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We numerically study a directed small-world network consisting of attractively coupled, identical
phase oscillators. While complete synchronization is always stable, it is not always reachable from
random initial conditions. Depending on the shortcut density and on the asymmetry of the phase
coupling function, there exists a regime of persistent chaotic dynamics. By increasing the density of
shortcuts or decreasing the asymmetry of the phase coupling function, we observe a discontinuous
transition in the ability of the system to synchronize. Using a control technique, we identify the
bifurcation scenario of the order parameter. We also discuss the relation between dynamics and
topology and remark on the similarity of the synchronization transition to directed percolation.
© 2010 American Institute of Physics. �doi:10.1063/1.3476316�

The adjustment of phase and frequency in large systems
of oscillatory units can lead to global coherent oscilla-
tions, i.e., synchronization. On the other hand, noise and
heterogeneity in the system can weaken synchronization,
or even destroy it. Synchronization in the nervous system
can facilitate the transfer of information or cause epilep-
tic seizures. Multistability and hysteresis of normal and
pathological collective behavior are observed. When all
oscillators are identical and the coupling tends to de-
crease phase differences a state of complete synchroniza-
tion is asymptotically stable. But even in random net-
works with uncorrelated and homogeneously distributed
node degrees this absorbing state may not be reached or
disappear when it is perturbed locally. Here we perform
a detailed numerical analysis of the transition between
different states of synchronization in a directed small-
world network of phase oscillators. By varying the mean
in-degree of the network or the nonlinearity of the phase
coupling function at zero phase difference, we find dis-
continuous and continuous transitions with mean field
critical behavior.

I. INTRODUCTION

Synchronization in spatially extended systems and com-
plex networks is an important mechanism to create global
spatiotemporal correlations from local interaction rules.1–4 Its
applications range from information transfer,5 self-organized
optimization of work flow or traffic flow6 to the realization
of strong coherent oscillations in arrays of Josephson junc-
tions or coupled fiber lasers.7 The transition to partial syn-
chronization, i.e., the emergence of a nonzero mean field, in
systems of nonidentical oscillators is well-known. It has been
studied analytically in the original texts by Kuramoto4,8 and
in a more general way in recent papers.9–11 Recently it has
been shown that degree heterogeneity in scale-free random
networks of identical oscillators can also lead to desynchro-

nization or partially synchronized states even though com-
plete synchronization is asymptotically stable.12

Here we study the transitions from incoherence to partial
synchronization and to complete synchronization in a sparse,
directed small-world network of identical phase oscillators.
Since the formulation of the model,13 small-world networks
have been studied as a medium for dynamical processes,
such as the spreading of epidemics,14 the Ising model,15–17

and also synchronization of nonidentical phase oscillators.18

Nontrivial behavior in sparse networks of coupled dynamical
systems is known to occur in Boolean networks19,20 and has
also been reported for leaky integrate-and-fire models with
and without delay coupling.21,22 We show, for the case of
attractively coupled, identical phase oscillators, that even if
the in-degree distribution is homogeneous the system may
enter a quasistationary chaotic state of incoherence or partial
synchronization. So far, desynchronization, due to inherent
heterogeneity, could be analytically described by global and
local mean field approaches,4,9,12 which assume a sufficiently
large number of neighbors. In contrast, our model is highly
homogeneous, in terms of degree distribution and correla-
tions, and none of the previously described mechanisms for
desynchronization in networks of oscillators can explain the
observed transition.

II. THE MODEL

The phase dynamics of N identical, weakly coupled
limit-cycle oscillators may be described by the Kuramoto
phase equations.2,4,8 In a corotating frame of reference where
the common oscillator frequency is zero, these are

�̇i = �
j=1

N

Hijg�� j − �i� , �1�

where Hij �0 is the coupling matrix and g�� j −�i� is the
coupling function. The coupling function only depends on
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the phase difference between the oscillators and its shape is
characteristic for given coupled limit-cycle oscillators.4 A
typical coupling function, which is, for example, realized in
diffusive coupling, has the properties g�0�=0 and g��0��0,
implying that the coupling force between two coupled oscil-
lators is attracting and vanishes when they have identical
phases. For weakly anharmonic oscillators the coupling
function is usually well-approximated by the first harmonics
�see, e.g., Ref. 23�, i.e.,

g���� = sin��� − �� + sin��� . �2�

The parameter � �−� /2���� /2� breaks the antisymmetry
of the coupling function around zero, which can lead to non-
trivial effects.4,12,24–26 We can restrict ourselves to non-
negative values of � �0	��� /2� since a transformation
�→−� and �i→−�i for all i leaves Eqs. �1� and �2� invari-
ant.

