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ABSTRACT

This study deals with an existing mathematical model of asymmetrically interacting agents. We analyze the following two previously unfo-
cused features of the model: (i) synchronization of growth rates and (ii) initial value dependence of damped oscillation. By applying the
techniques of variable transformation and timescale separation, we perform the stability analysis of a diverging solution. We find that (i) all
growth rates synchronize to the same value that is as small as the smallest growth rate and (ii) oscillatory dynamics appear if the initial value
of the slowest-growing agent is sufficiently small. Furthermore, our analytical method proposes a way to apply stability analysis to an expo-
nentially diverging solution, which we believe is also a contribution of this study. Although the employed model is originally proposed as a
model of infectious disease, we do not discuss its biological relevance but merely focus on the technical aspects.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0151174

Nonlinear dynamical systems exhibit a wide variety of behaviors,
e.g., hysteresis, limit cycle, synchronization, and chaos. Elucidat-
ing these nonlinear phenomena is an important issue, as well as
the development of new analytical methods. Here, we analyze an
existing nonlinear system and clarify the two properties that were
not previously focused on, i.e., synchronization of growth rates
and initial value dependence of damped oscillation. In the anal-
ysis, we propose a novel method to perform the linear stability
analysis of an exponentially diverging solution, which is expected
to help further investigate the nonlinear dynamics.

I. INTRODUCTION

It is widely known that nonlinear systems show various com-
plex behaviors.1 Those behaviors are extensively studied since the
late 19th century: the discovery of chaotic dynamics on a strange
attractor2 and the analysis of synchronization transition3,4 are exam-
ples of such theoretical research. Nonlinear dynamical systems are

also used to describe various phenomena in nature and society,
especially in population dynamics.5 For example, the outbreak of a
certain insect is explained as hysteresis,6 varying prey–predator pop-
ulations are described as periodic orbits,7,8 and synchronous firefly
flashing9 or frog calls10 are modeled with coupled nonlinear oscilla-
tors. Therefore, it is important to establish theoretical frameworks
for nonlinear phenomena, which would provide deeper insight into
complex phenomena and contribute to broadening applications. In
addition, since most of the nonlinear differential equations cannot
be explicitly solved, the development of novel analytical techniques
is crucial to further study the nonlinear system.

In the present paper, we focus on peculiar dynamical behavior
observed in the model proposed in Ref. 11 The model is described
by a 2n-dimensional dynamical system. The model elements are
divided into two groups of n agents [i.e., vi and xi in Eq. (1)] and
these groups interact with each other asymmetrically.

In the original paper, the authors investigated the dynamics
of this model in both analytical and numerical ways.11 However,
there are several open questions in their study. First, they did not
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analyze the following two features of numerical results: the amount
of agents in one group [i.e., vi in Eq. (1)] (i) initially oscillates
and then decreases to a very low level and (ii) increases extremely
slowly despite the existence of fast-growing agents. Second, the anal-
ysis in the original paper was valid only under the assumption that
the dynamics of agents in the other group [i.e., xi in Eq. (1)] are
sufficiently fast.

We are particularly concerned with the two features observed
numerically because they are considered to reflect the nonlinearity
of the model. In addition, we expect that removing the assumption
of fast dynamics is necessary to analyze the initial oscillatory behav-
ior. Therefore, in this study, we aim to clarify the mechanisms of
initial oscillation and the extremely slow growth by analyzing this
model under more general conditions; i.e., without assuming the fast
dynamics.

The summary of our results is as follows: in the case when
n = 2, numerical simulations suggest that the initial oscillation and
the following slow growth of agents in one group [i.e., vi in Eq. (1)]
appear if one agent has a considerably lower growth rate than the
other. We perform the existence and linear stability analysis with-
out assuming that the dynamics of agents in the other group [i.e.,
xi in Eq. (1)] are sufficiently fast. We determine that an oscillation
occurs if the initial value of the slow-growing agent is sufficiently
small. Next, we generalize these results for the case when n ≥ 3
and one agent has a considerably lower growth rate ε than the oth-
ers. In particular, we prove that (i) all growth rates synchronize
to the same value of O(ε) if the parameters satisfy a few condi-
tions and (ii) damped oscillation exists if the initial value of the
slowest-growing mutant is sufficiently small.

Our work is a theoretical study that reveals nontrivial and
previously unfocused features of a nonlinear dynamical system of
asymmetrically interacting agents. This study is also novel in that
we perform the stability analysis of the dynamics that oscillate and
diverge, compared to the previous works that analyze the stability of
equilibrium solutions in mathematical models regarding population
dynamics.12–15

II. MATHEMATICAL MODEL AND

NONDIMENSIONALIZATION

Our model is based on the one proposed in Ref. 11. The dynam-
ics of 2n agents, which are originally introduced as n viral mutants
and corresponding immune cells,11 are described by the following
dynamical system:

v̇i =
dvi

dt
= vi(ri − pixi), (1a)

ẋi =
dxi

dt
= kvi − uxi

n
∑

j=1

vj, (1b)

where vi denotes the amount of mutant virus i, xi is the quantity of
strain-specific immune cells attacking the virus i, and n represents
the number of viral mutant strains (1 ≤ i ≤ n). The parameter ri is
the growth rate of virus i, pi represents the strength of the immune
attack on virus i, k is the activation rate of immune cells, and u rep-
resents the strength of the viral attack on immune cells. Note the

asymmetric interaction between the virus and immune cells; even
though each strain of immune cells xi is specific to virus i, virus i can
attack all strains of immune cells. The parameters ri, pi, k, and u are
assumed to be positive constants.

We introduce dimensionless quantities αi := ri
r1

, ṽi

:= u
r1

vi, x̃i := pi
ri

xi, τ := r1t, and qi := pik

riu
. By renaming

ṽi → vi, x̃i → xi, and τ → t, we transform Eq. (1) into the following
dimensionless system:

v̇i = αivi(1 − xi), (2a)

ẋi = vi

(

qi − xi

∑n
j=1 vj

vi

)

. (2b)

The parameter αi is the ratio of growth rates among viral mutants
and qi represents the immunological strength of xi compared with
the virulence of vi. We assume 0 < αn ≤ · · · ≤ α2 ≤ α1 = 1 without
loss of generality.

III. THE CASE WHEN n =1

When there is only one viral mutant (i.e., n = 1), our model is
given by

v̇ = v(1 − x), (3a)

ẋ = v
(

q − x
)

. (3b)

Figure 1 presents the simulation results, where we assume that the
initial value of x is zero [i.e., x(0) = 0] because virus-specific immu-
nity has not been prepared at the beginning of infection. Then,
the viral dynamics are classified into the following two types: (i)
for q < 1, the viral load continues to increase [Figs. 1(a) and 1(b)]
and (ii) for q > 1, the viral load initially increases and subsequently
decreases, eventually converging to zero [Figs. 1(c) and 1(d)].

