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a b s t r a c t

Effects of pulse stimulations on the dynamics of relaxation oscillator populations were experimentally
studied in a globally coupled electrochemical system. Similar to smooth oscillations, weakly and
moderately relaxational oscillations possess a vulnerable phase, φS ; pulses applied at φS resulted in
desynchronization followed by a return to the synchronized state. In contrast to smooth oscillators,
weakly and moderately relaxational oscillators exhibited transient and itinerant cluster dynamics,
respectively. With strongly relaxational oscillators the pulse applied at a vulnerable phase effected
transitions to other cluster configurations without effective desynchronization. Repeated pulse
administration resulted in a cluster state that is stable against the perturbation; the cluster configuration
is specific to the pulse administered at the vulnerable phase. The pulse-induced transient clusters are
interpreted with a phase model that includes first and second harmonics in the interaction function and
exhibits saddle type cluster states with strongly stable intra-cluster and weakly unstable inter-cluster
modes.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Synchronized populations of oscillators abound in a variety of
fields including physics [1], chemistry [2], biology [3–5], neuro-
science [6], and medicine [7]. The collective behavior of entrained
oscillators can be affected and controlled not only by mutual cou-
pling among the individual elements [2] but also by external stim-
uli such as feedback [8,9] and pulse stimulations [7].
Theoretical and experimental studies on the effects of pulse

stimulations in relaxation oscillator populations have relevance to
the behavior of biological rhythms: pacemaker cells often exhibit
relaxation oscillations [3]. Stable clustering behavior is possible in
systems of coupled phase oscillators [10–13] and chemical [14–16]
and electrochemical experiments [17–19] as well. The effects of
pulse stimulations of uniformly synchronized relaxation oscillator
populations could reveal transient cluster dynamics that are
difficult to predict from stable behavior.
Pulse stimulations including single pulse [7], double pulse [20],

and bipolar double pulse [21] methods, have been proposed for
desynchronization in studies of coupled phase oscillators because
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of their possible application inmedical treatment of some diseases
associated with pathological synchronization of neurons. Depend-
ing on the phase, a pulse may either advance or delay the oscilla-
tion. Hence, desynchronization can be achievedwith a single pulse
stimulation of the right intensity and duration by hitting the syn-
chronized system in a vulnerable phase in such a way that approx-
imately half of the elements are delayed, whereas the elements
in the other half are advanced. The approximate position of the
vulnerable phase is expected to occur at a phase where the phase
response function has large positive slope; however, the exact po-
sition depends on the coupling strength (level of synchrony) and
on the nature of oscillators and their heterogeneities [3,7].
The effect of pulse stimulation on desynchronization of a pop-

ulation of smooth oscillators has been previously investigated
experimentally [22]. With a laboratory electrochemical reaction
system that exhibits transient dynamics, heterogeneities, and in-
herent noise, we have shown that stimulation with a short, single
pulse applied at a vulnerable phase can effectively desynchronize a
cluster of smooth oscillators [22]. In addition, we showed in the ex-
periments that the double pulsemethod, that can be applied at any
phase, can be improved either by adding an extra weak pulse be-
tween the original two pulses or by adding noise to the first pulse.
In this paper, we apply pulse stimulations in ordered popula-

tions of relaxation electrochemical oscillators to investigate the
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Fig. 1. (a) Schematic of apparatus with pulse stimulations (δV ). (b) A single pulse
signal with pulse duration Tp and intensity IP .

differences of desynchronization properties of smooth and relax-
ation oscillators. The effects of pulse stimulations on the collective
oscillations (or the degree of synchronization) and clustering are
experimentally investigated for weakly, moderately, and strongly
relaxational oscillators. The observed transient clusters are quali-
tatively interpreted with a globally coupled phase model that con-
tains first and second harmonics in the interaction function.

