (22) yields the cyan dotted curve in Fig. 2. As
rationalized below, this curve represents the SN bifurcation
at which stable and unstable oscillation death solutions that
exist in the area surrounded by the curve collide and disappear.
If transcritical or pitchfork bifurcation occurred on the curve,
there should be a fixed point r∗ �= 0 below the curve. Such a
fixed point may not disappear unless a bifurcation involving
that point occurs, thus it should persist up to the parameter
region of E = 0. However, this contradicts the fact that no
isolated fixed point except r = 0 exists at E = 0. Thus, a SN
bifurcation occurs on the curve. We now know that a pair of
fixed points arises through the bifurcation, but their stability
remains unclear. Expressing TrM as a function of R∗, we
numerically confirmed that TrM < 0 holds on the bifurcation
curve. This implies that a stable node and a saddle collide on
the bifurcation curve. Therefore, we conclude that a stable
oscillation-death state exists inside the curve and disappears
on the curve.

It is useful to obtain an approximate expression for the SN
bifurcation as a function of δ. To this end, for some parameter
regions, we derive a necessary condition and a sufficient con-
dition for a nonzero fixed point (R∗,�∗) to exist. If a nonzero
fixed point (R∗,�∗) exists, it must satisfy d�/dt |�=�∗ = 0,
or

E = 4 + 2K (1 + R∗2) sin β

(1 + R∗2)[sin(δ − 2�∗) − sin δ]
. (23)

The numerator on the right-hand side is positive when �′ :=
1 + K sin β > 0. In this case, a lower bound Elower � E is
given by Eq. (23) with R∗2 = 1 and sin(δ − 2�∗) = 1:

Elower = 2�′

1 − sin δ
. (24)

Thus, when �′ > 0, a necessary condition for the existence of
a nonzero fixed point is given by

E � Elower. (25)
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Next, we address a sufficient condition for the existence of
a nonzero fixed point. We restrict ourselves to the parameter
region where �′ > 0 and K > 2Kc holds. Then, for the pa-
rameter region under consideration, as shown in Appendix D,
a nonzero fixed point exists if E satisfies both of the following
inequalities:

E > Elower (1 + η) (26)

and

E <
K cos β

1 + cos δ
, (27)

where

η = Kc/K

(2 − Kc/K )(1 + K sin β )
. (28)

We can find such E for β 
 0 and sufficiently large K when a
value of δ is given. See Appendix D for details.

From Eq. (25) and (26), for �′ > 0, β 
 0, and suffi-
ciently large K , it follows that the SN bifurcation should
occur at E ∈ [Elower, Elower (1 + η)]. As η → 0 as K → ∞,
the bifurcation curve is well approximated by E = Elower for
large K . In Fig. 2(c) we observe that Elower, which is de-
picted as the approximate SN (aSN) curve, approximates the
SN bifurcation curve well, although the sufficient condition
given by Eqs. (26) and (27) cannot be satisfied in a range
of δ.

Similarly to the SN bifurcation curve, the Hopf bifurcation
curve is obtained by imposing TrM = 0 and |M| > 0. The
former condition yields

E =
√

{Q2−s2 + [c + 2γ (2R∗2 + 1)]2 − 4γ 2R∗4}2

Q2+Q4−s2
+ 16γ 2R∗4

Q2+Q2−
, (29a)

cos δ = 2[c + 2γ (2R∗2 + 1)]

EQ+Q−
, (29b)

sin δ = − 2s

EQ+
−

√
1 − 16γ 2R∗4

E2Q2+Q2−
, (29c)

where

[c + 2γ (2R∗2 + 1)]2 − 4γ 2R∗4 + s2Q2
− � 0, (30)

s = K (1 + R∗2) sin β + 2, (31)

c = K (−1 + R∗4) cos β. (32)

Inserting 0 < R∗ < 1 into Eqs. (29a), (29b), and (29c)
and requiring |M| > 0 and Eq. (30) on the curve,
we obtain the Hopf bifurcation curve. As shown in
Appendix E, the Hopf bifurcation may also occur. However,
as shown in Appendix F, we can exclude the possibility of
this bifurcation for �′ = 1 + K sin β > 0, as demonstrated in
Fig. 2.

A codimension-two bifurcation occurs at which the curves
PFs and PFu meet. A normal form of this bifurcation is known
[37]. The weakly nonlinear analysis of our system performed
in Appendix E implies that for � > 0, a heteroclinic bifur-
cation curve extends from this point. The navy solid curve
labeled by HC shows the heteroclinic bifurcation curve ob-
tained using the software XPPAUT [38].

Figure 2 indicates that the heteroclinic bifurcation curve
ends up at a point on the SN bifurcation curve, where another
codimension-two bifurcation should occur. The observation
of vector fields around this bifurcation point, shown in Fig. 3,
reveals that the SN bifurcation curve is subdivided into two
parts at this point, and the one labeled by SNIC in Fig. 2
corresponds to SN bifurcation on an invariant circle. A very
similar codimension-two bifurcation is reported in [39], where
SN, SNIC, and homoclinic bifurcation curves meet. We obtain
a heteroclinic bifurcation curve rather than a homoclinic one
because of the invariance of our system under r → −r.

The three bifurcation curves HB, HC, and SNIC in Fig. 2
form the boundary of the stable synchronous state, provided
that there is no other bifurcation involving periodic solutions,
such as the SN bifurcation of limit cycles. Then the bistable
region exists in the area surrounded by PFs, HC, and SN. Alto-
gether, we obtain three qualitatively different phase diagrams
depending on K values, as shown in Fig. 2. Our extensive
numerical analysis performed in Sec. III C and Appendix G
indicates that the phase diagrams given in Fig. 2 are compre-
hensive.

Other bifurcations may occur typically for � < 0 . As
briefly mentioned in Appendix E, the codimension-two bi-
furcation at the intersection of Hopf, PFs, and PFu has a
topologically different structure for � < 0. The situation � <

0 occurs for −π
2 < β < 0 and sufficiently large K . In such a

situation, in the absence of feedback, the mean field oscillates
with a frequency opposite to the typical natural frequency of
individual oscillators, i.e., ω0 = 1. This implies that synchro-
nized individual oscillators also have frequencies opposite
to their natural ones. However, such a phenomenon is not
commonly observed in limit-cycle oscillators and should be
regarded as an artifact owing to the use of phase approxima-
tion for a case of strong coupling. We therefore omit the case
of � < 0 in the present paper.

C. Numerical verification

To verify the analyses in Sec. III B, we simulated Eq. (6)
for N = 2000. We set ωi = ω0 + γ tan[ iπ

N − (N+1)π
2N ] with

ω0 = 1, which converges to the Lorentzian distribution at
N → ∞ [40]. In Fig. 4(a) and its magnifications Figs. 4(b)
and 4(c), we show the value of 〈R〉 for different feedback
parameters, where the angle brackets denote the long-time
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FIG. 3. Typical vector fields of Eq. (8) for different areas of the phase diagrams in Fig. 2. The vector fields on the complex planes are
drawn with cyan arrows. Filled (resp. open) squares represent stable (resp. unstable) spirals, and filled (resp. open) circles represent stable
(resp. unstable) nodes. The open triangles represent saddles. Stable limit cycles are illustrated using black solid curves. The circle drawn with
the dashed line on each panel depicts the unit circle on the complex plane. The parameters for (a) and (b) are the same as those shown in
Figs. 2(a) and 2(b), respectively.
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FIG. 4. Simulation results of Eq. (6). Long-time average of (a)–(c) R and (d)–(f) ζ . Parameters are the same as those in Fig. 2(b), and the
same bifurcation curves are drawn here. The parameter range in (b), (c), (e), and (f) is the same as that in the boxed area in (a) and (d). The
initial condition is the uniform phase distribution in (a), (b), (d), and (e) and the fully synchronized state in (c) and (f).

average. As the initial condition, we employ the uniform
state, i.e., θi(0) = 2π (i − 1)/N for i = 1, . . . , N , in Figs. 4(a)
and 4(b) and the fully synchronized state, i.e., θi(0) = 0 for
i = 1, . . . , N , in Fig. 4(c). The parameters are the same as
in Fig. 2(b), and we draw the same bifurcation curves in
Figs. 4(a)–4(c) for comparison. Simulations with randomly
drawn initial phases and natural frequencies are also carried
out and indicate that such randomness does not qualitatively
change the results. See Appendix H for details.