We investigate the mechanism of the obtained dynamics in
Fig. 1. Obviously, (v, x) = (0, x) with arbitrary x ∈ R is the fixed
point of the system (3). By performing the linear stability analysis,
the Jacobian matrix at this fixed point is

(

1 − x −v
q − x −v

)
∣

∣

∣

∣

(v,x)=(0,x)

=
(

1 − x 0
q − x 0

)

, (4)

and its eigenvalues are 0 and 1 − x. The 0 eigenvalue corresponds to
the eigenvector t(0, 1), which is parallel to the line v = 0 (the set of
fixed points). Thus, we expect that the fixed point (0, x) is unstable
if x < 1 and Lyapunov stable if x > 1, which agrees with the flows
in the phase planes [Figs. 1(b) and 1(d)]. This is why the viral load
with the initial conditions (v(0), x(0)) = (0.01, 0) (i.e., starting from
the neighborhood of the unstable fixed point) diverges in Fig. 1(a)
and initially increases in Fig. 1(c). As the viral load v increases, the
immune cell x that starts from x = 0 also increases [see Eq. (3b)].
However, since the line x = q in the phase plane is the invariant
subspace, we find that the immune cell x cannot exceed q (i.e., the
other solution cannot intersect with the line x = q) according to the
uniqueness of the solution of ordinary differential equations. There-
fore, if q < 1, the immune cell x is always smaller than 1 and the viral
load v continues to increase [Fig. 1(a)], and if q > 1, the immune
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FIG. 1. The numerical simulations for one viral mutant case. Panels (a) and (c) represent the time course of the virus and immune cells, using the same initial conditions
v(0) = 0.01 and x(0) = 0. Panels (b) and (d) display the phase planes where the green line in each phase plane is the trajectory that starts from (v(0), x(0)) = (0.01, 0).
(a) and (b) When q < 1, the total viral load continues to increase (we set q = 0.5). (c) and (d) When q > 1, the total viral load decreases after the initial peak and converges
to zero (we set q = 1.5).

cell x can exceed 1 as v increases and then v decreases [i.e., v̇ < 0 in
Eq. (3a)] while x approaches to a fixed point x∗ that satisfies x∗ > 1
[Fig. 1(c)].

Based on Fig. 1 and the above discussion, we conclude that the
initial oscillation and the following slow viral growth observed in the
numerical simulation of the previous study11 cannot be reproduced
in the case of one viral mutant.

IV. THE CASE WHEN n =2

For n = 2, our model is given as

v̇1 = v1(1 − x1), (5a)

v̇2 = α2v2(1 − x2), (5b)

ẋ1 = v1

[

q1 − x1

(

1 +
v2

v1

)]

, (5c)

ẋ2 = v2

[

q2 − x2

(

1 +
v1

v2

)]

. (5d)

A. Simulation results

Figure 2 demonstrates the simulation results. In Figs. 2(a) and
2(b), we consider the situation in which two viral mutants have
similar replication rates and the immunity is strong enough to erad-
icate the virus. Next, we weaken the immunity, or decrease qi, so
that the viral load diverges [Figs. 2(c) and 2(d)]. Finally, we notably
reduce α2 to simulate a slow-replicating mutant [Figs. 2(e) and 2(f)].
Throughout these simulations, we use the same initial conditions
[v1(0) = v2(0) = 0.01 and x1(0) = x2(0) = 0] because it is natural
to assume that the amount of virus is very low and virus-specific
immunity has not been established at the beginning of the infection.

The dynamics observed in Figs. 2(a)–2(d) are qualitatively the
same as those obtained in Sec. III. In contrast, Figs. 2(e) and 2(f)
demonstrate a new pattern with two components, namely, damped
oscillation and slow exponential viral growth, which was previously
observed but not analyzed.11 We are going to clarify the origin of this
simulation result.

B. Analysis

We expect that the dynamics in Figs. 2(e) and 2(f) may arise
when α2 � 1. Thus, we treat α2 as a small parameter and put
ε := α2. The other parameters are assumed to be O(1).

In Figs. 2(e) and 2(f), we observe that xi(t) converges toward
a nonzero constant, denoted by x∗

i , whereas vi diverges. Based on
Eq. (5), this condition is only possible when β := v2

v1
also converges

toward a positive constant, represented by β∗. Assuming the conver-
gence of β to β∗, we obtain the fixed point x∗

i in Eqs. (5c) and (5d),
which is given as

x∗
1 =

q1

1 + β∗ , and x∗
2 =

q2β
∗

1 + β∗ . (6)

Substituting xi = x∗
i into β̇ = v1 v̇2−v2 v̇1

v2
1

= 0, we further obtain

β∗ =
q1 − 1 + ε

1 + ε(q2 − 1)
= q1 − 1 + O(ε). (7)

For sufficiently small ε, the condition β∗ > 0 holds when

q1 > 1. (8)

Thus, we assume this inequality below. Substituting xi = x∗
i and

β = β∗ into Eqs. (5a) and (5b), we obtain

v̇1 = λv1 and v̇2 = λv2,

where

λ =
ε(q1 + q2 − q1q2)

q1 + εq2

= O(ε). (9)

We also assume q1 + q2 − q1q2 > 0 so that λ > 0. Therefore, if xi

and β sufficiently approach x∗
i and β∗, respectively, v1 and v2 expo-

nentially increase with the same timescale λ−1 of O(ε−1). In other
words, the effective replication rates of both viral mutants synchro-
nize to the same value λ, which is as small as the slow-replicating
mutant’s replication rate ε.

We now perform the stability analysis of the obtained solution
by invoking the notion of timescale separation. For convenience, we
introduce new variables wi(t) as wi := vie

−λt. Then, Eq. (5) is trans-
formed to the following four-dimensional nonautonomous system:
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FIG. 2. Time course of the viral load (v1, v2) and immune cells (x1, x2) in various parameters. (a) and (b) Virus replicates transiently and is then eliminated from the body.
(c) and (d) Virus continues to grow exponentially. (e) and (f) After initial proliferation, the viral load decreases to a low level. However, the viral load increases again and finally
diverges. The parameters are as follows: α2 = 0.75, q1 = q2 = 4 for panels (a) and (b), α2 = 0.75, q1 = q2 = 4

3
for panels (c) and (d), and α2 = 0.003, q1 = q2 = 4

3
for

panels (e) and (f) . We use the same initial conditions v1(0) = v2(0) = 0.01 and x1(0) = x2(0) = 0.