2. Experimental

The experimentswere carried outwith an array of electrodes as
shown in Fig. 1a.
A standard electrochemical cell consisting of a nickel working

electrode array (64 1-mm diameter electrodes with an 8 × 8
configuration), Hg/Hg2SO4/cc.K2SO4 reference electrode, and a
platinum mesh counter electrode was used. Experiments were
carried out in 3 mol/L sulfuric acid solution at a temperature
of 11 ◦C. The working electrodes are embedded in epoxy, and
reaction takes place only at the ends. A constant potential (V0
vs. the reference electrode) is applied to all electrodes through a
potentiostat. The pulse perturbation signal (δV ) is superimposed
on V0 via the potentiostat. Real-time Labviewwas used to visualize
and save the individual current data on a computer as well as to
generate pulses (Fig. 1b) to be applied by the potentiostat. The
sampling rate was 200 Hz. Since the currents of all the individual
electrodes are measured, the rate of reaction as a function of
position and time is obtained.
The electrodes were connected to the potentiostat through 64

uniform individual resistors connected to each of the electrode
(Rind) and one collective resistor (Rcoll) (not shown in the figure).
The collective resistor couples the electrodes globally [17,23]. We
employed a method of altering the strength of global coupling
while holding other parameters constant [23], in which the total
external resistance (Rtot = Rcoll + Rind/N = 10.2 �) was
held constant while the fraction dedicated to individual currents,
as opposed to the total current, was varied. A global coupling
parameter, defined as ε = Rcoll/Rtot, takes on values from zero to
one for the zero to strongest added global coupling case.
The current of a single electrode becomes oscillatory at about

V0 ∼= 1.05 V where a Hopf bifurcation takes place [17]. The
oscillations cease at V0 ∼= 1.30 V with a saddle-loop bifurcation,
below which there is a region of relaxation oscillations where the
angular velocity varies with time [17,18]. A representative time
series of the relaxation oscillations is shown in Fig. 2; a slowing
down at the minimum values of the current can be seen. The
Hilbert transform, h[I(t) − 〈I〉], where I(t) is the current and 〈I〉
is its temporal mean, is used to construct the phase space and to
obtain the phase of an individual oscillator [24,25]. The limit cycle
in the 2D phase space (h[I(t)−〈I〉] vs. [I(t)−〈I〉]) for the relaxation
oscillator is presented in Fig. 2b. The phase at time t is obtained
as the angle φ in Fig. 2b. φ = 0 corresponds to the maximum
current in a cycle. The phase as a function of time is shown in
Fig. 2c. Without added global coupling, the points on a snapshot
in the 2D phase space for the 64 oscillators are well distributed
on the limit cycle (Fig. 2d); this indicates a lack of synchrony. The
frequency distribution of the uncoupled relaxation oscillators is
nearly unimodal and relatively flat; the standard deviation of the
frequencies is about 10% of the 0.4 Hz mean frequency [26]. An
order parameter similar to the Kuramoto order [26] defined as

r =

|
∑
j
Pj(t)|∑

j
|Pj(t)|

(1)

is used to characterize the degree of synchronization, where Pj(t)
is the vector of the element j in Fig. 2d.
A (nearly) phase synchronized state was obtained at the

beginning of the experiments by increasing the global coupling
strength in the population [26,25,27].
We use the average distance clustering algorithm of Matlab

to construct hierarchical cluster trees from experimental data.
The dynamics are reconstructed for each element using time
delay coordinates (delay time: 0.2 s, embedding dimension: 3).
At selected M times (here M = d200 × T0e, where T0 is the
period of the mean current in seconds) the three state space
coordinates of each element are recorded. The jth observation of
the kth element is xj,k, where xj,k is a 3D vector, j = 1 . . .M ,
k = 1 . . . 64. The distances (δk,l) among the observation vectors
(Xk =

{
x1,k, x2,k, . . . , xM,k

}
) of each pair of elements in theM×3-

dimensional space are determined (δk,l = |Xk − Xl|) and a cluster
tree is constructed using an average distance algorithm. Element k
is classified to belong to cluster of set of elements with precision E
if |Xk−X̄| < E, where X̄ is themean value of observation vectors of
the cluster. The number of points at a given clustering distance (E)
shows the number of clusters to within that precision. The plots
consist of many inverted U-shaped lines connecting the different
clusters in a hierarchical tree such as that shown in Fig. 3d.