In the black regions in Fig. 4, 〈R〉 
 0 is obtained, which
indicates that the system is in the asynchronous state. Be-
cause the initial condition employed in Figs. 4(a) and 4(b)
is considered to be very close to the asynchronous state, the
asynchronous state should be locally stable in the black region
in Figs. 4(a) and 4(b), which is in excellent agreement with our
prediction in Fig. 2(b).

Moreover, we can observe a discrepancy between
Figs. 4(b) and 4(c) in the region surrounded by the curves
SN, HB, and PFs, where the bistability between the asyn-
chronous and oscillation-death states is predicted. To clarify
which region of nonvanishing 〈R〉 in Fig. 2 corresponds to
the synchronously oscillating or oscillation-death states, we
further measure 〈ζ 〉, where ζ = |r − 〈r〉|. From the definition
of R and ζ , 〈R〉 > 0 and 〈ζ 〉 = 0 imply that the system is in the

oscillation-death state, thus we confirm the predicted bistabil-
ity as well as the existence of the stable oscillation-death state
inside the SN and SNIC curves.

Owing to the symmetry of Eq. (8) under r → −r, we
obtain the pitchfork and heteroclinic bifurcation curves in
Fig. 2. When this symmetry is weakly broken, similar bifur-
cations are expected to occur [37,41]. More specifically, SN
and homoclinic bifurcation curves are expected to be obtained
instead of the pitchfork and heteroclinic bifurcation curves,
respectively. To numerically confirm that such asymmetry
does not significantly alter the phase diagram, in Appendix I
we investigate a variant of Eq. (8) in that a symmetry-breaking
perturbation is introduced. The simulation results are similar
to Fig. 4. See Appendix I for details.

IV. OPTIMAL FEEDBACK PARAMETERS

We consider K > Kc, or equivalently � := −γ +
K
2 cos β > 0, for which the system falls into the
synchronously oscillating state in the absence of the feedback,
and determine the value of the phase offset δ that minimizes
the required feedback strength E to suppress the synchronized
oscillations. We can achieve this by leading the system to
(1) the asynchronous state and (2) the oscillation-death
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FIG. 5. Parameter dependency of (a), (b) Easync and (c), (d) Edeath. The solid lines represents the parameter values at which Edeath = Easync

holds. (a), (c) γ = 0.04. (b), (d) γ = 0.4. On the left side of the dashed lines in (a) and (b), which depict K cos β = 2γ , we have Easync = 0
because the solution r = 0 is stable even without feedback.

state. Their optimal parameter sets (δ, E ) are denoted by (1)
(δasync, Easync) and (2) (δdeath, Edeath ).

The point (δasync, Easync) can be determined analytically.
Because the asynchronous state is stable for E above the HB
curve and below the PFs curve, (δasync, Easync) is given by
the minimum of the HB curve. Further, δ = 0 provides the
minimum when Eq. (15) holds for δ = 0, resulting in

δasync = 0, (33a)

Easync = 4� = −4γ + 2K cos β. (33b)

This is the case when � � |�| = |1 + K
2 sin β|, which typ-

ically arises for small K or large tan β. For � > |�|, the
smallest |δ| that satisfies Eq. (15) provides the minimum:

δasync = �

|�| arcsin

(
�2 − �2

�2 + �2

)
, (34a)

Easync = 2(�2 + �2)

|�| . (34b)

Although (δdeath, Edeath ) can only be numerically deter-
mined using Eqs. (22) and (29), an approximate expression
can be obtained from (24):

δdeath ≈ −π

2
, (35a)

Edeath ≈ 1 + K sin β. (35b)

Figure 5 shows the parameter dependency of Easync given
by Eqs. (33b) and (34b) and Edeath obtained numerically using
Eqs. (22) and (29). The general tendency is well captured by
Eqs. (33b) and (35b). The solid lines represent the parameter
set at which Easync = Edeath. Based on Eqs. (33b) and (35b), we
can roughly estimate that the asynchronous (oscillation-death)

state can be achieved with a smaller feedback strength when
−4γ + 2K cos β is small (large) compared to 1 + K sin β.

When we desire to suppress the collective oscillation
without causing oscillation death, we need to consider the
bistability between the asynchronous and oscillation-death
states. For example, see Fig. 2(c), where δasync = 0. Suppose
that we increase E while fixing δ = 0. Then, the oscillation-
death state will be obtained before the asynchronous state.
By further increasing E , we will eventually arrive at the HB
curve, above which the asynchronous state is stable. How-
ever, because of the bistability, the oscillation-death state is
expected to be sustained even in that region. Therefore, to
realize the asynchronous state, we need to use a larger δ

value at which we first arrive at the monostable region of the
asynchronous state. Once the asynchronous state is realized,
we can vary δ to δ = 0 and decrease E to Easync. To keep E as
small as possible during the whole manipulation, we should
employ a δ value close to that of the intersection of the HB
and SN curves. Using the HB curve given by (14) and aSN
curve given by Eq. (24), the approximate intersection can be
found as

(δ, E ) ≈
(

π

2
− 2α,

�′2 + 4�2

�′2

)
, (36)

where

α = arcsin

[
�′√

�′2 + 4�2

]
. (37)

Using this δ value, we can efficiently steer the system into the
asynchronous state, as we demonstrate in Fig. 6.

Note that in contrast to the case of the stabilization of the
asynchronous state, the feedback does not vanish when the
oscillation-death state is achieved. Moreover, the minimum
value of E does not necessarily imply that the intensity of the
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FIG. 6. Different macroscopic states are realized depending on how the feedback parameters δ and E are changed until they reach targeted
values. In (a) and (b), the upper panel shows the time series of the real part of the complex order parameter, while the lower panel displays
the phases of N = 1000 oscillators. Although the feedback parameters are set as δ = δasync and E 
 Easync at t = 200 in both (a) and (b), the
path along which the feedback parameters are changed until t = 200 is different; in (a) the parameters are changed along the white solid line
in (c), while in (b) the parameters are changed along the black dotted line in (c). This results in the different macroscopic states realized at
t = 250. The asynchronous state is realized in (a), while the oscillation death state is realized in (b). The details of the path of the feedback
parameters are as follows. In (a) the feedback parameters are set as (δ, E ) = (π/2 − 2α, 0) at t = 0, where α is given by Eq. (37). The feedback
strength E is increased linearly with time until t = 20 to reach the E value at the intersection of HB curve and aSN curve, which is marked
with open square in (c). Then δ and E are changed linearly so that δ becomes 0 = δasync and E becomes 3.3 
 Easync at t = 200. The point
(δ, E ) = (0, 3.3) is indicated by open circle in (c). In contrast, in (b) δ and E are set to δasync and 0, respectively, at t = 0. Then E is increased
linearly until it reaches 3.3 
 Easync at t = 200. For t � 200, the feedback parameters are kept constant in both (a) and (b). Other parameters
are as follows: γ = 0.1, β = 0, and K = 1.8 > Kc. The natural frequencies and the initial conditions are set as ωi = 1 + γ tan[ iπ

N − (N+1)π
2N ]

and θi(0) = 0, respectively, for i = 1, 2, . . . , N .

feedback |E f (r)| is minimized as it also depends on r. In-
stead, this optimization does minimize the possible feedback
intensity.