ẇ1 = w1(1 − λ − x1), (10a)

ẇ2 = εw2

(

1 −
λ

ε
− x2

)

, (10b)

ẋ1 = eλtw1

[

q1 − x1

(

1 +
w2

w1

)]

, (10c)

ẋ2 = eλtw2

[

q2 − x2

(

1 +
w1

w2

)]

. (10d)

As far as t = O(1), we can safely replace eλt in Eqs. (10c) and (10d)
with 1 because eλt = 1 + O(λt) = 1 + O(ε). Moreover, w2 is a slow
variable. Thus, in a good approximation, the dynamics of w1, x1, and
x2 are described by the following three-dimensional autonomous
subsystem:

ẇ1 = w1(1 − λ − x1), (11a)

ẋ1 = w1

[

q1 − x1

(

1 +
w2

w1

)]

, (11b)

ẋ2 = w2

[

q2 − x2

(

1 +
w1

w2

)]

, (11c)

in which w2 is regarded as a constant. This subsystem has a nontriv-
ial fixed point (w1, x1, x2) = (w∗

1 , x∗
1 , x∗

2), where w∗
1 = w2

β∗ and x∗
i are

given in Eq. (6). The Jacobian matrix at this fixed point is




0 −w∗
1 0

q1 − x∗
1 −(w∗

1 + w2) 0
−x∗

2 0 −(w∗
1 + w2)



 , (12)

and its eigenvalues are

−
(1 + β∗)w2

β∗ and
− (1+β∗)w2

β∗ ±
√

D0

2
, (13)

where

D0 =
(1 + β∗)2w2

2

(β∗)2
−

4q1w2

1 + β∗ . (14)

Regardless of the sign of D0, all eigenvalues have negative real parts.
Thus, the fixed point under consideration is asymptotically stable.
We also determine that imaginary eigenvalues appear if D0 < 0; i.e.,

0 < w2 <
4q1(β

∗)2

(1 + β∗)3
=

4q1(q1 − 1 + ε)2(1 + ε(q2 − 1))

(q1 + εq2)
3

. (15)

Oscillation arises in this case.
The fast variables stay in the ε-vicinity of the fixed point in the

full system after the transient process because the subsystem of the
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fast variables has a stable fixed point (w1, x1, x2) = (w∗
1 , x∗

1 , x∗
2). Sub-

stituting x2 = x∗
2 + O(ε) into Eq. (10b) and further using Eqs. (7)

and (9), we obtain ẇ2 = O(ε2), which implies that w2(t) = w2(0)
+ O(ε2) for t = O(1). Therefore, w2 in inequality (15) can be
regarded as w2(0) in a good approximation. Consequently, we con-
clude that oscillation inevitably occurs if there is a viral mutant
whose replication rate is considerably smaller than the other’s and
its initial value is sufficiently small; i.e.,

v2(0) = w2(0) <
4q1(β

∗)2

(1 + β∗)3
. (16)

Moreover, both viral mutants share an effective growth rate of
λ = O(ε), namely, the slow mutant entrains the fast mutant. This
synchronization underlies the emergence of the phase of low viral
load.

Finally, we discuss the mechanism of the damped oscillation
by considering the dynamics of system (11) qualitatively. Note that
the first two equations are closed with respect to w1 and x1 since
we regard w2 as a constant [i.e., w2 ' w2(0)]. Assuming the same
initial condition as in Figs. 2(e) and 2(f) (i.e., w1(0) = w2(0) = 0.01
and x1(0) = x2(0) = 0), both w1 and x1 initially increase. When w1

becomes sufficiently larger than w2, Eqs. (11a) and (11b) can be
approximated as follows:

ẇ1 = w1(1 − λ − x1), (17a)

ẋ1 = w1(q1 − x1), (17b)

since 1 + w2
w1

in Eq. (11b) can be regarded as 1. Note that this sys-

tem (17) is qualitatively the same as the system (3). According
to the same discussion in Sec. III, since we assume the inequal-
ity (8), x1 can exceed 1 − λ and, thus, w1 begins to decrease [the
same scenario as in Fig. 1(c)]. When w1 becomes sufficiently small
such that ẋ in Eq. (11b) becomes negative, x1 starts to decrease,
and w1 again begins to increase when x1 < 1 − λ. We consider that
these cycles of alternating increases and decreases, which are analo-
gous to repeated immune response and viral escape from it, are the
mechanism behind the damped oscillation.

By applying the same analysis for the case of three viral mutants
(i.e., n = 3), we also find that oscillatory viral dynamics and syn-
chronized replication rates are observed if one viral mutant has a
considerably lower replication rate than the others and its initial
value is sufficiently small. See Appendix A for more details about
the three viral mutants case.

We generalize these results for n mutants case in which one
mutant has a considerably lower replication rate than the others.

V. GENERAL CASE

We consider the system (2) for the general case of n mutants.
Let 3 be a real number. By introducing new variables wi := vie

−3t,
we transform Eq. (2) into the following 2n-dimensional nonau-
tonomous system:

ẇi = αiwi

(

1 −
3

αi

− xi

)

, (18a)

ẋi = e3twi

(

qi − xi

∑n
l=1 wl

wi

)

, (18b)

for 1 ≤ i ≤ n. As in the case when n = 2, we are particularly con-
cerned with the situation in which one of the agents vi has a consid-
erably lower growth rate than the others. Thus, we treat αn as a small
parameter and put ε := αn. The other parameters are assumed to be
O(1).

Definition 1. We define an internal fixed point as a fixed point
whose coordinates are all positive.

First, we determine 3 so that the system (18) has an internal
fixed point.

Theorem 1. The system (18) has at least one internal fixed
point if and only if the following two conditions hold:

3 =

(

∑n
l=1

1
ql

)

− 1
∑n

l=1
1

αlql

, (19)

ε

n
∑

l=1

1

αlql

>

(

n
∑

l=1

1

ql

)

− 1. (20)

Proof of necessity. Let (w
†
i , x

†
i ) with w

†
i > 0 and x

†
i > 0 be the

internal fixed point of system (18). Then, (w
†
i , x

†
i ) satisfies

x
†
i = 1 −

3

αi

(21)

and

w
†
i qi − x

†
i

n
∑

l=1

w
†
l = 0. (22)

We rewrite Eq. (22) as

Qnw
†w†w† = 000n, (23)

where Qn is the coefficient matrix given as

Qn :=











q1 − x
†
1 −x

†
1 −x

†
1 · · · −x

†
1

−x
†
2 q2 − x

†
2 −x

†
2 · · · −x

†
2

...
...

...
...

−x†
n −x†

n −x†
n · · · qn − x†

n











, (24)

w†w†w† := t(w
†
1 , w

†
2, . . . , w†

n), and 000n denotes the zero vector of order n.
Since we assume w†w†w† 6= 000n, Eq. (23) has a nontrivial solution; i.e.,

det Qn = 0. (25)

Lemma 1. The determinant of the matrix Qn given in Eq. (24)
is calculated as

det Qn =
(

1 −
n
∑

l=1

x
†
l

ql

)

n
∏

k=1

qk. (26)

Proof of Lemma 1. We prove this by induction on n. Obvi-
ously, Eq. (26) holds when n = 2. We assume that Eq. (26) is true
when n = m. Then,
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det Qm+1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q1 − x
†
1 −x

†
1 · · · −x

†
1 −x

†
1

−x
†
2 q2 − x

†
2 · · · −x

†
2 −x

†
2

...
...