3. Results

3.1. Desynchronization and transient clustering of weakly relax-
ational oscillators

At V0 = 1.215 V, the oscillation of the individual current is
weakly relaxational as the applied potential is still far away from
the saddle-loop bifurcation point (V0 ∼= 1.30 V). With an added
global coupling of ε = 0.2, a highly synchronized statewith amean
order of 〈r〉 = 0.99 was obtained for the relaxational oscillator
population. The period of the collective signal, the mean current,
was about T0 = 2.14 s.
Similar to the pulse stimulations on populations of smooth elec-

trochemical oscillators [22], we found there exists a vulnerable
phase of the collective oscillator such that the collective oscilla-
tions can be effectively suppressed through desynchronization if
the pulse is administered at this specific time. The vulnerable phase
was φS = φ′/(2π) = 0.35 for synchronized smooth oscillators
with a pulse of {IP, TP} = {−0.6V, 0.1 s} [22], whereφ′ is the phase
where the stimulationwas applied in radians. For the synchronized
weakly relaxational oscillators, the vulnerable phase was shifted
to φS = 0.99. When the pulse is administered at other phases, as
in the case of smooth populations, either slightly enhanced syn-
chronization (with higher order) or no significant changes of the
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Fig. 2. Dynamics of uncoupled 64 relaxation electrochemical oscillators. (a) Time series of a single electrode current. (b) Phase portrait of a single oscillator with Hilbert
transform. (c) Phase of a single oscillator vs. time. (d) Snapshot of the 64 oscillators in the phase space. V0 = 1.215 V. The symbol ‘+’ denotes the origin (center of rotation).
Fig. 3. Suppression of synchrony of a highly synchronized population of weakly relaxational oscillators with pulse stimulation. V0 = 1.215 V, ε = 0.2, T0 = 2.14 s. The
pulse ({IP, TP} = {−0.6 V, 0.35 s}) was applied around t = 7.5 s when φS = 0.99, before which the mean order r0 = 0.99. (a) Grayscale plot of individual currents. (The
elements are ordered by their intrinsic frequencies from low to high.) (b) Time series of mean current (bold line), individual current (thin line) and stimulation signal. (c)
Time series of order. (d) Hierarchical cluster tree obtained with time series data from t = 40 s to 40+ T0 s. (e) Cluster configuration on the array at t = 40 s. (f, g) Snapshots
of phase points of the two clusters in the 2D phase space. Circles: phase points at t = 40 s. Dots: trajectory of one typical individual element.
collective behavior is observed. The suppression of the synchrony
by a pulse of {IP, TP} = {−0.6 V, 0.35 s} applied at φS = 0.99 is
presented in Fig. 3.
The grayscale plot of all the individual currents (Fig. 3a) shows

that the uniform dynamics of the system were destroyed when
the pulse was administered at about t = 7.5 s; all the elements
remained oscillatory but their phases were no longer locked for
about 23 cycles (50 s) after the pulse. With a closer look at the
grayscale plot of the currents we can see that the pulse induced
transient clusters in the system. The time series of the currents in
Fig. 3b shows that after the pulse stimulation, the amplitudes of
themean signal (bold line) was significantly decreasedwhile those
of the individual currents maintained their original large values
(thin line). The instantaneous order was reduced to nearly half of
that before the pulse stimulation with a mean value about 0.5 as
the result of the pulse stimulation (Fig. 3c). Because the clusters
were unstable, the resulted desynchronization was transient as
well. Resynchronization gradually developed as the clustering
disappeared for t > 50 s. The hierarchical cluster tree in Fig. 3d
shows that with a precision of E = 0.2 mA the system can be
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Fig. 4. Repeated single pulse stimulation in a synchronized population of weakly relaxational oscillators. The experimental conditions were the same as in Fig. 3. The pulse
{IP, TP} = {−0.6 V, 0.3 s}was applied at φS = 0.99 once the mean current reached an threshold value AT = 0.45 mA. The stimulation started at tS = 10 s. The mean orders
before and after tS were r0 = 0.99 and r1 = 0.62, respectively. The average frequency of the pulse administration fS ≈ 4.0/100 cycles. (a) Time series of mean current (bold
line), individual current (thin line) and stimulation signal. (b) Time series of order.
considered to contain two clusters during the desynchronization.
The cluster configuration (Fig. 3e) was quite balanced (34, 30),
where black circles stand for the cluster of 34 elements and the
hollow circles for the other cluster. The snapshot of the phase
points of the elements in each cluster is presented along with a
typical trajectory in Fig. 3f and g, respectively. There was a small
difference in the amplitudes of the oscillations that belonged to
different clusters; the oscillations in the slightly larger cluster had
smaller amplitudes.
As described above, for weakly relaxational oscillators, the