Under very general conditions, i.e., non-negative cou-
pling strengths Hij �0 and a nondegenerate zero eigenvalue
of the coupling Laplacian, complete synchronization with
�i=� j for all oscillators i and j is an asymptotically stable
solution of Eq. �1�.27 Strong connectedness of the network is
a sufficient condition for this. Failure of a system of identical
phase oscillators to synchronize cannot be deduced from a
local stability analysis of the completely synchronized state.
It is the result of a chaotic phase dynamics that riddles the
phase space so that complete synchronization cannot be
reached.

As a coupling network, we employ a well-established
modification14,21,28 of the original Watts–Strogatz model.13

Starting with a ring of N unidirectionally coupled oscillators
we add Nsc unidirectional shortcuts with random origin i and
destination j �see Fig. 1�. We refer to nodes which receive
more than one input as the joints of the network. In addition
to the system parameter �, which characterizes the phase
coupling function, the shortcut density 
=Nsc /N character-
izes the topology of the coupling network.

FIG. 1. �Color online� The network model. Unidirectional small-world net-
works with N=32 nodes at ��a� and �b�� low shortcut density 
=0.25 and
��c� and �d�� higher shortcut density 
=2.0. Joints of the network, i.e., nodes
that receive more than one input, are marked gray. �b� At low shortcut
densities most joints couple indirectly to two other joints through linear
chain segments of length L�1 /
. �d� At high shortcut densities each joint
couples to k=
+1 neighbors which are also with high probability joints.

σ

α

R ≈ 0

R = 1

R

(a)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

σ

α

R

partial
synchronization

(b)

complete

synchronization

incoherence

1 2 3 4 5

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

α

ϑ̇n = 0

〈ϑ̇n〉 = sinα

〈ϑ̇〉

(c)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

σ

α

lo
g
1
0

v
a
r

ϑ̇

(d)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

1.2

1.4

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

−2

−1.9

FIG. 2. �Color online� Synchronization transition in the �
 ,�� parameter plane. Each point corresponds to an ensemble average over ten network realizations
�N=800� and time average over 600 units after an initial transient of 200. Shown are �a� the mean order parameter R, �c� the mean oscillator frequency, and
�d� the variance of phase velocities in the case of normalized input strength. For comparison we also show �b� the mean order parameter for non-normalized
coupling strength for which a larger area of partial synchronization is observed at intermediate shortcut densities.
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In the present paper, except for Fig. 2�b�, we assume
uniform and normalized input strength, i.e.,

�
j=1

N

Hij = 1 �3�

for each oscillator and Hij =1 /ki
in if oscillator i with in-degree

ki
in couples to j or Hij =0 otherwise. The normalization would

have a great impact on the dynamics if the coupling network
was very heterogeneous. In the non-normalized case and
when the phases are uniformly distributed the phase velocity
of each oscillator is biased proportional to its in-degree and
sin �.12 Oscillators with larger in-degree tend to move faster
so that degree heterogeneity indirectly leads to a heterogene-
ity in frequencies. In contrast, when the coupling strength is
normalized to unity the bias to the phase velocity is equal to
sin � for all oscillators �see Fig. 2�c��. However, the directed
small-world network model that we use has a Poissonian
degree distribution, and is thus a homogeneous network. In
fact, we observe similar synchronization behavior with and
without the normalization given by Eq. �3� �see Figs. 2�a�
and 2�b��. Another consequence of this normalization is that

the phase velocities are bounded, i.e., −1	�̇i−sin �	1 and
an oscillator that receives only a single input is always phase
locked to it. Phase slips do not occur in a chain of unidirec-
tionally coupled phase oscillators but only at the joints of a
network.

III. SIMULATION RESULTS

Figure 2 shows the phase diagrams obtained from nu-
merical integrations of Eq. �1� for networks of N=800 oscil-
lators starting from uniformly random initial conditions. For
each set of parameter values for 
 and �, we show time and
ensemble averages of various quantities. Numerical simula-
tions of an ensemble of ten network realizations were run for
T=800 where an initial transient time of 200 time units was
disregarded. In Figs. 2�a� and 2�b�, the average order param-
eter R= �r�t�	time,trials, where r�t�= 
 1

N�ie
i�i�t�
 is displayed.

Note that r�t�=1 for complete synchronization and
R�O�1 /�N� for complete incoherence, i.e., uniform phase
distribution. There exists a clear transition from an incoher-
ent regime �R�0� at small shortcut densities 
 or larger
asymmetry � to a coherent regime �R=1� at higher shortcut
density or lower asymmetry. To quantify the dynamical prop-
erties of the incoherent state, we also observed the mean

frequency ��̇i�t�	i,time,trials �Fig. 2�c�� and the variance of the

phase velocities, �var �̇i�t�	i time,trials �Fig. 2�d��.
Figure 3�b� shows the distribution of phase velocities,

which is characteristic for the phase diffusion process in the
incoherent state. The variance of the phase velocities is a
measure for the internal noise due to chaotic phase dynam-
ics. We observe that the mean frequency in the incoherent
state with normalized input strength is equal to sin � inde-
pendent of 
, while the variance of the phase velocities is
independent of �.