...
...

−x†
m −x†

m · · · qm − x†
m −x†

m

−x
†
m+1 −x

†
m+1 · · · −x

†
m+1 qm+1 − x

†
m+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q1 − x
†
1 −x

†
1 · · · −x

†
1 0

−x
†
2 q2 − x

†
2 · · · −x

†
2 0

...
...

...
...

−x†
m −x†

m · · · qm − x†
m 0

−x
†
m+1 −x

†
m+1 · · · −x

†
m+1 qm+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q1 − x
†
1 −x

†
1 · · · −x

†
1 −x

†
1

−x
†
2 q2 − x

†
2 · · · −x

†
2 −x

†
2

...
...

...
...

−x†
m −x†

m · · · qm − x†
m −x†

m

−x
†
m+1 −x

†
m+1 · · · −x

†
m+1 −x

†
m+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= qm+1 det Qm +

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q1 0 · · · 0 −x
†
1

q2 · · · 0 −x
†
2

. . .
...

...
qm −x†

m

0 −x
†
m+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= qm+1

(

1 −
m
∑

l=1

x
†
l

ql

)(

m
∏

k=1

qk

)

− q1q2 · · · qmx
†
m+1 =

(

1 −
m+1
∑

l=1

x
†
l

ql

)

m+1
∏

k=1

qk.

�

It, thus, follows from Eq. (25) and Lemma 1 that

1 −
n
∑

l=1

x
†
l

ql

= 0. (27)

By substituting Eq. (21) into Eq. (27), we obtain Eq. (19). Moreover,
since we assume x†

n = 1 − 3

ε
> 0, the inequality (20) follows from

Eq. (19).

Proof of sufficiency. We set x
†
i := 1 − 3

αi
. Since det Qn = 0 fol-

lows from Eq. (19), Eq. (23) has a nontrivial solution, denoted by w†w†w†

:= t(w
†
1, w

†
2, . . . , w†

n) 6= 000n. Note that w
†
i satisfy Eq. (22). Recall

the inequality α1 ≥ α2 ≥ · · · ≥ αn−1 � αn; we have x
†
1 ≥ x

†
2 ≥ · · ·

≥ x
†
n−1 > x†

n from x
†
i := 1 − 3

αi
. Hence, the inequality (20), which

is equivalent to x†
n > 0, implies that x

†
i > 0 for all i. It, thus, fol-

lows from Eq. (22) and qi > 0 that each w
†
i has the same sign with

∑n
l=1 w

†
l . Then, all w

†
i have the same sign, i.e, w

†
i > 0 for all i or

w
†
i < 0 for all i. If w

†
i < 0 for all i, then (x

†
i , −w

†
i ) is an internal fixed

point of system (18) because −w†w†w† = t(−w
†
1 , −w

†
2, . . . , −w†

n) is also
a nontrivial solution of Eq. (23). Hence, the system (18) has at least
one internal fixed point.

Thus, we have shown Theorem 1. �

In the following discussion, we set 3 as Eq. (19) and assume
the inequality (20). We also assume

n
∑

l=1

1

ql

> 1, (28)

so that 3 > 0. It follows from Eq. (19) and the assumption ε � 1
that

3 =
ε
[(

∑n
l=1

1
ql

)

− 1
]

1
qn

+ ε
∑n−1

l=1
1

αlql

= O(ε). (29)

Next, we perform the stability analysis assuming timescale sep-
aration. As far as t = O(1), we can safely replace e3t in Eq. (18b)
with 1 because e3t = 1 + O(3t) = 1 + O(ε). We also see that wn is a
slow variable and w1, . . . , wn−1, x1, . . . , xn−1, and xn are fast variables.
Thus, in a good approximation, the dynamics of these fast variables
are described by the following (2n − 1)-dimensional autonomous
subsystem:

ẇj = αjwj

(

1 −
3

αj

− xj

)

, (30a)

ẋi = wi

(

qi − xi

∑n
l=1 wl

wi

)

, (30b)

for 1 ≤ j ≤ n − 1 and 1 ≤ i ≤ n. Note that wn is regarded as a
constant. �

Theorem 2. The subsystem (30) has the unique internal fixed
point (w∗

j , x∗
i ) whose coordinates are given as

x∗
i = 1 −

3

αi

, (31)
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for 1 ≤ i ≤ n and











w∗
1

w∗
2

...
w∗

n−1











= wnR−1











x∗
1

x∗
2

...
x∗

n−1











, (32)

where R is a regular matrix written as

R :=











q1 − x∗
1 −x∗

1 · · · −x∗
1

−x∗
2 q2 − x∗

2 · · · −x∗
2

...
...

...
−x∗

n−1 −x∗
n−1 · · · qn−1 − x∗

n−1











. (33)

Proof. Let us assume the existence of an internal fixed point
(w∗

j , x∗
i ) of the subsystem (30). Then,

x∗
j = 1 −

3

αj

, (34)

w∗
j qj − x∗

j

(

wn +
n−1
∑

l=1

w∗
l

)

= 0, (35)

for 1 ≤ j ≤ n − 1 and

wnqn − x∗
n

(

wn +
n−1
∑

l=1

w∗
l

)

= 0. (36)

Equation (35) can be rewritten as

R











w∗
1

w∗
2

...
w∗

n−1











= wn











x∗
1

x∗
2

...
x∗

n−1











, (37)

where R is given in Eq. (33). According to Lemma 1,

det R =
(

1 −
n−1
∑

l=1

x∗
l

ql

)

n−1
∏

k=1

qk. (38)

Note that

1 −
n−1
∑

l=1

x∗
l

ql

=
1

εqn

∑n
l=1

1
αlql

[

ε

n
∑

l=1

1

αlql

−
(

n
∑

l=1

1

ql

)

+ 1

]

> 0

(39)

follows from Eqs. (19) and (34), and inequality (20). Thus, R is a
regular matrix, which implies that Eq. (37) can be solved as











w∗
1

w∗
2

...
w∗

n−1











= wnR−1











x∗
1

x∗
2

...
x∗

n−1











. (40)

By dividing both sides of Eq. (35) by qj and summing from j = 1 to
n − 1, we obtain

n−1
∑

l=1

w∗
l =

wn

∑n−1
j=1

x∗
j

qj

1 −
∑n−1

j=1

x∗
j

qj

. (41)

Substituting Eq. (41) into Eq. (36), we have

x∗
n = qn



1 −
n−1
∑

j=1

x∗
j

qj



 = 1 −
3

αn

. (42)

Obviously,

x∗
1 ≥ x∗

2 ≥ · · · ≥ x∗
n−1 > x∗

n > 0, (43)

from α1 ≥ α2 ≥ · · · ≥ αn−1 � αn and inequality (39). It also follows

from inequalities (39), (43), and Eq. (41) that
∑n−1

l=1 w∗
l > 0, which

implies that w∗
j > 0 for 1 ≤ j ≤ n − 1 from Eq. (35). Therefore, we

have shown that the point (w∗
j , x∗

i ) given by Eqs. (31) and (32) is the

unique internal fixed point of the subsystem (30). �

Remark 1. Obviously, x∗
i and

w∗
j

wn
are independent of wn.