cluster state induced by a pulse at the vulnerable phase is unstable
and after some time merging of the clusters will occur. Repeated
application of the single pulse thus is required tomaintain the low-
order state. Fig. 4 shows the results of demand-controlled repeated
single pulse experiments in the weakly relaxational population.
Before the stimulation the mean order was r0 = 0.99 and
during the control the mean order was decreased to 0.62. There
was variability in the series of desynchronization steps. This is
likely due to the sensitive dependence of the narrow vulnerable
phase range on instantaneous order and on minor variations of
the system conditions [22]. The average frequency of the pulse
administration fS ≈ 4.0/100 cycles. It is expected that with
a lower initial order and an optimized threshold for the pulse
triggering a lower order can be obtainedwith repeated single pulse
stimulations.

3.2. Itinerant clusters of moderately relaxational oscillators

When the applied potential is set atV0 = 1.265V, the individual
oscillations are more relaxational because the system is closer
to the saddle-loop bifurcation point. We refer to the oscillator
obtained at this potential as ‘moderately’ relaxational [18].With an
added coupling of ε = 0.6, the population was fairly synchronized
with amean order of r0 = 0.90 and the period of themean current
was T0 = 2.62 s.
In Fig. 5, we show that after a single pulse of {IP, TP} =

{−1 V, 1 s} itinerant clusters formed; the transient dynamics are
characterized by alternating formation and destruction of various
cluster states. The vulnerable phase was φS = 0.51. In the
grayscale plot of individual currents (Fig. 5a) the clustering state
can be recognized before t = 110 s, after which it was eventually
replaced with a one-cluster state similar to that before the pulse
stimulation. A temporary return to a higher-order state occurred
at around t = 50 s. The time series of the mean current (Fig. 5b)
and the order (Fig. 5c) further reflect the existence of the itinerant
clusters. One larger mean oscillation was seen at t = 50 s when
the cluster state gave way to a synchronized state for a short
time (Fig. 5b). The order switched between a state of a low mean
value with large variations and another state of a high mean
value with smaller variations before t = 110 s, after which it
permanently stayed in the latter state (Fig. 5c). The clustering
analysis (Fig. 5d–e) shows that the itinerant clusters obtained after
the pulse stimulation was highly unbalanced two-cluster with
the configuration of (51, 12) (with one element ‘off’). Again, the
elements in the larger cluster oscillated with smaller amplitudes
(Fig. 5f) while those in the smaller cluster oscillated with larger
amplitudes (Fig. 5g). Compared with the transient clustering state
obtainedwith pulse stimulations in weakly relaxational oscillators
(Fig. 3f and g), the difference in the trajectories of typical oscillators
in each of the two clusters were more evident in this highly
unbalanced state.