We perform numerical simulations of Eq. (6) to verify
whether a near-optimal feedback properly works. Figure 7
shows the time series of the collective oscillation Re(r(t ))
and the individual phases θi(t ) before and after the onset of
the feedback. In Fig. 7(a) the feedback with the parameters
E = 0.3 ≈ Easync and δ = 0 = δasync is applied at t = 5050,
as marked by the black arrow. Upon the onset of the feedback,
the population begins to be desynchronized, and r decreases
with time. In Fig. 7(b) the feedback parameters are chosen
such that the oscillation-death state is induced with small
feedback strength: E = 1.10 ≈ Edeath and δ = −π/2 ≈ δdeath.
The figure indicates that the oscillations of the individual
oscillators and the mean field terminate immediately because
of the feedback.

V. INVESTIGATION ON THE ROBUSTNESS OF THE
EFFECT OF FEEDBACK USING A DIFFERENT

MODEL OF OSCILLATORS

Our analyses thus far are based on the model given by
Eq. (6). As presented in Appendix A, this model is derived
from a general class of coupled oscillator models. However,
we assumed that coupling, inhomogeneity, and feedback are

sufficiently weak to employ averaging approximations and
that the functions contain only the first harmonics. Further-
more, we assumed the natural frequencies to obey Lorentzian
distribution to obtain the reduced dynamical equation given in
Eq. (8). Here, to exemplify the robustness of the results to the
violation of these assumptions, we provide numerical results
for a model with the form given by Eq. (A5). Specifically, we
consider

θ̇i = 1 + μi cos θi + K

N
Zv (θi )

N∑
j=1

V (θ j )

+ EZ f (θi ) f (θ). (38)

We adopt the pulse-like signal V (θ ) = νn(1 + cos θ )n used in
[42], where n is the parameter on the sharpness of V , and νn =
2n(n!)2/(2n)! normalizes

∫ 2π

0 V (θ )dθ to be 2π . We set n =
10. The phase sensitivity functions Zv and Z f are chosen to
weakly include the second Fourier mode:

Zv (θ ) = − sin θ + 0.2 sin 2θ, (39)

Z f (θ ) = sin θ + 0.2 cos 2θ. (40)

Finally, μi is drawn from Gaussian distribution with mean 0
and standard deviation 0.1.

Numerical simulation of Eq. (38) for N = 2000 is con-
ducted to calculate 〈R〉 and 〈ζ 〉, which are shown in
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FIG. 7. Alteration of the dynamics of the N = 100 oscillators by the feedback. In each panel, the upper panel displays the time series of
Re(r) while the lower panel shows the phases of the oscillators. (a) The feedback parameters are set as E = 0.3 ≈ Easync and δ = 0 = δasync to
stabilize the asynchronous state with small E . The intrinsic parameters of the oscillators, K , β, and γ , are the same as those in Fig. 2(b). (b) The
feedback parameters are set as E = 1.1 ≈ Edeath and δ = −π/2 ≈ δdeath to induce the oscillation-death state with small E in the population
that has the same parameters as Fig. 2(c).

Figs. 8(a) and 8(b), respectively. These figures qualitatively
agree with Figs. 4(a) and 4(d), suggesting the robustness of
the results.

FIG. 8. Long-time average of (a) R and (b) ζ in the system of
pulse-coupled oscillators under the feedback described by Eq. (38).
Initial conditions are given by θi(0) = 2π (i − 1)/N . The coupling
strength K is set to 0.3.

VI. CONCLUSION AND DISCUSSION

Motivated from the wide range of the applications of
synchronization control, we analyzed an inhomogeneous pop-
ulation of phase oscillators exposed to global feedback.
Detailed phase diagrams of the collective state are obtained
based on the bifurcation analysis of the macroscopic equation
derived using the Ott-Antonsen theory. The diagram displayed
three types of macroscopic states: the synchronously oscil-
lating state, the asynchronous state, and the oscillation-death
state. Exact and approximate optimizations of the feedback
parameters for steering a synchronously oscillating popula-
tion into the asynchronous or the oscillation-death state with
minimum feedback strength are also presented. Although we
assumed several conditions such as the weakness of the cou-
pling and the feedback in the derivation of the model equation,
the numerical investigation in Sec. V demonstrates that our
results do not change qualitatively even when some of the
assumptions are violated to some extent.

Herein we focused on linear feedback F given by Eq. (2),
and our extensive analysis revealed its utility for synchro-
nization control. Linear feedback can be regarded as a basic
methodology, and our study is expected to serve as a bench-
mark when more sophisticated feedback is to be designed. A
natural extension is to make the feedback function F non-
linear in R. Although it will not change the linear stability
of the asynchronous state, it may alter the stability and the
existence of other states in addition to the amplitude of the
collective oscillation [43]. A class of nonlinear feedback has
been proposed in [23] for reducing the amplitude of the collec-
tive oscillation and further investigated in successive studies
[43–47]. In [48,49], the authors showed that a class of delayed
nonlinear feedback can stabilize complex dynamical states
including a type of desynchronized state and demonstrated
its ability to control electrochemical oscillators. Further-
more, regarding DBS, smooth feedback may not fulfill safety
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requirements [50]. In [28], the authors compare two types
of feedback: a smooth feedback and a series of pulses that
are amplified according to the smooth feedback. They found
that the pulses have a similar desynchronizing effect to the
smooth feedback. The same approach might be applicable to
the feedback studied in this article.

Our theoretical results can be demonstrated in some ex-
perimental systems. Recently, techniques for inferring phase
dynamics and their interactions from observed oscillatory
signals have been developed, and they have been utilized in
experimental studies for predicting and controlling the dy-
namics of the oscillators [1,34,51–53]. These experiments
have revealed various coupling and phase sensitivity func-
tions; in some systems, the first Fourier component is
dominant, while in other systems, some of the higher and
the constant components are also prominent. In the former
case, our analytical results may be verified quantitatively by
estimating the values of ωi, K, and β in Eq. (5) and imple-
menting the global feedback loop. The feedback parameters δ

and E can be tuned if R and � can be inferred online or two
outputs from individual oscillators are available, as detailed in
Appendix A.

As we noted in Sec. III C, our model has a particular
symmetry; the dynamics of the complex order parameter,
i.e., Eq. (8), is invariant under the change of r → −r. This
symmetry results from the invariance of the phase equation
(5) under θi → θi + π for i = 1, 2, . . . , N because shifting
the all the phases of oscillators by π results in changing r
to −r. Hence, symmetry-breaking modifications to the phase
equation can break the symmetry of the dynamics of r. There
are several ways in which the symmetry of the phase equa-
tion is violated. The introduction of even-order harmonics
in the phase sensitivity is one example. Modifications to the
feedback function can also break the symmetry. For exam-
ple, replacing cos(θ j − δ) in the feedback function (2) with
polynomials in cos(θ j − δ) breaks the symmetry. Regarding
the feedback function F that depends only on r = Rei�, the
symmetry is kept if and only if F (R,�) = −F (R,� + π )
holds. As we shortly discussed in Sec. III C and detailed in
Appendix I, the pitchfork and heteroclinic bifurcations may be
replaced by other types of bifurcations in asymmetric systems.
However, the simulation results in Appendix I indicate that the
parameter region in that each macroscopic state is stable does
not change significantly by weakly breaking the symmetry.