Let J be the Jacobian matrix at the fixed point (w∗
j , x∗

i ) of system

(30). Then,

J =





On−1,n−1 A 000n−1

R B 000n−1
tx∗

nx∗
nx∗
n

t000n−1 −bwn



 , (44)

where

A := −wndiag(a1, a2, . . . , an−1), B := −bwnIn−1,

tx∗
nx∗
nx∗
n := −

(

x∗
n x∗

n · · · x∗
n

)

,

aj :=
αjw

∗
j

wn

, b :=
(
∑n−1

l=1 w∗
l ) + wn

wn

.

Here, Om,n denotes the m × n zero matrix, and In−1 is the iden-
tity matrix of order n − 1. Note that aj and b do not depend on
wn. Our purpose is to show that (i) the fixed point (w∗

j , x∗
i ) is

asymptotically stable and (ii) damped oscillation occurs if wn is
sufficiently small. In other words, we are going to prove the next
theorem:

Theorem 3.
(1) The real parts of the eigenvalues of the Jacobian matrix J are all

negative.
(2) There exists a positive constant W such that J has at least one

imaginary eigenvalue if and only if 0 < wn < W.
Proof. Let f(z) := det(zI2n−1 − J) be the characteristic polyno-

mial of J. Then,

f(z) = (z + bwn) det

(

zIn−1 −A
−R (z + bwn)In−1

)

. (45)

Recall the next formula;16 if S, T, U, V are square matrices and if
SU = US, then

det

(

S T
U V

)

= det(SV − UT). (46)

Chaos 33, 073133 (2023); doi: 10.1063/5.0151174 33, 073133-7

Published under an exclusive license by AIP Publishing

 23 April 2024 12:58:58

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

We have

det

(

zIn−1 −A
−R (z + bwn)In−1

)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z(z + bwn)In−1 − wn















a1(x
∗
1 − q1) a2x

∗
1 · · · an−2x

∗
1 an−1x

∗
1

a1x
∗
2 a2(x

∗
2 − q2) · · · an−2x

∗
2 an−1x

∗
2

...
...

...
...

a1x
∗
n−2 a2x

∗
n−2 · · · an−2(x

∗
n−2 − qn−2) an−1x

∗
n−2

a1x
∗
n−1 a2x

∗
n−1 · · · an−2x

∗
n−1 an−1(x

∗
n−1 − qn−1)















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z2 + bwnz + wna1(q1 − x∗
1) −wna2x

∗
1 · · · −wnan−2x

∗
1 −wnan−1x

∗
1

−wna1x
∗
2 z2 + bwnz + wna2(q2 − x∗

2) · · · −wnan−2x
∗
2 −wnan−1x

∗
2

...
...

...
...

−wna1x
∗
n−2 −wna2x

∗
n−2 · · · z2 + bwnz + wnan−2(qn−2 − x∗

n−2) −wnan−1x
∗
n−2

−wna1x
∗
n−1 −wna2x

∗
n−1 · · · −wnan−2x

∗
n−1 z2 + bwnz + wnan−1(qn−1 − x∗

n−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
(

n−1
∏

k=1

ak

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z2+bwnz
a1

+ wnq1 − wnx∗
1 −wnx∗

1 · · · −wnx∗
1 −wnx∗

1

−wnx∗
2

z2+bwnz
a2

+ wnq2 − wnx∗
2 · · · −wnx∗

2 −wnx∗
2

...
...

...
...

−wnx∗
n−2 −wnx∗

n−2 · · · z2+bwnz
an−2

+ wnqn−2 − wnx∗
n−2 −wnx∗

n−2

−wnx∗
n−1 −wnx∗

n−1 · · · −wnx∗
n−1

z2+bwnz
an−1

+ wnqn−1 − wnx∗
n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

By replacing qk → ( z2+bwnz
ak

+ wnqk) and x
†
k → wnx∗

k in Lemma. 1, we see that

det

(

zIn−1 −A
−R (z + bwn)In−1

)

=
(

n−1
∏

k=1

ak

)



1 −
n−1
∑

l=1

wnx∗
l

z2+bwnz
al

+ wnql





n−1
∏

k=1

(

z2 + bwnz

ak

+ wnqk

)

=
(

1 −
n−1
∑

l=1

alx
∗
l wn

z2 + bwnz + alqlwn

)

n−1
∏

k=1

(

z2 + bwnz + akqkwn

)

.

This implies that

f(z) = (z + bwn)

(

1 −
n−1
∑

l=1

alx
∗
l wn

z2 + bwnz + alqlwn

)

×
n−1
∏

k=1

(

z2 + bwnz + akqkwn

)

. (47)

We introduce a new variable X and function g(X) given as

X :=
z2 + bwnz

wn

(48)

and

g(X) :=
(

1 −
n−1
∑

l=1

alx
∗
l

X + alql

)

n−1
∏

k=1

(

X + akqk

)

. (49)

It, thus, follows from Eq. (47) that

f(z) = (wn)
n−1(z + bwn)g(X). (50)

Note that g(X) is a polynomial of degree n − 1.

Lemma 2. The solutions of g(X) = 0 are all negative real
numbers.

Proof of Lemma 2. We rewrite g(X) as

g(X) =



1 −
m
∑

j=1

ηj

X + δj





m
∏

i=1

(X + δi)
θi , (51)

where δi, ηi, and θi satisfy the following conditions for 1 ≤ i ≤ m:

n−1
∏

k=1

(

X + akqk

)

=
m
∏

i=1

(X + δi)
θi ,

δk < δl if k < l,

and

n−1
∑

l=1

alx
∗
l

X + alql

=
m
∑

j=1

ηj

X + δj

.
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Note that δi > 0, ηi > 0, θi ∈ N, and
∑m

i=1 θi = n − 1. We introduce
a new function h(X), which is a polynomial of degree m, as

h(X) :=



1 −
m
∑

j=1

ηj

X + δj





m
∏

i=1

(X + δi) .

It follows from Eq. (51) that

g(X) = h(X)

m
∏

i=1

(X + δi)
θi−1 . (52)

By using Eq. (49) and inequality (39), we get

g(0) =
(

1 −
n−1
∑

l=1

x∗
l

ql

)

n−1
∏

k=1

(

akqk

)

> 0.

Thus, h(0) > 0 follows from Eq. (52). We also have

h(−δi) = −ηi

∏m
i=1 (X + δi)

X + δi

∣

∣

∣

∣

X=−δi

.

It follows from ηi > 0 that

sgn h(−δi) = (−1)i.