Figure 4 shows snapshots of the first 200 phases in a
network of N=1000 oscillators. In the incoherent state for
low 
 �Fig. 4�a��, the one-dimensional chain segments sus-

tain traveling waves with an average phase difference of �
between neighboring oscillators. Forward and backward
phase slips occur occasionally in the joints of the network
when the phase of the local mean field changes rapidly as it
passes the vicinity of zero. In the partially synchronized state
for low 
 �Fig. 4�b��, the phases of the chain segments
evolve around a global mean field. When a forward slip be-
tween the phase of a joint and the global mean field occurs,
all oscillators in the chain segment adjacent to this joint will
also perform a phase slip at a delayed time. For a high short-
cut density no spatial patterns exist �Figs. 4�c� and 4�d��.

A. Control scheme and bifurcation scenario

A more detailed examination using a linear control
scheme reveals the bifurcation scenario for the order param-
eter. Assuming that the order parameter r�t� evolves accord-
ing to some unknown mean field dynamics, we make the
ansatz

ṙ = f�r,�,
,��t�� , �4�

where ��t� represents intrinsic or external noise. In the ab-
sence of noise the dynamics under the general linear control
scheme
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FIG. 3. �Color online� Variance and distribution of phase velocities in the
incoherent state. �a� Variance of phase velocities obtained from simulations
with N+Nsc=106 and �=� /2 �crosses� and from the simulations presented
in Fig. 2�d� �circles� at �=1.2. �b� The distribution of phase velocities in the

incoherent state at 
=1.0 �dots� is centered around the mean of ��̇	=sin �.
It is peaked at the center and much broader than a Gaussian distribution of
the same variance �dashed line�.
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�̇ = c0�r − r0� + c1ṙ �5�

has the fixed point r=r0 and �=�0�r0 ,
� with ṙ
= f�r0 ,�0 ,
 ,0�=0. In Appendix B we show that, in the ab-
sence of noise, sufficiently large positive values of c0 and c1

can stabilize any fixed point r0. In the presence of noise, the
time derivative of r may not be well-defined. We thus use a
short-time average of r and ṙ instead of their instantaneous
values, i.e.,

�̇ = c0��r�t�	� − r0� + c1�ṙ�t�	�, �6�

where

�r�t�	� = �
0



r�t − ��e−��d� �7�

and

�ṙ�t�	� = �
0



ṙ�t − ��e−��d�

are interpreted as stochastic integrals.
Using the control scheme given by Eq. �6�, and appro-

priately tuned parameters �, c0, and c1, we succeeded to trace
the stable and unstable branches in the bifurcation diagram
of r as a function of the control parameter � at fixed shortcut
densities 
 �Fig. 5�. We find that the incoherent state always
loses stability in a discontinuous transition at a critical value

�HP�
�. We conjecture that this transition is a subcritical
Hopf bifurcation of the complex mean field. The branch of
unstable partially synchronized states may fold back and be-
come stable in a saddle-node bifurcation at a parameter
�SN�
�. This hysteresis behavior is most pronounced around

�1 with possibly small parameter regions in which mul-
tiple partially synchronized states are stable �Fig. 5�c��. At �P

the branches of partial synchronization connect to the ab-
sorbing state of complete synchronization with r=1. In the
next section �Sec. III B� we perform a finite size scaling
analysis at this transition point and conclude that it is of
mean field directed percolation universality. From these
simulations, we could determine the three curves �HP�
�,
�SN�
�, and �P�
� for a large range of shortcut densities
�Fig. 6�.

B. Nonequilibrium transition to complete
synchronization

In finite systems, the partially synchronized state may
disappear after a long transient time, and the state of com-
plete synchronization is approached at an exponential rate.
This sudden change of behavior resembles the transition
from an active state to the absorbing state in directed perco-
lation processes.29

Finite size scaling analysis in low-dimensional coupling
topologies has demonstrated that synchronization in coupled
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FIG. 4. �Color online� Snapshots of the first 200 phases in a system of N=1000 oscillators in a dynamical �quasi� equilibrium state for low shortcut density

=0.35 ��=0.36� in �a� and �b� and high shortcut density 
=128 ��=1.5� in �c� and �d�. �a� and �c� show the stable incoherent state in a parameter region
of bistability with the partially synchronized states shown in �b� and �d�. Only at low shortcut densities the phases have a spatiotemporal structure at the length
scale 1 /
 of the chain segments.
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map lattices is of Kardar–Parisi–Zhang or directed percola-
tion universality.30 In a small world network, the transition is
expected to be of mean field universality.15,18

To examine this point we have performed a finite size
scaling analysis in the vicinity of �P at fixed shortcut density