3.3. Transitions among clusters with strongly relaxational oscillators

We then increased the applied potential to V0 = 1.285 V,which
is close to the saddle-loop bifurcation point of V0 = 1.300 V.
The individual oscillation obtained at this potential is ‘strongly’
relaxational and the one-cluster state is not stable [18]. However,
at ε = 0.6 a three-cluster state with large order parameter
〈r〉 = 0.92 was attained. Pulse stimulation of this cluster state at a
specific phase ofφS = 0.51 leads to other cluster states rather than
effective desynchronization. Unlike in the experiments on aweakly
or moderately relaxational population, the new cluster states are
stable once they are induced by pulse stimulations.
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Fig. 5. Itinerant clusters formed after a single pulse stimulation in an ordered population of moderately relaxational electrochemical oscillators. V0 = 1.265 V, ε = 0.6,
T0 = 2.62 s. The pulse of {IP, TP} = {−1 V, 1 s}was applied at φS = 0.51. Before the pulse stimulation r0 = 0.90. (a) Grayscale plot of individual currents. (b) Time series of
mean current (bold line) and individual current (thin line). (c) Time series of order. (d) Hierarchical cluster tree obtained with time series data from t = 20 s to 20+ T0 s. (e)
Cluster configuration on the array at t = 20 s. (f, g) Snapshot of phase points in the 2D phase space at t = 20 s.
Fig. 6. Pulse stimulations in an ordered population of strongly relaxational electrochemical oscillators. V0 = 1.285 V, ε = 0.6, T0 = 2.87 s. The pulse was applied at
φS = 0.51. Top row: Grayscale plots of individual currents. Bottom row: Time series of order. (a)–(b) Stable clusters before pulse stimulations (State I). The mean order
〈r〉 = 0.92. (c)–(d) New stable cluster induced with a single weak pulse stimulation (State II). {IP, TP} = {−0.6 V, 0.25 s}. 〈r〉 = 0.78. (e)–(f) Stable two-cluster state
(State III) obtained after the second or more administration of the weak pulse. 〈r〉 = 0.57. (g)–(h) Another stable two-cluster state (State IV) obtained with a single pulse
stimulation of {IP, TP} = {−1 V, 0.5 s} from a state similar to State I. 〈r〉 = 0.49.
The top row of Fig. 6 shows the grayscale plots of individual
currents of an ordered strongly relaxational population before
and after pulse stimulations; corresponding cluster analyses and
2D state space embeddings are shown in Fig. 7. A three-cluster
state (State I) was attained before pulse stimulations (Fig. 6a).
The elements with lower intrinsic frequencies formed two anti-
phase period-2 clusters while those whose oscillations were more
regular formed a third cluster at the higher intrinsic frequency
region. After a weak pulse of {IP, TP} = {−0.6 V, 0.25 s} applied
at φS = 0.51, a small, new period-2 cluster (with 4 elements)
appeared at the high intrinsic frequency sidewhilemost remaining
elements were kept in their respective clusters (Fig. 6c, State II).
The experimental systemwas perturbed againwith the sameweak
pulse at φS = 0.51. After the 2nd perturbation the new cluster
at the high intrinsic frequency side expanded its size and other
elements of the lower intrinsic frequencies formed a single cluster
that is anti-phase with the other (State III, Fig. 6e). Note that the
local dynamics in this two-cluster state are different than those
in State I, before the pulse stimulation. The system remained in
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here only two of the three clusters shown in Fig. 6a can be resolved; with lower error we do obtain three clusters.) (d)–(f) State II, after a single weak pulse stimulation.
{IP, TP} = {−0.6 V, 0.25 s}. 〈r〉 = 0.78. (g)–(i) State III, after the second administration of the weak pulse. 〈r〉 = 0.57. (j)–(l) State IV, after a single pulse stimulation of
{IP, TP} = {−1 V, 0.5 s} from a state similar to State I. 〈r〉 = 0.49.
State III after subsequent administrations of the weak pulse at
φS = 0.51.
The shown new clustering states (State II and III) were neither

observed ‘naturally’ with the change of global coupling nor with
perturbations through opening the circuit. Instead, they could
be induced by pulse stimulations applied at a specific time (the
vulnerable phase φS = 0.51). When the pulse was applied at
another time, the system returned to a state similar to State I.
A stable final state that is specific to a pulse administered at

the vulnerable phase can be attained. For example, another anti-
phase two-cluster state was observed with a stronger pulse of
{IP, TP} = {−1 V, 0.5 s}, as shown in Fig. 6g. Similar to those in
State III obtained with a weak pulse, all the individual oscillations
became period-2 after the strong pulse stimulation. Again, if the
pulse is applied at a non-vulnerable phase, the systemwill resume
a state similar to State I.
The collective behavior of the system is greatly affected by