We put δ0 := 0. Then, by the intermediate value theorem, h(X) has
a root in each interval (−δi, −δi−1) for 1 ≤ i ≤ m. Therefore, h(X)

has m negative roots. From Eq. (52), we have shown that the roots
of g(X) are all negative real numbers. �

According to Lemma 2, there exist positive real numbers ξk

(1 ≤ k ≤ n − 1) such that ξ1 ≤ ξ2 ≤ · · · ≤ ξn−1 and

g(X) =
n−1
∏

k=1

(X + ξk). (53)

Since ak and x∗
l in Eq. (49) do not depend on wn, −ξk [i.e., the solu-

tions of g(X) = 0] are independent of wn. Substituting Eqs. (48) and
(53) into Eq. (50), we have

f(z) = (z + bwn)

n−1
∏

k=1

(z2 + bwnz + ξkwn). (54)

It follows from bwn > 0 and ξkwn > 0 that the real parts of the solu-
tions of f(z) = 0 are all negative. Thus, the fixed point (w∗

j , x∗
i ) is

asymptotically stable. We also see that the Jacobian matrix J has at
least one imaginary eigenvalue if and only if

0 < wn <
4ξn−1

b2
. (55)

Hence, we have proved Theorem 3. �

Based on the same argument as in Sec. IV, the dynamics of
slow variable wn is obtained as ẇn = O(ε2), which implies that
wn(t) = wn(0) + O(ε2) for t = O(1). Thus, from inequality (55), we
conclude that oscillation occurs if

vn(0) = wn(0) <
4ξn−1

b2
. (56)

In summary, assuming a few parameter conditions [i.e.,
the inequalities (20) and (28)], we have shown that (i) all

viral mutants have a shared effective growth rate 3 = O(ε)

if one mutant has a considerably lower replication rate ε

than the others and (ii) oscillatory viral dynamics occur if
the initial value of the slowest-replicating mutant is sufficiently
small. These findings are the generalization of those obtained
in Sec. IV.

VI. DISCUSSION AND CONCLUSION

By performing the linear stability analysis, we find that all
growth rates can synchronize to the same value that is as small as the
slowest-growing agent [i.e., O(ε)] in the previously proposed mathe-
matical model.11 This explains the slow exponential growth observed
in numerical simulations.11 We also determine that the oscillatory
dynamics appear when the initial value of the slowest-growing agent
is sufficiently small.

The inequality (28) represents the same result as in the previ-
ous studies11,17 and it is the parameter condition in which the total
viral load eventually diverges. Our study reveals that this condition is
valid even without assuming the fast dynamics of immune cells. We
also find that the inequality (20) is the condition for the synchro-
nization of all mutants’ replication rates. Obviously, the following
inequality

n−1
∑

l=1

1

ql

< 1 (57)

is a sufficient condition for the inequality (20). Note that the param-
eter 1/qi(:= riu

pik
) characterizes the strength of the ith viral mutant

compared with immunity. Then, the inequality (57) suggests that
synchronized replication rates are observed when the total virulence
of v1, . . . , vn−2, and vn−1 is insufficiently high to cause viral load
divergence.

The model we use in this paper was originally proposed as
a model of human immunodeficiency virus (HIV).11 Indeed, this
model is consistent with a part of the virological features of HIV; e.g.,
HIV infects and destroys immune cells,18,19 HIV produces numerous
mutants in the body,20 and various viral mutants may have different
virulence,21 which is represented by ri and pi in this model. However,
this model has not been used to study HIV infection in recent years
because the model is considered to be not biologically accurate to
describe viral dynamics in vivo: this model does not incorporate the
uninfected target cell population, which is included in the standard
HIV infection model.22

In the later studies, Nowak and Bangham proposed another
model that considers both the uninfected target cell and viral
mutation23 and Iwami et al. performed the linear stability anal-
ysis of this model for the case of one viral mutant with an
assumption that viral dynamics are sufficiently fast.13 Thus, apply-
ing our method to the Nowak and Bangham model is future
work.

There are several other possible extensions in our study. We
transformed the nonautonomous system (18) into the autonomous
one (30) by the approximation that e3t ' 1 and assuming timescale
separation. These are appropriate approximations because as far as
t = O(1), e3t and the slow variable wn stay ε-vicinity of 1 and wn(0),
respectively. However, developing a more mathematically rigorous
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approach that is valid even when t is sufficiently large, if any, is a
future challenge.

The existence of multistability is another open question in
this study. Obviously, vi = 0 with arbitrary xi ∈ R is a set of fixed
points of the system (2). Furthermore, if the parameters qi satisfy

n
∑

i=1

(1/qi) = 1, there is another set of fixed points (v∗
i , x∗

i ) with x∗
i

= 1 and
v∗

i
∑n

j=1 v∗
j

= 1/qi. As we discuss in Appendix B for the case

when n = 2, the qualitatively different solutions, including these
fixed points and the diverging solution, can be obtained by using the
same parameter but different initial conditions. Thus, we conclude
that the system (2) is a multistable system. However, these argu-
ments do not exclude the existence of other dynamics, such as limit
cycles or chaos, in the system (2), even though no such behavior was
observed in numerical simulation as far as we used different sets of
parameter values and initial conditions in the case when n = 2, 3.
Investigating the detailed structure of the phase plane of the sub-
system (30) can be a possible clue to examine the existence of limit
cycles and chaos.

Since we mainly analyze the model (2) under the assumption
that the growth rate of one viral mutant is sufficiently smaller than
the others, elucidating the general behavior of this model with-
out any restrictions on parameters and initial conditions is also a
future task. This is a mathematically difficult problem because with-
out assuming ε � 1, 3 in Eq. (29) is no longer a small value and,
thus, we have to deal with the nonautonomous system (18) instead
of the reduced autonomous system (30). Roughly speaking, if all
the parameters of viral mutants and immune cells are almost the
same (i.e., αi ' 1 and qi ' q), the system can be approximated to
the two-dimensional model (3). Thus, the behavior of the model will
roughly become that observed in either Fig. 1(a) (viral load diverges)
or Fig. 1(c) (the virus is eradicated). This argument is, needless to
say, not sufficient, considering that the parameters of the model can
take a wide range of values. The case when the growth rates of mul-
tiple viral mutants are sufficiently smaller than the others, or the
case when there are significant differences among the parameters
of immune strength (i.e., qi) are important research problems to be
clarified.