Finally, we remark on the limitation of the current study.
It should be noted that our results are based on phase os-
cillator models. A qualitatively different phase diagram may
be obtained for limit-cycle oscillators whose amplitudes con-
siderably deviate from that of the unperturbed periodic orbit.
Therefore, to understand the effect of a large amplitude devi-
ation on synchronization control, it is important to investigate
models of limit-cycle oscillators and compare them with our
results.
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APPENDIX A: DERIVATION OF OUR MODEL
GIVEN IN EQ. (1)

We consider a general class of oscillator network given by

ẋi = ui(xi; pi, qi ), (A1)

where xi = (xi, yi, . . .) and ui (i = 1, . . . , N ) are the state and
the local vector field of the ith oscillator, respectively, and pi

and qi are parameters. The interactions and external forcing
are assumed to be given through variations in the parameters
as pi = p0 + �pi and qi = q0 + �qi, where p0 and q0 are
the parameter values common for all the oscillators and �pi

and �qi describe perturbations. When we consider global
coupling and feedback, the perturbations may be given as

�pi = K ′

N

N∑
j=1

v(xi, x j ), (A2)

�qi = �q ≡ E ′ f (x1, . . . , xN ), (A3)

where K ′ and E ′ are the strengths of coupling and feedback,
respectively, and v and f are the functions describing coupling
and feedback, respectively.

We follow the standard procedure of the phase reduction to
obtain the corresponding phase description to Eq. (A1) [5,54].
Let us introduce �ui(xi; pi, qi ) = ui(xi; pi, qi ) − u(xi; pi, qi )
for i = 1, . . . , N , which describes inhomogeneity in inherent
oscillator properties. We assume that the unperturbed system,

ẋ = u(x; p0, q0), (A4)

has a stable limit cycle x∗(t ). The phase of the unperturbed
system is defined as a scalar field �(x) for the basin of
attraction for the limit cycle such that the contour of �(x)
describe the isochron of the unperturbed system [5,55]. Using
this scalar field, the phase of the ith oscillator is defined as
θi = �(xi(t )) (i = 1, . . . , N).

We assume that the orbital stability of the cycle x∗(t )
in the unperturbed system given by Eq. (A4) is sufficiently
higher than perturbation strength. Then, to the lowest order in
perturbations strengths, each phase obeys

θ̇i = ω + Z(θi) · U i(θi ) + K ′

N

N∑
j=1

Zv (θi )V (θi, θ j )

+ E ′Z f (θi )F (θ), (A5)

where ω is the natural frequency of the limit cycle x∗; U i,V, F
are the parametric representations of �ui, v, f on the limit
cycle x∗ in terms of the phases, respectively; and Z, Zv, Z f

are the phase sensitivity functions, which can be expressed
in terms of the derivatives of u(x; p, q) and �(x). All the
functions are 2π -periodic in each argument.

When the magnitudes of the perturbation terms, i.e., the
second to fourth terms of the right-hand side in Eq. (A5),
are sufficiently small compared to ω, we may further simplify
the equation using an averaging approximation. The resultant
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equation is

θ̇i = ω + �ωi + K ′

N

N∑
j=1

�v (θi − θ j ) + E ′

N

N∑
j=1

� f (θi − θ j ),

(A6)

where the constant �ωi and the functions �v and � f can be
expressed in terms of the functions appearing in Eq. (A5). If
the last term in Eq. (A5) is not very small compared to ω, we
can still average the other terms to obtain

θ̇i = ω + �ωi + K ′

N

N∑
j=1

�v (θi − θ j ) + E ′Z f (θi )F (θ). (A7)

In Eq. (A7), we may consider larger E ′ values than in
Eq. (A6), which is the reason why we employ this type of
model in this work.

Our model given in Eq. (1) is a version of Eq. (A7), where
we assume that only the first harmonics are present in all the
functions appearing in Eq. (A7), �v , Z f , and F . This assump-
tion is valid when we consider limit-cycle oscillators close to a
Hopf bifurcation point, in which the phase sensitivity and the
wave forms are well approximated by the functions with only
the first harmonics and with the constant and first harmon-
ics terms, respectively. Let us further assume that from each
oscillator we can observe two quantities, such as x j (t ) and
y j (t ). If we denote the trajectory of the unperturbed limit cycle
x∗(t ) by χ(�), where χ(�(x∗(t ))) = x∗(t ), with its elements
being χ = (χx, χy, . . .), the variation of χx(θ ) and χy(θ ) are
almost sinusoidal near the Hopf bifurcation point. There-
fore, the unperturbed waveforms can be denoted by χx(θ ) 

χ̄x + Ax cos(θ − δx ) and χy(θ ) 
 χ̄y + Ay cos(θ − δy), where
χ̄x and χ̄y are the average of χx(θ ) and χy(θ ), respectively, Ax

and Ay are the oscillation amplitudes, and δx and δy are the
phase offsets in the waveforms. We then give the feedback
function f as

f =
N∑

j=1

[
a

x j − x̄ j

Ax
+ b

y j − ȳ j

Ay

]
, (A8)

where x̄ j and ȳ j denote the average values of x j and y j ,
respectively; and a and b are our control parameters. In the
lowest order phase description, Eq. (A8) results in

F (θ) =
N∑

j=1

[a cos(θ j − δx ) + b cos(θ j − δy)]. (A9)

We can further transform (A9) to

F (θ) = E
N∑

j=1

cos (θ j − δ), (A10)

= ER cos (� − δ), (A11)

where

E = [(a cos δx + b cos δy)2 + (a sin δx + b sin δy)2]1/2,

(A12)

cos δ = a cos δx + b cos δy

E , (A13)

sin δ = a sin δx + b sin δy

E . (A14)

We can give an arbitrary value of δ and an arbitrary non-
negative value of E by appropriately choosing the values of a
and b. This becomes clear when we describe E and tan δ in
terms of a/b:

E = |b|
[(

a

b
cos δx + cos δy

)2

+
(

a

b
sin δx + sin δy

)2]1/2

,

(A15)

tan δ = (a/b) sin δx + sin δy

(a/b) cos δx + cos δy
. (A16)

Equation (A16) implies that tan δ can be tuned to any values
by varying a/b because it is a hyperbola as a function of
a/b, whereas Eq. (A15) implies that E can be tuned to any
non-negative value by keeping a/b constant and varying b.
Furthermore, from Eqs. (A13) and (A14), it follows that δ is
shifted by π when the signs of a and b are reversed. Therefore,
E takes arbitrary non-negative values and δ takes arbitrary
values. Because Ẽ in Eq. (1) is given by Ẽ = E ′E , Ẽ � 0 can
also be set arbitrarily.

APPENDIX B: CLASSIFICATION OF THE
ZERO-EIGENVALUE BIFURCATION AT THE ORIGIN

The codimension-one bifurcation involving a zero eigen-
value at the origin is limited to the pitchfork bifurcation. One
possible approach for this is to consider the facts that the SN
bifurcation may not occur because the constant solution r = 0
may not vanish in Eq. (8) and the pitchfork bifurcation rather
than the transcritical bifurcation occurs because the symmetry
of Eq. (8) implies that the emergence of a constant solution
r = r∗ �= 0 must be accompanied with the emergence of r =
−r∗ as well.