=1.0. The initial condition was a stable partially synchro-
nized state at �=0.52 and R�0.75. After a transient time we
decreased � and observed how r�t� approached zero. From
simulation runs with single realizations of networks with
sizes up to N=106 oscillators in the vicinity of the transition
point, we found �P=0.4065 and �1−R����−�P�� with
�=1.01 �Fig. 7�. This exponent is consistent with mean field
universality of directed percolation. The nonequilibrium na-
ture of the phase transition is expressed in the time depen-
dence of the probability distribution of the order parameter.
In a finite directed percolation system with a unique absorb-
ing state, this absorbing state will be reached with probabil-
ity one after a long enough transient time, even when a stable
nonzero mean field solution exists.31

A suitable absorbing state for a network of coupled
phase oscillators can be defined via a Lyapunov function. Let
V : �0,2��N→ �0,2�� denote the minimal length of the arc
that contains the phases of all oscillators. Then one can show
that V is a Lyapunov function in any subset BS of the phase
space with V�BS�	�−2�. If the network is strongly con-

nected, i.e., there exists a directed path between any two

nodes, and Hij �0 then one can show that V̇�0 for all V�0
in BS. Thus BS defines an absorbing state in which complete
synchronization, i.e., V=0, is approached exponentially.

Let ��� ,N , t� denote the probability of a process to have
reached the absorbing state prior to the time t, then the finite
size scaling ansatz for this probability is

���,N,t� = �̃��� − �P�N�,N−zt� . �8�

This probability can be determined by averaging over a large
number of simulation runs. At each value of � in Fig. 7�c�
we have performed 100 simulations for system sizes 1000
	N	64 000. To determine the exponent z we have per-
formed 1000 simulation runs for each system size at the criti-
cal parameters �=�P=0.4065 and 
=1.0. At the transition
point the median T1/2 defined as ��� ,N ,T1/2�=0.5 scales
with the system size as

T1/2�N� � Nz. �9�

The third critical exponent � is related to the width and the
position of the transition. Defining the position of the transi-
tion as ���1/2 ,N ,NzT0�=0.5 one finds
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FIG. 5. �Color online� Bifurcation diagram of the order parameter R as a function of control parameter � at selected values of shortcut densities 
. Points on
the branches of unstable �open squares� and stable �crosses� partially synchronized states were obtained as averages of the trajectory �R ,�� �see light gray area
in �d�� under the control scheme given by Eq. �6�. The green lines are sixth order polynomial fits ��R� constrained to ���0�=0 because of the assumption of
a Hopf bifurcation of the incoherent state. From these fits we also find the threshold �P=��1� for complete synchronization and the points of saddle node
bifurcations �SN of stable and unstable partially synchronized states. The dots in �a� are the average order parameter in simulation with networks of N
=8000 oscillators. Each point is an ensemble average of the order parameter over 50 realizations after 1000 units of time.
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��1/2 − �P� � N−�. �10�

Confidence intervals for the experimentally determined val-
ues of z and � could be estimated by bootstrapping on the
sample of simulation runs. However, we presume that sys-
tematic errors are dominating for the relatively small system
sizes used in our simulations leading to slightly higher values
of z and � than the expected value of 0.5 for mean field
directed percolation. We find z�0.54 and ��0.55.

IV. DISCUSSION

So far, we have presented our numerical results. In this
section, we discuss the different dynamical regimes of our
model and the mechanism for desynchronization.

A. Topological crossover

Our small-world network model exhibits a topological
crossover between low shortcut densities 
�1 and high
shortcut densities 
�1. The two regimes are characterized
by the scaling of the average distance between successive
joints of the network, which are oscillators that couple to
more than one neighbor, along an arbitrary path �see Fig. 1�.

By choosing the end points of the shortcuts randomly and
uncorrelated, the number L of nodes between two joints on
the original ring lattice is exponentially distributed as
p�L��exp�−
L� in the limit N→. The expected value of L
is �L	= �exp�
�−1�−1, which is approximately 
−1 at low
shortcut densities and exp�−
� at high shortcut densities.
This crossover is reflected in the phase dynamics of the in-
coherent state as a regime of traveling waves on the original
ring lattice at 
�1 to a regime without clear spatiotemporal
patterns at 
�1 �Fig. 4�.