In conclusion, we analyze in detail the simple mathematical
model of asymmetrically interacting agents. We perform linear sta-
bility analysis and find the unique features of the model; i.e., the
viral load initially oscillates and then slowly increases if the param-
eters and initial values satisfy a few conditions. Our work also
proposes an analytical method of applying stability analysis to the
exponentially diverging solution by using the techniques of variable
transformation and timescale separation.
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APPENDIX A: THE CASE WHEN n = 3

We consider the following system:

v̇1 = v1(1 − x1), (A1a)

v̇2 = α2v2(1 − x2), (A1b)

v̇3 = α3v3(1 − x3), (A1c)

ẋ1 = v1

[

q1 − x1

(

1 +
v2

v1

+
v3

v1

)]

, (A1d)

ẋ2 = v2

[

q2 − x2

(

1 +
v1

v2

+
v3

v2

)]

, (A1e)

ẋ3 = v3

[

q3 − x3

(

1 +
v1

v3

+
v2

v3

)]

. (A1f)

We treat α3 as a small parameter (i.e., α3 � 1) and put ε := α3. The
other parameters are assumed to be O(1). As in the case of two viral
mutants, we introduce new variables β := v2

v1
and γ := v3

v1
. Assum-

ing the convergence of β and γ to positive constants β∗ and γ ∗,
respectively, we see that

x∗
1 =

q1

1 + β∗ + γ ∗ , x∗
2 =

β∗q2

1 + β∗ + γ ∗ ,

and x∗
3 =

γ ∗q3

1 + β∗ + γ ∗ , (A2)

are fixed points of the subsystem given by Eqs. (A1d), (A1e), and
(A1f). Substituting xi = x∗

i into the equations β̇ = v1 v̇2−v2 v̇1

v2
1

= 0 and
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γ̇ = v1 v̇3−v3 v̇1

v2
1

= 0, we obtain the following:

β∗ =
α2q1 + ε(q1q3 − q1 − q3) + α2εq3

α2q2 + εq3 + α2ε(q2q3 − q2 − q3)
=

q1

q2

+ O(ε), (A3)

and

γ ∗ =
α2(q1q2 − q1 − q2) + εq1 + α2εq2

α2q2 + εq3 + α2ε(q2q3 − q2 − q3)
=

q1q2 − q1 − q2

q2

+ O(ε).

(A4)

For sufficiently small ε, the conditions β∗ > 0 and γ ∗ > 0 hold if

q1q2 − q1 − q2 > 0. (A5)

We assume this inequality (A5) for the following argument.
Substituting xi = x∗

i and (β , γ ) = (β∗, γ ∗) into
Eqs. (A1a)–(A1c), we acquire the following equation:

v̇i = λvi,

where

λ =
α2ε(q1q2 + q2q3 + q3q1 − q1q2q3)

α2q1q2 + εq3q1 + α2εq2q3

= O(ε). (A6)

We also assume

q1q2 + q2q3 + q3q1 − q1q2q3 > 0 (A7)

so that λ > 0.
Next, we perform the linear stability analysis. By introducing

new variables wi := vie
−λt, we transform Eq. (A1) into the following

six-dimensional nonautonomous system:

ẇ1 = w1(1 − λ − x1), (A8a)

ẇ2 = α2w2

(

1 −
λ

α2

− x2

)

, (A8b)

ẇ3 = εw3

(

1 −
λ

ε
− x3

)

, (A8c)

ẋ1 = eλtw1

[

q1 − x1

(

1 +
w2

w1

+
w3

w1

)]

, (A8d)

ẋ2 = eλtw2

[

q2 − x2

(

1 +
w1

w2

+
w3

w2

)]

, (A8e)

ẋ3 = eλtw3

[

q3 − x3

(

1 +
w1

w3

+
w2

w3

)]

. (A8f)

As far as t = O(1), we can safely replace eλt in Eq. (A8) with 1
since eλt = 1 + O(λt) = 1 + O(ε). Moreover, w3 is a slow variable
and w1, w2, x1, x2, and x3 are fast variables. Thus, in a good approx-
imation, the dynamics of these fast variables are described by the
five-dimensional autonomous subsystem as below:

ẇ1 = w1(1 − λ − x1), (A9a)

ẇ2 = α2w2

(

1 −
λ

α2

− x2

)

, (A9b)

ẋ1 = w1

[

q1 − x1

(

1 +
w2

w1

+
w3

w1

)]

, (A9c)

ẋ2 = w2

[

q2 − x2

(

1 +
w1

w2

+
w3

w2

)]

, (A9d)

ẋ3 = w3

[

q3 − x3

(

1 +
w1

w3

+
w2

w3

)]

, (A9e)

in which w3 is regarded as a constant. The internal fixed point of this
subsystem (A9) is

(w1, w2, x1, x2, x3)

=
(

w3

γ ∗ ,
β∗w3

γ ∗ ,
q1

1 + β∗ + γ ∗ ,
β∗q2

1 + β∗ + γ ∗ ,
γ ∗q3

1 + β∗ + γ ∗

)

.

(A10)

The Jacobian matrix at this fixed point is















0 0 −e1 0 0

0 0 0 −e2 0

e3 −e4 −e8 0 0

−e5 e6 0 −e8 0

−e7 −e7 0 0 −e8















, (A11)

where e1, . . . , e8 are positive constants given by

e1 =
w3

γ ∗ , e2 =
α2β

∗w3

γ ∗ , e3 =
q1(β

∗ + γ ∗)

1 + β∗ + γ ∗ ,

e4 =
q1

1 + β∗ + γ ∗ , e5 =
q2β

∗

1 + β∗ + γ ∗ , e6 =
q2(1 + γ ∗)

1 + β∗ + γ ∗ ,

(A12)

e7 =
q3γ

∗

1 + β∗ + γ ∗ , and e8 =
(1 + β∗ + γ ∗)w3

γ ∗ .

The eigenvalues of matrix (A11) are

−e8, −
e8

2
+

1

2

√

e2
8 − 2(e1e3 + e2e6) ± 2

√

(e1e3 − e2e6)
2 + 4e1e2e4e5,

and

−
e8

2
−

1

2

√

e2
8 − 2(e1e3 + e2e6) ± 2

√

(e1e3 − e2e6)
2 + 4e1e2e4e5. (A13)
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From e3e6 > e4e5, we conclude that the real parts of these eigenvalues are all negative, which implies that the fixed point (A10) is
asymptotically stable. Moreover, imaginary eigenvalues appear if

e2
8 − 2(e1e3 + e2e6) − 2

√

(e1e3 − e2e6)
2 + 4e1e2e4e5 < 0. (A14)

Substituting Eq. (A12) into inequality (A14), we have

w2
3

(

1 + β∗ + γ ∗

γ ∗

)2

− 2w3







q1(β
∗ + γ ∗) + α2q2β

∗(1 + γ ∗) +
√

[q1(β∗ + γ ∗) − α2q2β∗(1 + γ ∗)]2 + 4α2q1q2(β∗)2

γ ∗(1 + β∗ + γ ∗)







< 0

⇐⇒ 0 < w3 <

2γ ∗
{

q1(β
∗ + γ ∗) + α2q2β

∗(1 + γ ∗) +
√

[q1(β∗ + γ ∗) − α2q2β∗(1 + γ ∗)]2 + 4α2q1q2(β∗)2

}

(1 + β∗ + γ ∗)3
. (A15)

The fast variables stay in the ε-vicinity of the fixed point in the
full system after the transient process because the subsystem of the
fast variables has the stable fixed point (A10). Substituting x3 = x∗

3

+ O(ε) into Eq. (A8c) and further using Eqs. (A3), (A4), and (A6),
we obtain ẇ3 = O(ε2), which implies that w3(t) = w3(0) + O(ε2)

for t = O(1). Therefore, w3 in inequality (A15) can be regarded as
w3(0) in a good approximation. Thus, we conclude that oscillatory
viral dynamics occur if there is a viral strain whose replication rate
is considerably lower than the others and its initial value is suffi-
ciently small. We also find that all viral mutants have the following
shared effective growth rate: λ = O(ε). Note that these findings are
the same as those obtained in the case of two viral mutants.