An alternative way is to perform the center manifold reduc-
tion [37], which will clarify that the bifurcation is actually the
pitchfork one and whether the bifurcation is super- or subcrit-
ical. Let the bifurcation parameter be μ = E − Epf , where Epf

is given by Eq. (16). Inserting r = u + iv and E = Epf + μ

into Eq. (8), we obtain(
u̇
v̇

)
=

(
� − Epf cos δ

2 −� − Epf sin δ

2
� �

)(
u
v

)
+

(
p(u, v)
q(u, v)

)
,

(B1)

where

p(u, v) = − μ

2
(u cos δ + v sin δ)

+ Epf + μ

2
(u2 − v2)(u cos δ + v sin δ)

− K

2
(u2 + v2)(u cos β + v sin β ), (B2)

q(u, v) = u2v[(Epf + μ) cos δ − γ − �]

+ uv2[(Epf + μ) sin δ + � − 1]

+ u3(� − 1) + v3(−γ − �). (B3)

To reduce the system, let us transform the variables as follows:(
u
v

)
=

(−�
�

� sin δ+� cos δ
� sin δ−� cos δ

1 1

)(
û
v̂

)
, (B4)
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which yields (
˙̂u
˙̂v

)
=

(
0 0
0 λ̂

)(
û
v̂

)
+

(
a1μû + a2μv̂ + a3û3 + O(v3, uv2, u2v)

bμû + O(μv̂, v̂3, ûv̂2, û2v̂, û3)

)
, (B5)

where

λ̂ = cos δ(�2 − �2) − 2�� sin δ

� cos δ − � sin δ
, (B6)

a1 = (� sin δ − � cos δ)2

2[(�2 − �2) cos δ + 2�� sin δ]
, (B7)

a2 = �2

2[(�2 − �2) cos δ + 2�� sin δ]
, (B8)

a3 = (�2 + �2){(−2γ�� + �2 − �2) sin δ + [γ (�2 − �2) + 2��] cos δ}
�2[(�2 − �2) cos δ + 2�� sin δ]

, (B9)

b1 = (� cos δ − � sin δ)2

2(�2 − �2) cos δ − 4�� sin(δ)
. (B10)

Equation (B5) implies that λ̂ < 0 is required for the origin
to lose its stability through the codimension-one bifurcation
at μ = 0. The center manifold v̂ = c(û, μ) up to the second
order is given by

c(û, μ) = − b

λ̂
μû + O(ûμ2, û3). (B11)

On this center manifold, the dynamics is reduced to

˙̂u = a1μ

(
1 − a2b

λ̂a1
μ

)
û + a3û3 + O(μû3, μ3û). (B12)

Equation (B12) implies that the pitchfork bifurcation occurs at
μ = 0. It is supercritical for a3 < 0 and subcritical for a3 > 0.

Below, we show that the bifurcation is subcritical when
λ̂ < 0, � > 0, and Epf is sufficiently small compared to �/γ .
Because E � 0, and the numerator of Epf is positive, the
denominator of Epf is also positive:

� cos δ − � sin δ > 0, (B13)

which implies that the denominator of λ̂ is positive. Thus, if
λ̂ < 0, the numerator of λ̂ is negative:

(�2 − �2) cos δ − 2�� sin δ < 0. (B14)

Under this condition, a3 is positive if

[γ (�2 − �2) + 2��] cos δ > (2γ�� − �2 + �2) sin δ,

(B15)

⇐⇒ �(� cos δ − � sin δ) > −�(� sin δ + � cos δ)

+ γ [2�� sin δ − (�2 − �2) cos δ]. (B16)

We first consider the case of � � 0. Then, the first term
of the right-hand side of Eq. (B16) is negative because
Eqs. (B13) and (B14) yield

0 � �(� cos δ − � sin δ) < �(� sin δ + � cos δ). (B17)

As for the second term, noting that | cos δ|, | sin δ| � 1, we
obtain

2�� sin δ − (�2 − �2) cos δ

� 2�� + �2 + �2 � 2(�2 + �2). (B18)

Equations (B16), (B17), and (B18) yield the following suffi-
cient condition for a3 to be positive:

�(� cos δ − � sin δ) > 2γ (�2 + �2), (B19)

which is equivalent to

Epf = 2(�2 + �2)

� cos δ − � sin δ
<

�

γ
. (B20)

Therefore, for � � 0, the bifurcation is subcritical when Epf

is sufficiently small compared to �/γ .
We next consider the case of � < 0. If � sin δ + � cos δ <

0 holds, we can derive Eq. (B20) in the same manner as the
case of � � 0. When � sin δ + � cos δ � 0, we evaluate the
right-hand side of Eq. (B16) as follows. As |�| < γ holds for
� < 0,

−�(� sin δ + � cos δ) < γ (|�| + �). (B21)

This equation and Eqs. (B16) and (B18) yield the sufficient
condition for the subcritical bifurcation

�(� cos δ − � sin δ) > 2γ (�2 + �2)

[
1 + |�| + �

2(�2 + �2)

]
,

(B22)

which is equivalent to

Epf <
�

γ
[
1 + |�|+�

2(�2+�2 )

] . (B23)

From Eq. (B20) and Eq. (B23), it is shown that the pitchfork
bifurcation is subcritical if Epf is sufficiently small compared
to �/γ .

Near the parameter regions considered in Fig. 2, Epf is
small enough, and hence the pitchfork bifurcation involving
a stable fixed point is subcritical.

APPENDIX C: WEAKLY NONLINEAR ANALYSIS
OF THE HOPF BIFURCATION

We show below that the Hopf bifurcation at the origin is
always supercritical. Substituting r = u + iv and the value

062217-14



FEEDBACK-INDUCED DESYNCHRONIZATION AND … PHYSICAL REVIEW E 103, 062217 (2021)

of the feedback strength at the bifurcation point, given by
Eq. (14), into Eq. (8), we have(

u̇
v̇

)
=

(−� −2� tan δ − �

� �

)(
u
v

)
+

(
g(u, v)
h(u, v)

)
, (C1)

where

g(x, y) = 2�(x2 − y2)(x + y tan δ)

− K

2
(x2 + y2)(x cos β + y sin β ), (C2)

h(x, y) = K
2 (x2 + y2)(x sin β − y cos β ) + 4�xy(x + y tan δ).

(C3)

To simplify the calculation, we change the coordinates to(
ũ
ṽ

)
=

(
�/ω̃ �/ω̃

0 1

)(
u
v

)
, (C4)

where ω̃ = √−�2 + �2 + 2�� tan δ. Then ũ and ṽ obey(
˙̃u
˙̃v

)
=

(
0 −ω̃

ω̃ 0

)(
ũ
ṽ

)
+

(
g̃(ũ, ṽ)
h̃(ũ, ṽ)

)
, (C5)

where(
g̃(ũ, ṽ)

h̃(ũ, ṽ)

)
=

(
�/ω̃ �/ω̃

0 1

)(
g(u(ũ, ṽ), v(ũ, ṽ))
h(u(ũ, ṽ), v(ũ, ṽ))

)
. (C6)

Then z = ũ + iṽ obeys

ż = iω̃z + g̃ + ih̃. (C7)

Using a near-identity transformation, Eq. (C7) is further re-
duced to the following normal form of the Hopf bifurcation
[37]:

ẇ = iω̃w+d|w|2w + O(|w|5), (C8)

where w, d ∈ C, and

Re(d ) = −γ

(
1 + �

�
tan δ

)
. (C9)

The bifurcation is supercritical when Re(d ) < 0. Noting
that γ > 0, we may further show Re(d ) < 0 as follows. When
�
�

tan δ � 0, it is obvious that Re(d ) < 0 from Eq. (C9). When
�
�

tan δ < 0, the following inequality holds:

1 + �

�
tan δ > 1 + 2

�

�
tan δ. (C10)

Moreover, Eq. (15) implies that the Hopf bifurcation at the
origin occurs only when

−�2 + �2 + 2�� tan δ > 0. (C11)

From Eqs. (C10) and (C11), we have

1 + �

�
tan δ >

(
�

�

)2

> 0, (C12)

and hence Re(d ) < 0. Therefore, the Hopf bifurcation at the
origin is supercritical for any parameter values.