The Poissonian degree distribution with a mean in-
degree of k=
+1 and standard deviation �k provides homo-
geneity at high shortcut densities. On the other hand, at low
shortcut densities 
�1, the network consists of one-
dimensional chain segments which interact nonlinearly at the
joints of the network. The network of joints, where chain
segments are replaced by edges and indirect interactions, is
also very homogeneous, since the number of joints which
receive exactly two inputs is of order O�
� while the total
number of all other joints is of order O�
2�. In this sense, the
network is most inhomogeneous at intermediate shortcut
densities 
�1 where the amount of short chain segments
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FIG. 6. �Color online� Numerically determined synchronization points for �a� low shortcut densities, ��b� and �c�� intermediate shortcut densities, and �d� large
shortcut densities. The open circles and the upward and the downward triangles mark the Hopf bifurcation points �HP�
� of the incoherent state, the transition
points �P�
� to complete synchronization, and the saddle-node bifurcation points �SN�
�, respectively. Stable partial synchronization is found between �P�
�
and �SN�
�. At intermediate to large shortcut densities ��c� and �d�� the transition to synchronization is very well-described by �HP�
�=arcsin�
 / �
+1�� �solid
line�. This is not the case for very low shortcut densities �a� where �HP�
� approaches zero more slowly than linearly. The line of slope 0.5 in the
double-logarithmic plot �a� is drawn for comparison. The critical line �HP�
�=arccos�0.85 /�
+1� obtained from the heuristic mean field ansatz equation �13�
�dashed line in �d�� agrees qualitatively with the asymptotic approach of �HP to � /2 but is larger than the values obtained by our control scheme �open circles�.
The color code for the background of �b� and �c� is the same as in Figs. 2�a� and 2�b�.

033108-6 Tönjes, Masuda, and Kori Chaos 20, 033108 �2010�

Downloaded 26 Aug 2010 to 130.54.55.110. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



and joints with more than two input links is comparable.
Indeed, this topological complexity is reflected in a maxi-
mum of the variance of the phase velocities at intermediate
shortcut densities, which quantifies the strength of the inter-
nal noise �see Fig. 3�. We will discuss the dynamical prop-
erties of our model for low and high shortcut densities, sepa-
rately.

B. Statistical properties of the incoherent state

In the incoherent state, the phases undergo a chaotic
phase diffusion process. An oscillator coupled to a finite
number of neighbors is therefore subject to a fluctuating
force. In the incoherent state in a unidirectional network, the
neighbors of an oscillator have independent phases, because
their distance is of the order of the network diameter. Thus, if
the number of neighbors k is sufficiently large, the local
mean fields will fluctuate around zero with approximately
Gaussian distribution and one can show that its variance is
equal to k−1. Since the amplitudes of the local mean fields
determine the phase velocities of the oscillators which in turn
generate the local mean fields, the chaotic phase diffusion
process is invariant under a rescaling of time as k−1/2 �see

Appendix A for details�. From the circular autocorrelation
function c���= �cos���t+��−��t��	 we can estimate the ef-
fective phase diffusion constant D and an effective scattering
rate � of the chaotic phase diffusion process by comparing it
directly to the autocorrelation function of a Brownian flight
on the circle32 with

c��� = e−D�+D�−1�1−e−���. �11�

The variance of the phase velocities of such a Brownian
flight is equal to v2=D� and can directly be compared to the

variance var��̇� of the chaotic phase diffusion process. In
Table I we show the experimentally determined effective dif-
fusion constant and the variance of the phase velocities for
k=25, 64, and 100, and �=� /2. We find the predicted scal-

ing of D, �, and var��̇�. In particular the rescaled effective
phase diffusion constant is D�k�0.13.

Note that these statistical properties do not depend on �,
as can be seen in Fig. 2.
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FIG. 7. �Color online� Finite size scaling analysis of the nonequilibrium transition from partial to complete synchronization at �P for 
=1.0. In �a� simulation
runs with system sizes up to N=106 were performed. At the critical point complete synchronization merges with the metastable partially synchronized state
which is approached as t−1 if the transition is of mean field directed percolation universality. The line �1−r�t��� t−1 is drawn for comparison. The inset shows
the linear approach of the mean order parameter r→1 in the vicinity of the critical point. The line of slope 1.01 is a linear fit to the data in double-logarithmic
scales. Other critical exponents are obtained from the time statistics for a realization to reach the absorbing state of complete synchronization. �b� shows the
median of this time at the critical point for various system sizes. In �c� we plot the fraction �0 of 100 realizations which reach complete synchronization before
the time �N=1900�N /64 000�0.54 for different N as a function of �. This defines a median �1/2, shown in �d�, which approaches the critical point �P=0.4065
at a power law with exponent of �0.55 as a function of N.
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C. Synchronization transition for high shortcut
density

In the incoherent state each oscillator in the network is
subject to a fluctuating local mean field generated by a finite
number of neighbors performing the chaotic phase diffusion
process. These neighbors sample from the global distribution
of phases. While the global mean field evolves deterministi-
cally in the thermodynamic limit N→, the local mean
fields will be approximately distributed as a Gaussian around
the global mean field with a variance of order O�1 /k�, a

relaxation rate �, and a diffusion constant D of order
O�1 /�k�. Let us define the complex correlation function

cij = �zi
�zj	 , �12�

where zj =exp�i� j� and the average is over time. In our ho-
mogeneous network model, the correlation is a function cL of
the length L of the shortest directed path from j to i. A
heuristic mean field ansatz is to use this correlation function
as a distance dependent weight and phase shift for the cou-
pling