Finally, we investigate the dynamics of system (A1) by numer-
ical simulation. Figure 3 shows that the expected two features of the
model (i.e., damped oscillation and slow exponential viral growth)
are observed with the parameters and initial conditions that satisfy
the inequalities (A5), (A7), and (A15). These results confirm the
validity of our analysis.

APPENDIX B: MULTISTABILITY OF THE MODEL

We investigate whether the system (2) is multistable, using the
case when n = 2 [i.e., the system (5)] as an example. Obviously,

(v1, v2, x1, x2) = (0, 0, x1, x2), (B1)

with arbitrary x1, x2 ∈ R is a set of fixed points of the system (5). The
Jacobian matrix at these fixed points is







1 − x1 0 −v1 0
0 α2(1 − x2) 0 −α2v2

q1 − x1 −x1 −(v1 + v2) 0
−x2 q2 − x2 0 −(v1 + v2)







∣

∣

∣

∣

∣

∣

∣

(v1 ,v2 ,x1 ,x2)=(0,0,x1 ,x2)

(B2)

=







1 − x1 0 0 0
0 α2(1 − x2) 0 0

q1 − x1 −x1 0 0
−x2 q2 − x2 0 0






, (B3)

and its eigenvalues are 0, 1 − x1, and 1 − x2. The 0 eigenvalue cor-
responds to the eigenvectors t(0, 0, 1, 0) and t(0, 0, 0, 1), which are
parallel to the plane v1 = v2 = 0 (the set of fixed points). Thus, we

expect that these fixed points are Lyapunov stable if x1 > 1 and
x2 > 1.

Figure 4 shows the numerical simulation results of Eq. (5). In
Figs. 4(a) and 4(b), we use the same parameter as in Figs. 2(a) and
2(b) but different initial conditions. In both cases, the system con-
verges to the fixed point (B1). However, the steady-state values of xi

are different between Fig. 2(b) and Fig. 4(b), which implies that the
fixed points (B1) are multistable. In Figs. 4(c) and 4(d), we use the
same parameter as in Figs. 2(c) and 2(d) but different initial condi-
tions. The system converges to the fixed point (B1) in Figs. 4(c) and
4(d), while the viral load diverges in Figs. 2(c) and 2(d).

The system (5) has another set of fixed points

(v1, v2, x1, x2) = (v1, (q1 − 1)v1, 1, 1), (B4)

with arbitrary v1 ∈ R if the parameters qi satisfy

1

q1

+
1

q2

= 1. (B5)

Noting that q2 = q1
q1−1

, the Jacobian matrix at these fixed points is









0 0 −v1 0
0 0 0 −α2(q1 − 1)v1

q1 − 1 −1 −q1v1 0
−1 1

q1−1
0 −q1v1









, (B6)

and its eigenvalues are

0, −q1v1, and
1

2
(−q1v1 ±

√
σ), (B7)

where

σ = q2
1v

2
1 − 4v1(q1 + α2 − 1). (B8)

The 0 eigenvalue corresponds to the eigenvector t(1, q1 − 1, 0, 0),
which is parallel to the set of fixed points (B4). Since we assume
qi > 0, then q1 > 1 follows from Eq. (B5), which implies that

σ < q2
1v

2
1, (B9)

and thus the real parts of the eigenvalues 1
2
(−q1v1 ±

√
σ) are neg-

ative. Therefore, we expect that the fixed points (B5) are Lyapunov
stable.
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FIG. 3. Numerical simulation results of Eqs. (A1). Panels (a) and (b) show the
time course of the viral load and the immune cells, respectively. By choosing the
parameters and initial conditions to match the analytical results, the two features
(i.e., damped oscillation and slow exponential viral growth) are also reproduced
in the case of three viral mutants. The parameters and initial conditions of
this simulation are as follows: α2 = 0.75,α3 = 0.003, q1 = 3.0, q2 = 2.5,
q3 = 1.5, v1(0) = v2(0) = v3(0) = 0.01, x1(0) = x2(0) = x3(0) = 0. Note
that these values satisfy the inequalities (A5), (A7), and (A15).

Figure 5 shows the simulation results of Eq. (5) under the
parameter condition (B5). By changing the initial conditions, the
system can converge to the different fixed points, i.e., the fixed point
(B1) in Figs. 5(a) and 5(b), and the fixed point (B4) in Figs. 5(c) and
5(d), respectively. Note that the condition (B5) corresponds to λ = 0
in Eq. (9), which agrees with the viral dynamics in Fig. 5(c) where the
viral load neither diverges nor diminishes.

According to the above analysis and numerical simulations,
we conclude that the model system (2) is multistable, meaning that
qualitatively different solutions, including the fixed points and the
diverging solution, can be obtained by using the same parameter but
different initial conditions.

FIG. 4. Numerical simulation results of Eq. (5). In panels (a) and (b), we use the
same parameter as in Figs. 2(a) and 2(b) (α2 = 0.75, q1 = q2 = 4.0) but differ-
ent initial conditions v1(0) = 5.0, v2(0) = 2.0, x1(0) = 1.5, x2(0) = 1.0. Even
though the system converges to the fixed points (B1) in both Figs. 2(a) and 2(b)
and Figs. 4(a) and 4(b), the steady-state values of xi are different, which implies
that the fixed points (B1) are multistable. In panels (c) and (d), we use the
same parameter as in Figs. 2(c) and 2(d) (α2 = 0.75, q1 = q2 = 4

3
) but different

initial conditions v1(0) = v2(0) = 0.01, x1(0) = 3.0, x2(0) = 2.0. The system
converges to the fixed point (B1), while the viral load diverges in Figs. 2(c) and 2(d).

FIG. 5. Numerical simulation results of Eq. (5) when the condition (B5) is satis-
fied. We use the same parameter but different initial conditions between panels
(a) and (b) and panels (c) and (d). The system converges to the fixed point (B1)
in (a) and (b), while converging to the fixed point (B4) in (c) and (d). The param-
eters and initial conditions are as follows: α2 = 0.75, q1 = 4.0, q2 = 4/3 for the
whole figure, v1(0) = 0.01, v2(0) = 0.01, x1(0) = 1.5, x2(0) = 1.0 for panels
(a) and (b), and v1(0) = 0.01, v2(0) = 0.01, x1(0) = 0, x2(0) = 0 for panels (c)
and (d).
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