APPENDIX D: DERIVATION OF THE SUFFICIENT
CONDITION FOR A NONZERO FIXED POINT

Here, under the conditions K > 2Kc and �′ = 1 +
K sin β > 0, we derive Eqs. (26) and (27), i.e., a sufficient
condition for Eq. (18) to have a nonzero fixed point. Note that
an intersection of the two nullclines

−γ + (1 − R2)
{K

2
cos β − E

4
[cos(δ − 2�) + cos δ]

}
= 0

(D1)

and

1 + (1 + R2)

{
K

2
sin β + E

4
[sin δ − sin (δ − 2�)]

}
= 0

(D2)

gives a nonzero fixed point. Thus there exists a fixed point
(R∗,�∗) such that Rlower < R∗ < 1 if both of the following
conditions are satisfied: (1) the nullcline given by Eq. (D1)
is defined for any �, and the value of R on the nullcline
always satisfies Rlower < R∗ < 1, and (2) the nullcline given
by Eq. (D2) passes through the region Rlower < R∗ < 1 on the
R-� plane.

The first condition is equivalent to that the following in-
equality holds for any �:

Rlower
2 < 1 − 4γ

2K cos β − E [cos (δ − 2�) + cos δ]
< 1,

(D3)

which is satisfied when

E <
2K cos β − 4γ (1 − Rlower

2)
−1

1 + cos δ
. (D4)

Next we discuss the second condition. Equation (D2)
yields R2 = −1 + S(sin(δ − 2�))−1, where

S(x) = −K

2
sin β + E

4
(x − sin δ) (D5)

is a monotonically increasing function of x. Because sin(δ −
2�) is in the range of [−1, 1], the nullcline given by Eq. (D2)
crosses over the region Rlower < R∗ < 1 if

S(−1) < 1
2 (D6)

and

S(1) >
(
1 + R2

lower

)−1
. (D7)

When �′ > 0, the inequality given by (D6) holds for any E �
0. In contrast, inequality (D7) holds when

E > Elower

[
1 + 1 − Rlower

2

(1 + Rlower
2)(1 + K sin β )

]
, (D8)

where Elower is given by Eq. (24).
Therefore, if Eqs. (D4) and (D8) are satisfied, a nonzero

fixed point (R∗,�∗) that satisfies Rlower < R∗ < 1 exists. As
a special case, we obtain Eqs. (26) and (27), respectively, by
setting Rlower =

√
1 − 2Kc

K in Eqs. (D8) and (D4).
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We can find a value of E that satisfies both of Eqs. (26) and
(27) when

Elower (1 + η) <
K cos β

1 + cos δ
, (D9)

which is equivalent to

2

1 − sin δ

(
1

K − Kc
+ sin β

)
− cos β

1 + cos δ
< 0. (D10)

Equation (D10) holds when β 
 0 and K is sufficiently large
for a given value of δ.

APPENDIX E: ANALYSIS ON THE CODIMENSION-TWO
BIFURCATION POINT

By imposing TrL = |L| = 0, we obtain the values of the
feedback parameters at which the Hopf bifurcation curve (14)
and the pitchfork bifurcation curve (16) meet as

sin δ = �

|�|
�2 − �2

�2 + �2
, (E1)

cos δ = 2�|�|
�2 + �2

, (E2)

E = 2(�2 + �2)

|�| . (E3)

Substituting r = u + iv together with Eq. (E1)–(E3) into
Eq. (8), we have(

u̇
v̇

)
=

(
−� −�2

�

� �

)(
u
v

)
+

(
g2(u, v)
h2(u, v)

)
, (E4)

where

g2(u, v) = (� − γ )u3 +
(

1 − 2� + �2

�

)
u2v

− (γ + 3�)uv2 +
(

1 − �2

�

)
v3, (E5)

h2(u, v) = (� − 1)u3 − (γ − 3�)u2v

+
(

−1 − � + 2�2

�

)
uv2 − (γ + �)v3. (E6)

Next, we transform the linear part into the Jordan normal form
by the following change of variables:(

ǔ
v̌

)
=

(
0 1
� �

)(
u
v

)
, (E7)

which yields(
˙̌u
˙̌v

)
=

(
v̌

0

)
+

(
c1ǔ3 + c2ǔ2v̌ + c3ǔv̌2 + c4v̌

3,

d1ǔ3 + d2ǔ2v̌ + d3ǔv̌2 + d4v̌
3

)
, (E8)

where

c1 = (�2 + �2)(� − γ�)/�3, (E9)

c2 = (2γ�� − �2� − 3�2 − �2 − �3)/�3, (E10)

c3 = (3� − γ�)/�3, (E11)

c4 = (−1 + �)/�3, (E12)

d1 = (�2 + �2)2/�3, (E13)

d2 = (�2 + �2)(−γ� − 3�)/�3, (E14)

d3 = [(3�2 + �2) − 2�(−γ� + �2 + �2)]/�3, (E15)

d4 = [−� − �(γ − 2�)]/�3. (E16)

Equation (E8) is then reduced to(
U̇
V̇

)
=

(
V
0

)
+

(
0

d1U 3 + (3c1 + d2)U 2V

)

+ O(U 5,U 4V,U 3V 2,U 2V 3,UV 4,V 5) (E17)

by the following near-identity transformation:(
ǔ
v̌

)
=

(
U
V

)

+
(

1
6 (2c2 + d3)U 3 + 1

2 (c3 + d4)U 2V + c4UV 2

−c1U 3 + 1
2 d3U 2V + d4UV 2

)
.

(E18)

The signs of d1 and d ′
2 := 3c1 + d2 = −4γ (�2 + �2)/�2

determine the types of the codimension-one bifurcation that
occurs near the codimension-two bifurcation point [37]. The
heteroclinic bifurcation as well as the Hopf and the pitchfork
bifurcations occurs for d1d ′

2 < 0, while the bifurcation involv-
ing a pair of homoclinic orbit occurs for d1d ′

2 > 0 [37]. The
former is the case for � > 0, and the latter is the case for
� < 0.

Note that the analysis above only gives the information
around a specific codimension-two bifurcation point and does
not necessarily imply that the Hopf bifurcation involving
nonzero fixed point may not occur for � > 0. In prac-
tice, we numerically observed it for some parameter sets
even when � > 0. However, as detailed in Appendix F,

FIG. 9. The stable region of the limit-cycle solution. The region
where at least one stable limit cycle exists is filled with black. The
bifurcation curves obtained in Sec. III are also plotted. The Hopf,
SNIC, and heteroclinic bifurcation curves agree with the boundary of
the black region. The parameters are the same as those in Fig. 2(b).
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we can show that this bifurcation does not occur for �′ =
1 + K sin β > 0.