pulse stimulations. The bottom row of Fig. 6 shows the time series
of a collective signal of the system, the order. Before any pulse
stimulations or if the pulse was applied at non-vulnerable phases,
the order had a high mean value (0.92) with relatively small-
amplitude period-2 oscillations (Fig. 6b). A lower mean order of
0.78was obtained in State II, when only a few elementswere in the
new cluster state induced by a single perturbation with the weak
pulse of {IP, TP} = {−0.6 V, 0.25 s} (Fig. 6d). The order started to
exhibit large variations of period-3 because of the appearance of a
new, small cluster. At the final clustering state induced with the
weak pulse, the order was even lower (0.57) with large period-
3 oscillations (Fig. 6f). After a single stronger pulse stimulation
with {IP, TP} = {−1 V, 0.5 s}, the order exhibited regular periodic
oscillations with a mean of 0.49 (Fig. 6h).

3.4. Interpretation of transient clustering with phase models

A characteristic feature of the experimental results is the ap-
pearance of transient cluster dynamics during the resynchro-
nization process; we observed a transient two-cluster state with
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Fig. 8. Phase space structure for a model exhibiting transient clusters.

weakly relaxational oscillators. To interpret the qualitative fea-
tures of the transient cluster dynamics, we develop a phase model
with which transient clusters observed with weakly relaxational
oscillators can be described.
A phase model description has been successfully applied to de-

scribe (stationary) cluster formation in the electrochemical system
due to coupling in previous studies [18,28]. The experiment-based
phasemodels confirmed that the smooth oscillators have predom-
inantly first harmonic (sin(∆φ)) odd components in the interac-
tion function; for relaxational oscillators secondharmonics appear.
Therefore, to simulate the experimentally observed transient be-
havior induced by pulses, we investigate the transients to the one-
cluster state for a phase model with strong sin(∆φ) and relatively
weak sin(2∆φ) components.
When the system is in the globally stable one-cluster state, by

giving a carefully tuned pulsing to all the oscillators, an almost
desynchronized state is obtained in which the phases are nearly
homogeneously distributed. From almost desynchronized states
the system typically approaches two-cluster states (where one can
observe well-defined two clusters for a long time) before the one-
cluster attractor is reached. Such a scenario can be interpreted
by assuming that the two-cluster state is a saddle solution with
strongly stable intra-cluster modes and weakly unstable inter-
cluster modes (See Fig. 8). The two-cluster states thus form from
an almost desynchronized state by moving along the (fast) stable
intra-cluster modes; the two-cluster state is destroyed by moving
along the slow inter-cluster mode by decreasing the phase differ-
ence among the groups and finally reaching the one-cluster state.
Because previous studies dealing with the realization of desyn-

chronous states by pulsing have already clarified its mechanism
[29,7], we focus on validating our assumptions about transient
clustering. We thus take an almost desynchronized state as an
initial condition and observe its trajectory. A small system size
(N = 4) is first considered, where the dynamical behavior is better
understood. We then investigate the system with a large popula-
tion to check whether the same scenario holds for a large system.
We introduce a mathematical model with the form:

φ̇i = ω +
K
N

N∑
j=1

H(φj − φi), (2)

where φi is the phase of oscillator i (i = 1, 2, . . . ,N), ω natural
frequency (identical for all the oscillators),K coupling strength, and
H(∆φ) the phase interaction function given by

H(∆φ) = a sin(∆φ)+ b sin(2∆φ). (3)
By applying a rotating frame and rescaling time scale, we put
ω = 0, K = 1, and |a| = 1 without loss of generality. (For
Eq. (2) with general H(∆φ) the existence and stability condition
of various cluster states has been studied by Okuda [10].)
We first consider N = 4. There are four types of phase locking

(i.e., steady) states for this case, namely, (i) one-cluster state: φ1 =
φ2 = φ3 = φ4, (ii) desynchrony: φ1 = φ2+π/2 = φ3+π = φ4+
3π/2, (iii) two-cluster state (2, 2): φ1 = φ2 = φ3 + π = φ4 + π ,
(iv) two-cluster state (3, 1):φ1 = φ2 = φ3 = φ4+π . Herewehave
represented only one configuration for each of the states (ii)–(iv)
for simplicity. The stabilities of these states are found as follows.
We introduce small deviations δEφ = (δφ1, δφ2, δφ3, δφ4) given by
δφi = φi − φ