�̇i = R
�L=1

 Im�cL
�ei��−�i��

�L=1
 
cL


, �13�

where R and � are the mean field amplitude and angle. Here

we have chosen a corotating reference system where ��̇	=0.
In the incoherent state the complex correlation function
�Fig. 8� has the form

cL = �
L
eiL� = ��0k−1/2�
L
eiL�. �14�

Each shell, i.e., a set of oscillators j with constant distance L
from i, is correlated to the oscillator i with an amplitude that
decreases exponentially with L and at an angle which
changes linearly with L. The factor �0 was determined to be

TABLE I. Time scales of the chaotic phase diffusion process for various
large mean degrees k�1. We find that the effective phase diffusion constant
and the effective scattering rate scale with 1 /�k and the variance of the
phase velocities scales as 1 /k �see Fig. 3�b��. The transition point to syn-
chronization �HP has been determined with the help of our control scheme.

k 25 64 100

D�k 0.1252 0.1296 0.1417

��k 0.4064 0.3937 0.3598

k var��̇� 0.0478 0.0519 0.0544
kD�=kv2 0.0509 0.0510 0.0510
�HP 1.27 1.39 1.43
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FIG. 8. �Color online� Complex correlation function in the incoherent state. �a� Absolute value in logarithmic scales as a function of the distance L on the ring
backbone of the network for k=
+1=4 �blue crosses�, k=6 �red circles�, and k=8 �green squares�. �b� Angle as a function of the distance L on the ring
backbone of the network for k=4 �blue crosses�, k=6 �red circles�, and k=8 �green squares�. We used �=1.5, well above the synchronization threshold. The
dashed lines in �a� and �b� mark the mean distance log N / log k in the network of size N=32 000. �c� Scaling of absolute value with the number of neighbors
at distance L=1 �blue crosses�, L=2 �red triangles�, and L=3 �green diamonds�. �d� Logarithm of autocorrelation function at time difference � for k=25 �blue
crosses�, k=64 �red circles�, and k=100 �green triangles� and parametric fit to autocorrelation function of Brownian flight on the circle �Eq. �11�, dashed lines�.
See Table I for values of D and �. The inset shows the collapse of the curves under a rescaling of time with factor k−1/2.
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approximately 0.85 �see Fig. 8�c��. We are now able to ex-
press the phase evolution as that of a globally coupled sys-
tem with effective coupling strength �eff and effective asym-
metry �eff�� as

�̇i = �effR sin�� − �i − �eff� , �15�

where �eff and �eff are determined by

�effe
−i�eff =

�1 − ��
�

�
L=1



��e−i��L =
�1 − ��e−i�

1 − �e−i� . �16�

This mean field ansatz predicts a stable incoherent state
whenever �eff�� /2 which is fulfilled if

cos � � �0k−1/2. �17�

The critical line �HP=arccos��0 /�k� obtained from this heu-
ristic mean field ansatz shows the same qualitative behavior
as the critical line obtained from the control scheme, al-
though the numerical values do not agree well �see Fig.
6�d��. It predicts an asymptotic approach of � to � /2 at the
order of O�1 /�k� as k→.

Another heuristic argument can be made for the transi-
tion line �P�
�. Suppose that all oscillators have the same
phase �i=0 except one oscillator with phase �0 which is
externally driven. This oscillator assumes the role of an ac-
tive seed in terms of percolation processes. If this active seed
activates �i.e., induces oscillations of� the other oscillators
that couple to the seed, the whole system may eventually
become active, resulting in the incoherent or partially syn-
chronized states. We are thus interested in the conditions
under which an oscillator with phase �1 and in-degree k that
couples to the seed can become active. The phase equation
for �1 is initially

�̇1 =
1

k
sin��0 − �1 − �� −

k − 1

k
sin��1 + �� + sin � . �18�

At criticality, we expect that the phase difference �0−�1 is
drifting fast so that the first term of Eq. �18� can be time
averaged and neglected. In this case, oscillator 1 gets acti-
vated for �k−1� /k�k−1 /k, and with k=
+1 we obtain the
condition

� = arcsin




 + 1
�19�

for criticality. Equation �19� agrees surprisingly well with the
numerically determined transition line �HP�
� for 
�1 but
less well with �P�
� �Figs. 6�c� and 6�d��. Again we predict
that the critical � approaches � /2 at the order of O�1 /�k�.