APPENDIX F: ABSENCE OF HOPF BIFURCATION
INVOLVING A NONZERO FIXED POINT FOR �′ > 0

In this Appendix, we show that Hopf bifurcation involving
a nonzero fixed point does not occur for �′ > 0. A necessary
condition for this bifurcation to occur is that the stability
matrix M given by Eq. (19) satisfies |M| > 0 and TrM = 0.
Therefore, it is sufficient to show that |M| � 0 holds when
TrM = 0.

The condition TrM = 0 yields

E

2
(R∗2 + 1) cos(δ − 2�∗) = 2R∗2γ

1 − R∗2 . (F1)

Substituting Eq. (F1) into Eq. (19), we obtain

|M| = −
[

E

2
(R∗2 + 1) cos(δ − 2�∗)

]2

− E (1 − R∗2)R∗2 sin(δ − 2�∗)

1 + R∗2 (F2)

= m2(R∗) sin2 (δ − 2�∗)

+m1(R∗) sin (δ − 2�∗) + m0(R∗) (F3)

≡ D(sin (δ − 2�∗); R∗), (F4)

where

m2(R∗) = −m0(R∗) = E2(1 + R∗2)2

4
, (F5)

m1(R∗) = −E
(
1 − R∗2)R∗2

1 + R∗2 . (F6)

Because D(s; R∗) is a quadratic function of s, we can solve
D(s; R∗) = 0 for a fixed R∗:

s = 2(1 − R∗2)R∗2 ±
√

E2(R∗2 + 1)6 + 4(R∗2 − 1)2R∗4

E (R∗2 + 1)3

≡ s±. (F7)

As m2(R∗) � 0, D(s; R∗) � 0 holds for s− � s � s+.
Noting that the expression for sin(δ − 2�∗) in terms of

R∗ is obtained by solving d�/dt = 0, we now show s− �
sin(δ − 2�∗) � s+ for �′ > 0 as follows. Since Eq. (F7)
implies 1 � s+, it is obvious that sin(δ − 2�∗) � s+ holds.

FIG. 10. Simulation results of Eq. (6) with randomized initial conditions and natural frequencies. Mean of the long-time average of (a)–(c)
R and (d)–(f) ζ for 10 trials are plotted. The other parameters are the same as those in Fig. 4, and the same bifurcation curves are drawn here.
The parameter range in (b), (c), (e), and (f) is the same as that in the boxed area in (a) and (d). The initial phases are drawn from the uniform
distribution in (a), (b), (d), and (e) and the Gaussian distribution with mean 0 and standard deviation 0.1 in (c) and (f).
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Furthermore,

sin (δ − 2�∗) − s−

= sin δ + 4 + 2K sin β(1 + R∗2)

E (1 + R∗2)

− 2(1 − R∗2)R∗2 −
√

E2(R∗2 + 1)6 + 4(R∗2 − 1)2R∗4

E (R∗2 + 1)3

(F8)

� −1 + 4 + 2K sin β(1 + R∗2)

E (1 + R∗2)

− 2(1 − R∗2)R∗2 − E (R∗2 + 1)3

E (R∗2 + 1)3
(F9)

= σ (R∗)

E (1 + R∗2)
2 , (F10)

where σ (R∗) = 4(1 + R∗2)2 + 2K sin β(1 + R∗2)3 −
2(1 − R∗2)R∗2. When sin β � 0, it is obvious that
�′ = 1 + K sin β > 0. In this case, noting 0 � R∗ � 1,
we obtain σ (R∗) > 0 because

σ (R∗) � 4 + 2K sin β − 2 = 2�′. (F11)

We can also show σ (R∗) > 0 for sin β < 0 and �′ > 0 by
calculating the derivative of σ :

dσ (R∗)

dR∗ = 12R∗[1 + 2R∗2 + K sin β(1 + R∗2)2]. (F12)

The solution of dσ/dR∗ = 0 is given by

R∗ =
√

�′ + √
�′

−K sin β
≡ R̃∗. (F13)

If R̃∗ > 1, σ (R∗) takes its minimum at R∗ = 1. Otherwise, the
minimum is given by min(σ (0), σ (1)). Because both σ (0) =
2�′ + 2 and σ (1) = 16�′ is positive, σ (R∗) > 0 is satisfied.

Hence, from Eq. (F10), it follows that

sin (δ − 2�∗) − s− � σ (R∗)

E (1 + R∗2)
2 � 0. (F14)

Therefore, for �′ > 0, s− � sin(δ − 2�∗) � s+ holds, and
thus we obtain |M| = D(sin(δ − 2�∗); R∗) � 0 for any R∗ ∈
[0, 1].

APPENDIX G: NUMERICAL SEARCH FOR LIMIT-CYCLE
SOLUTIONS OF EQ. (8)

While the bifurcation analyses in Sec. III is comprehensive
in regard to the local bifurcations, some global bifurcations
such as SN bifurcation of periodic orbits are not considered
there. These global bifurcations might create or destroy stable
limit cycles, affecting the stability region of the synchronously
oscillating state in Fig. 1.

Thus, we numerically verified that the stability boundary
of the synchronously oscillating state consists of the Hopf,
SNIC, and heteroclinic bifurcation curves obtained in Sec. III

FIG. 11. Simulation results of Eq. (I1). The long-time averages of (a)–(d) R and (e)–(h) ζ for h = 0.03 are plotted with the same bifurcation
curves as in Fig. 4. The initial condition is (Re(r), Im(r)) = (0.01, 0) in (a), (c), (e), and (g) and (Re(r), Im(r)) = (0.9, 0) in (b, (d), (f), and
(h). The boxed area in (a), (b), (e), and (f) are magnified in (c), (d), (g), and (h), respectively. Parameters are as follows: K = 0.3, β = 0, and
γ = 0.1.
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as detailed below. For each parameter set, 100 initial con-
ditions for Re(r) and Im(r) are drawn from the uniform
distribution on the unit disk, and the type of the attractor to
which each orbit converges is detected. In the black region in
Fig. 9, at least one orbit converges to a limit cycle. The edge
of the black region agrees with the bifurcation curves that
are inferred to form the stability boundary of the collective
oscillation.

The type of the attractor is classified according to the
following criteria. (1) Let �rt be the norm of the variation
of the orbit between time t and t + �t , where �t = 0.01. The
orbit is considered to be converged to a fixed point if the phase
point is moving slowly (�rt ,�rt−�t ,�rt−2�t < 10−5) and
is slowing exponentially (|�rt/�rt−�t − �rt−�t/�rt−2�t | <

10−5). (2) Let xmax and xmin be the maximum and the min-
imum, respectively, of Re(r) during an interval (10 000 <

t < 20 000). Then let yn be the nth intersection of the line
Re(r) = (xmax + xmin)/2 and the orbit that transverses the line
with Re(ṙ) > 0. The orbit is considered to be converged to a
limit cycle when |yn − yn−1| < 10−5. With these criteria, we
conclude that every orbit is converged to either a fixed point
or a limit cycle.

APPENDIX H: NUMERICAL SIMULATION OF EQ. (6)
WITH RANDOMELY DRAWN PARAMETERS

In Sec. III we performed numerical simulations of Eq. (6)
for N = 2000 with natural frequencies ωi = 1 + 0.1 tan[ iπ

N −
(N+1)π

2N ](i = 1, 2, . . . , N ) and with two different initial condi-
tions, namely, the uniform state and the fully synchronized
state. The simulation result with the former initial condition is
expected to represent a typical behavior of the systems with
R 
 0 at t = 0, while the latter initial condition is expected to
represent the case of R 
 1 at t = 0. However, the complete
lack of randomness may make the results obtained in Sec. III
atypical.