0
i where φ

0
i is a phase locking solution. By linearizing

Eq. (2) and solving the eigenvalue problem for the stability matrix,
we obtain the following properties:

• (i) one-cluster state: λ(i) = −a − 2b (multiplicity 3) with a
corresponding eigenvector, e.g., δEφ = (1,−1, 0, 0)
• (ii) desynchronized state: λ(ii)1 = a/2 (multiplicity 2) with
the corresponding eigenvectors (1, 0,−1, 0) and (0, 1, 0,−1);
λ
(ii)
2 = 2b (multiplicity 1) with the corresponding eigenvector
(1,−1, 1,−1)
• (iii) two-cluster state (2, 2): λ(iii)1 = a − 2b (multiplicity 1)
with the eigenvector (1, 1,−1,−1), namely, the inter-cluster
mode; λ(iii)2 = −2b (multiplicity 1) with the eigenvector
(1,−1, 0, 0) and λ(iii)3 = −2b (multiplicity 1) with the
eigenvector (0, 0, 1,−1), which are the intra-cluster modes
• (iv) two-cluster state (3, 1): λ(iv)1 = a − 2b (multiplicity 1)
with the eigenvector (1, 1, 1,−3), namely, the inter-cluster
mode; λ(iv)2 = −2b− a/2 (multiplicity 2) with the eigenvector,
e.g., (1,−1, 0, 0), namely, one of the intra-cluster modes.

Note that every state has an additional zero eigenvalue with
δEφ = (1, 1, 1, 1), which is irrelevant to our argument.
Next, we numerically investigate Eq. (2). The parameter values

are chosen according to our assumptions: λ(i) = −a − 2b is
negative; λ(iii)1 = a− 2b is small positive; λ

(iii)
2 = −2b is negative.

We thus set a = 1 and b = 0.49. This particular choice makes the
desynchronized state unstable, which is also a required property.
To visualize trajectories, we introduce two order parameters:
R1 = |1/N

∑
j exp(iφj)| and R2 = |1/N

∑
j exp(2iφj)|. In (R1, R2)

space, each state assumes the following value: (i) (1, 1), (ii) (0, 0),
(iii) (0, 1), and (iv) (0.5, 1). We assume almost desynchronized
states as initial conditions, given by φi = 2iπ/N + εξi where
ξi is a random number independently taken from the uniform
distribution (0, 1) and ε = 0.01. Fig. 9a and b display two
particular trajectories. In Fig. 9a, the system evolves quickly along
the intra-cluster modes of the state (iii), and thus, well defined
two clusters are formed. Then, along the inter-cluster mode (the
manifold of which is shown by dotted line), two clusters slowly
get closer to approach the state (i). Note that the trajectory seems
to approach the point (1/

√
2, 0). This corresponds to the state

where two clusters are separated byπ/2, which is not a fixed point
and the system smoothly passes it. In Fig. 9b, the system evolves
along the intra-clustermodes of state (iv), which is followed by the
formation of the unbalanced two clusters. Eventually the system
converges to state (i). Fig. 9c displays trajectories starting from 50
different initial conditions. As seen, most trajectories approaches
the state (iii). Thus, typically, the balanced two clusters are formed.
We then consider N = 64 with the same interaction function,

i.e., Eq. (3). The existence and stability conditions for the one-
cluster [state(i)] and desynchronized [state(ii)] states are the same
as for N = 4. There are many two-cluster states for N = 64
with various population ratios; we denote the two-cluster state in
which one of the clusters is composed of N1 oscillators by (N1,N−
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Fig. 9. Numerically obtained trajectories of the phase model in (R1, R2) space. Initial conditions are set to almost desynchronized states. The system size is N = 4 except
for (d) where N = 64. (a) A particular trajectory approaching state (i) through the neighborhood of state (iii). Square: state (i), triangle: state (iii). The dotted line shows the
inter-cluster manifold of the state (iii). (b) A particular trajectory approaching state (i) through state (iv) denoted by a circle. The dotted line shows the inter-cluster manifold
of the state (iv). (c) Trajectories starting from 50 different initial conditions. (d) Trajectories starting from 50 different initial conditions for N = 64.
N1). Because the interaction function (Eq. (3)) is an odd function,
the phase difference between two clusters is π independent of the
population ratio and the stability is given as [10]