D. Synchronization transition for low shortcut
density

For low shortcut densities 
�1, the situation becomes
even more complicated. Due to the topological crossover an-
other length scale 
−1 is introduced in the system. The dy-
namics in the incoherent state for low shortcut densities is
characterized by traveling waves along one-dimensional
chain segments of the original ring topology which interact
nonlinearly at the joints of the network �see Fig. 4�. We call

the first and last oscillators in a chain segment the head and
the tail of the chain, respectively. For normalized input
strength the chain segments are always phase locked to the
head but act as a low pass filter to the phase dynamics �Ap-
pendix C�. As a result, the variance of the phase velocities
decreases along a chain segment and for smaller values of 

�Fig. 3�. The interaction between the joints of the network is
indirect and involves delay and additional phase shifts. Also,
the correlation between the head and an oscillator down the
chain segment decreases exponentially with the distance be-
tween the head and the oscillator. These factors seem to in-
hibit synchronization so that the critical �HP�
� is still de-
creasing for 
�1 but much slower than linearly �Fig. 6�a��.

V. SUMMARY AND CONCLUSIONS

We have shown that a finite average number of neigh-
bors and an asymmetry of the phase coupling function can
inhibit synchronization in homogeneous networks of identi-
cal oscillators. Using a control technique, we could construct
the bifurcation diagram for the order parameter.

A finite size scaling analysis at the nonequilibrium phase
transition from partial synchronization to complete synchro-
nization shows critical exponents of mean field universality.
In contrast to Ref. 12 it is not the heterogeneity of the node
degree distribution that drives the system away from syn-
chronization. Instead, it is the interplay between the spatial
structure of the network and the internal noise which pre-
vents the oscillators from reaching synchronization. The tem-
poral fluctuations generated by the system itself in the cha-
otic incoherent or partially synchronized state give rise to a
correlation function that decays exponentially with the dis-
tance. Using this correlation function to formulate a heuristic
mean field theory for the incoherent state, we have qualita-
tively explained the transition from incoherence to synchro-
nization.

Our main results are derived from numerical simula-
tions. An analytic description of the transition curve and the
chaotic phase diffusion process in the incoherent state remain
challenging open problems.
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APPENDIX A: SCALING ARGUMENT FOR �š1

Here we will present the details of the scaling argument
that relates the amplitude and the time scale of the fluctua-
tions in the local fields. Let us consider the dynamics of the
complex state zi=exp�i�i� of an oscillator

żi = i Im�zi
��ie

−i��zi = rii Im�ei��i−�i−���zi, �A1�

where �i is the local field given by

033108-9 Synchronization in small-world networks Chaos 20, 033108 �2010�

Downloaded 26 Aug 2010 to 130.54.55.110. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



�i = �
j

Hijzj = rie
i�i. �A2�

The amplitude and the time scale of local field dynamics can
be inferred from the complex correlation function

c���� = ��i
��t + ���i�t�	 , �A3�

where �¯ 	 indicates the time average with respect to the
stationary processes zj�t�. Assuming k independent neighbors
with correlation function

cz��� = �zj
��t + ��zj�t�	 , �A4�

one finds exactly

c���� =
1

k
cz��� . �A5�

This relation is remarkable since it is valid for all k and all
time differences �. Therefore, the phase dynamics of the lo-
cal fields has exactly the same time scale as the dynamics of
the phase oscillators. Without calling on the central limit
theorem this relation also gives the mean square amplitude of
the local fields as �r2	=c��0�=k−1 for all k.

The assumption of independent phases of the neighbors
only holds in large unidirectional networks in the incoherent
state. Due to the chaotic dynamics, correlations between os-
cillators decay exponentially with the distance in the network
which is of order O�log N / log k� �Fig. 8�.

The effective phase diffusion constant can be defined by
the asymptotic behavior of c���� and cz��� at large �,

D = − lim
�→

d

d�
ln c��� . �A6�

We recall that the circular autocorrelation function for a free
Brownian flight on the circle is c���=exp�−D�+D /
��1−exp�−�����, where � is an effective scattering rate and
D is the effective phase diffusion constant.32 Exponential de-
cay is expected at time scales ���1. From Eqs. �A5� and
�A6� it follows that the effective phase diffusion constants of
the single oscillator phase and that of the local fields are
identical. For sufficiently large k, the local fields are nor-
mally distributed and it is only the amplitude of the local
fields that decreases when k is increased. The process �A1� is
therefore invariant under a rescaling

t� =� k

k�
t ,

�A7�

���t�� =� k

k�
��t� .

In our model, this rescaling is achieved by changing the
number of neighbors from k to k�. The second transformation
affects both the amplitude and the phase diffusion time scale
of the local fields.