To confirm that introducing randomness does not qual-
itatively change the results, we perform the following
supplemental numerical simulations and compare the results
with Fig. 4. Equation (6) is simulated for 10 times with ran-
dom initial phases drawn from the uniform distribution on
[0, 2π ) and with natural frequencies drawn from the Lorentz
distribution g(ω) = 0.1

π
1

(ω−1)2+0.12 . Then the long-time aver-
ages of R and ζ are averaged over these 10 trials to obtain
E [〈R〉] = 1

N

∑10
j=1 〈R〉( j) and E [〈ζ 〉] = 1

N

∑10
j=1 〈ζ 〉( j), where

〈R〉( j) and 〈ζ 〉( j) are the value of 〈R〉 and 〈ζ 〉 in the jth
simulation, respectively. We show E [〈R〉] in Fig. 10(a) and
its magnification Fig. 10(b) and E [〈ζ 〉] in Fig. 10(d) and its
magnification Fig. 10(e). Furthermore, we calculate E [〈R〉]
and E [〈ζ 〉] for the same system but with initial phases drawn
from Gaussian distribution with mean 0 and standard devia-
tion 0.1. In Figs. 10(c) and 10(f), the values of E [〈R〉] and
E [〈ζ 〉] in this case are plotted for the same parameter region
as Figs. 10(b) and 10(e), respectively.

No significant difference between Figs. 4 and 10 can be
seen. Although the values of E [ζ ] in Fig. 10 tend to be slightly
larger than those of ζ in Fig. 4, they become comparably small
when we performed the simulation for a longer time (results
not shown). Therefore, we consider that the numerical results

shown in Fig. 4 are robust to the randomness in the natural
frequencies and initial conditions.

APPENDIX I: NUMERICAL INVESTIGATION OF THE
SYSTEM EXPOSED TO ASYMMETRIC FEEDBACK

Equation (8) is invariant under the change of r → −r. This
symmetry is reflected in the types of bifurcation; we obtain the
pitchfork and heteroclinic bifurcation curves in Sec. III. As
mentioned in Sec. III C and Sec. VI, these bifurcation curves
are expected to be replaced with SN and homoclinic bifurca-
tion curves when the oscillators or feedback are modified to
break the symmetry.

To investigate how the phase diagrams of the macroscopic
state change when the symmetry is broken, we performed nu-
merical simulations for the case where the feedback function
includes an asymmetric term. More specifically, we simulated
the following equation:

ṙ =
(

−γ + Keiβ

2
+ i

)
r − Ke−iβ

2
|r|2r

− ER[cos (� − δ) + h]

2
(1 − r2), (I1)

where h is a small constant to break the symmetry. Equation
(I1) reduces to Eq. (8) for h = 0. We show the values of 〈R〉
for h = 0.03 in Figs. 11(a)–11(d) with the bifurcation curves
for h = 0 that are derived in Sec. III. The initial conditions
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 0

 1(a)

(b)

HB1HB2

SN1

SN2

SN3

SN4 HOM

y

-1

 0

 1

−π  0 π

SN5

SN6

SN7

SN8

SN9

y

δ

FIG. 12. Bifurcation diagrams of Eq. (I1) for (a) E = 1.35 and
(b) E = 3.0. The horizontal axis is the phase offset of the feedback,
and the vertical axis is the imaginary part of the complex order
parameter, i.e., y = Im(r). The points labeled as HB1 and HB2
represent Hopf bifurcation points; the points labeled as SN1, SN2,...,
SN9 correspond to SN bifurcation points; and the vector field shown
in Fig. 13(a) indicates that a homoclinic bifurcation occurs at the
point labeled with HOM. The parameters K, β, γ , and h are the same
as in Fig. 11.
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FIG. 13. Vector fields near three of the bifurcation points observed in Fig. 12: (a) HOM point, (b) SN4 point, (c) SN6 point. The vector
fields on the complex planes are drawn with cyan arrows. Open squares represent unstable spirals. Filled (resp. open) circles represent stable
(resp. unstable) nodes. The open triangles represent saddles. Stable limit cycles are illustrated using black solid curves. The circle drawn with
the dashed line on each panel depicts the unit circle on the complex plane.

are as follows: (Re(r), Im(r)) = (0.01, 0) in Fig. 11(a) and
its magnification Fig. 11(c); and (Re(r), Im(r)) = (0.9, 0) in
Fig. 11(b) and its magnification Fig. 11(d). Moreover, we plot
the values of 〈ζ 〉 in Figs. 11(e)–11(h). The initial conditions
are (Re(r), Im(r)) = (0.01, 0) in Figs. 11(e) and 11(g) and
(Re(r), Im(r)) = (0.9, 0) in Figs. 11(f) and 11(h).

When compared with Fig. 4, which shows the simulation
results for the symmetric system, Fig. 11 reveals the similarity
in the values of macroscopic variables between systems with
and without symmetry. The parameter region where 〈R〉 is
close to 0 in Figs. 11(a), 11(c), and 11(d) are similar to that
of Figs. 4(a), 4(b), and 4(c), respectively, although the region
where multistability is observed is smaller in Fig. 11. The
region where 〈ζ 〉 is close to 1 in Figs. 11(e), 11(g), and
11(h) are also similar to that of Figs. 4(d), 4(e), and 4(f),
respectively.

To further understand how the asymmetry changes the
phase diagrams, we choose δ as a bifurcation parameter and
numerically obtained bifurcation diagrams for different val-
ues of E by using XPPAUT [38]. The obtained diagrams for
E = 1.35 and E = 3.0 are shown in Figs. 12(a) and 12(b),
respectively. In these diagrams, the branches of stable and
unstable fixed points are represented by thick magenta solid
curves and thin black dotted curves, respectively. Green thin
solid curves and blue crosses indicate stable and unstable limit
cycles, respectively.

Figure 12(a) shows that, as δ is decreased, a limit cycle
disappears at the Hopf bifurcation point labeled as HB1, and
a stable fixed point appears. When δ is further decreased,
another Hopf bifurcation occurs at the point labeled as HB2,
and a stable limit cycle appears again. In contrast to the super-
criticality proved in Sec. III, these Hopf bifurcations can be
subcritical. Actually, unstable limit cycles are detected by XP-
PAUT in Fig. 12, but only for a small range of δ. In addition, as
shown in Fig. 13(a), the vector field near the bifurcation point
labeled as HOM indicates that a homoclinic bifurcation occurs
at this point. This is in contrast to the heteroclinic bifurcation
that is observed in the symmetric system. Another bifurcation
that involves fixed points and a stable limit cycle is labeled
as SN4. The vector field near this point shown in Fig. 13(b)
indicates that a SN bifurcation on an invariant circle occurs.

In Fig. 12(b) a series of SN bifurcation is observed. In
particular, SN6 point corresponds to a SN bifurcation on an
invariant circle because it occurs at a δ value slightly smaller
than that for SN5 and the limit cycle disappears at this δ

value. See Fig. 13(c) for the vector field near this point.
As seen in Fig. 12(b), the stable fixed point near the ori-
gin disappears through the SN bifurcation at SN8, while the
transition from the asynchronous state to the oscillation death
state occurs through the pitchfork bifurcation in the symmetric
system.
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