• (v) two-cluster state (N1,N−N1): λ
(v)
1 = a−2b (multiplicity 1)

with the eigenvector of the inter-cluster mode; λ(v)2 = −2b +
(1 − 2N1/N)a (multiplicity N1 − 1) and λ

(v)
3 = −2b − (1 −

2N1/N)a (multiplicity N −N1− 1) with the eigenvectors of the
intra-cluster modes.

Thus, for the parameter values under consideration, the two-
cluster states are saddle solutions. Fig. 9d displays trajectories
starting from 50 initial conditions. As seen, the trajectories are
similar to those for N = 4. The system approaches not only the
balanced two-cluster state, namely (1, 0), but also to various two-
cluster states. In many cases, R2 gets large faster than R1, implying
the formation of nearly balanced two clusters.

4. Concluding remarks

We have studied the effects of pulse stimulations on the
dynamics of populations of relaxation oscillators.
Similar to experiments of pulse stimulations on populations of

smooth electrochemical oscillators [22], we found the existence
of a vulnerable phase in a synchronized population of relaxation
oscillators.When pulses are administered at this vulnerable phase,
suppression of the collective oscillations as well as formation
of (new) clusters can occur in the perturbed populations. In
weakly relaxational oscillators, effective desynchronization can be
achieved with pulse stimulations by forming transient clusters;
repeated application of the pulse can permanently maintain the
system in a low-order state. In moderately relaxational oscillators,
itinerant clusters are found with pulse stimulations: during the
resynchronization process the system iterates among various
cluster states until the globally stable one-cluster state is attained.
In populations of globally coupled strongly relaxational oscillators,
pulse stimulations at the vulnerable phase did not result in
effective desynchronization. Instead, clustering configurations can
be induced, which otherwise cannot be obtained easily (e.g., with
changes in coupling strength).With repeated pulse administration,
a stable two-cluster state that is specific to the pulse administered
at the vulnerable phase was attained.
The experimental desynchronization by the formation of

clusters with pulse stimuli in relaxational populations is similar
to the clustering in desynchronization of N globally coupled
logistic maps by decreasing the coupling strength or increasing
the nonlinearity parameter of the individual map [30]. In the
theoretical studies, it is found that strongly asymmetric two-
cluster states are generally first to stabilize when reducing the
coupling strength. In our experiments we also found usually a
strongly asymmetric clustering state is induced by the first pulse
stimulation.
The interaction function of a relaxational oscillator usually con-

tains higher harmonic component [18] which endows the possi-
bility of clustering to the coupled oscillator population [31,10].
We developed a simple phase model that reproduces the occur-
rence of transient two clusters. The phase model includes first
and second harmonics in the interaction function. In the phase
model, the transient two-cluster states are saddle states with fast,
strongly stable intra-cluster manifold and with slow, weakly un-
stable inter-cluster manifold. During the motion along the un-
stable manifold the phase difference among the oscillators is
slowly decreasing until the one-cluster state is reached. The tran-
sition from a two-cluster saddle state to one-cluster attractor thus
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does not necessarily occur through desynchronization. Such tran-
sition should be considered for construction of desynchroniza-
tion methods through coordinated reset of subpopulation [32,33]
where it has been generally assumed that the transition from two
anti-phase subpopulations to the stable one-cluster state occurs
through desynchronization.
For strongly relaxational oscillators, pulse stimulations offer

another method to induce clustering states in the system besides
global feedback [34–37] and periodic forcing [38,39] that were
previously studied. In particular, control of clustering can be
achievedwith pulse stimulations because the experimental results
indicate that a stable specific clustering state can be attained with
a specific pulse; this would be useful in relevant fields when
the functional role of groups of oscillators that are entrained is
addressed, for example, in circadian rhythms [40], biological cell
differentiation [41], and multimode laser systems [42].
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