Because of the homogeneity of our model, we can as-
sume statistical equivalence of the phase dynamics for all
oscillators. The phase �i�t� of an oscillator that is coupled
via Eq. �A1� to k independent but identically distributed
phase diffusion processes � j�t� must be another realization of

the same process. In particular, the effective phase diffusion
constant must be the same. To get insight into the phase
diffusion process, let us examine an oscillator with complex
state z that is coupled to a complex Ornstein–Uhlenbeck pro-
cess �,

�̇ = − D� + �D� ,

�A8�
ż = iz Im�z��� ,

where � is complex Gaussian white noise of unit strength in
real and imaginary part. Note that the Ornstein–Uhlenbeck
process � is only an approximation of the dynamics of an
actual local field which has the same Gaussian stationary
distribution with expected square amplitude �r2	=1. The ef-
fective phase diffusion constant as defined in Eqs. �A3� and
�A6� is D�=D.32 The effective phase diffusion constant Dz

depends nonlinearly on D�. For large values of D the time
scales of � and z are separated and the phase of z will
diffuse much slower than the phase of �. For very small
values of D the phase of z will almost always be locked to
the phase of �. Only when � diffuses near zero, phase slips
may occur which add a ballistic component to the evolution
of z and can increase the effective phase diffusion constant
Dz to a value larger than D.

There exists a fixed point D� for which the time scales of
� and z are identical. The fixed point D� should be close to
the actual value of the self-consistent solution. A self-
consistent solution must also yield Eq. �A5�. The average
field of k such processes z may be normally distributed but is
not an Ornstein–Uhlenbeck process. However, the iterative
procedure of coupling a phase oscillator to k independent
neighbors defines a mapping in the space of stationary pro-
cesses on the circle. Starting with a Brownian phase diffu-
sion we see that in the first iteration the map is contracting
with respect to the effective diffusion constant �Fig. 9�, an
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FIG. 9. �Color online� Effective phase diffusion constant Dz of a phase
oscillator with complex state variable z coupled to a complex valued
Ornstein–Uhlenbeck process of unit variance and phase diffusion constant
D� �Eq. �A8��. The fixed point at D��0.15 is expected to be close to the
rescaled effective phase diffusion constant D�k��k of the characteristic sta-
tionary phase diffusion process in the incoherent state for k�1.
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indication for the existence of a unique stationary phase dif-
fusion process characterizing the incoherent state.

We have measured Dz as a function of D in numerical
integration of Eq. �A8� and found the fixed point to be
D��0.15. Table I shows the effective diffusion constants in
our model for k=25, 64, and 100, obtained from a nonlinear
parametric least squares fit to the autocorrelation function
�system average�. We find that D�k�0.13 agrees well with
this value.

APPENDIX B: CONTROL SCHEME

Given the mean field dynamics

ṙ = f�r,�� �B1�

of a scalar order parameter r with a system parameter �, we
are interested in the bifurcation curve �0�r� with f�r ,�0�r��
=0. If we can control the system parameter �=��t� then the
linear control scheme

�̇ = c0�r − r0� + c1ṙ �B2�

has the fixed point �r ,��= �r0 ,�0�r0��. With f0

=�rf�r0 ,�0�r0�� and f1=��f�r0 ,�0�r0�� the Jacobian of the
combined mean field and control dynamics reads

J = � f0 f1

c0 c1f1
� . �B3�

Assuming f1�0, the conditions for stability tr�J��0 and
Det�J��0 yield

c1 � −
f0

f1
and c0 � f0c1. �B4�

The assumption of f1�0 applies, since an increase of �
counteracts synchronization and decreases r if ���0�r�.
Sufficient conditions to stabilize any point �r0 ,�0�r0��, re-
gardless of the sign of f0, i.e., of the stability of the uncon-
trolled fixed point, are

c0 � 
f0
c1 �
f0

2


f1

. �B5�

APPENDIX C: THE OVERDAMPED LINEAR
CHAIN

For low shortcut densities one can view the dynamics in
the small-world network as traveling waves which interact
through a network of joints. Each joint of the network is the
head of a unidirectional chain segment. A joint receives input
from at least two nodes of other chain segments. To under-
stand the role of the chain segments in the transition to syn-
chronization, we study the dynamics of the phases and the
signal transmission along a chain segment in a linear ap-
proximation.

The phase equations for a unidirectionally coupled chain
of oscillators are

�̇n = sin��n−1 − �n − �� + sin � . �C1�

We identify �0 with the phase in the head oscillator of the
chain and �L with the phase of the tail oscillator. Under

appropriate boundary conditions Eq. �C1� allows for travel-

ing wave solutions �̇=sin � and �n−1−�n=�. In principle,
all frequencies in the interval �sin �−1, sin �+1� and cor-
responding phase differences are possible but we choose the
traveling wave solution with the average frequency sin �.
Small deviations xn from this solution can be studied in a
linear approximation

ẋn = xn−1 − xn, �C2�

which can be solved given the trajectory x0�t� in the head of
the chain. The system is asymptotically independent from
initial conditions and the solution is

xn�t� = 
0



e−�xn−1�t − ��d�

= 
0



�n−1 e−�

�n − 1�!
x0�t − ��d� . �C3�

The dynamics in the tail of a chain is a time convolution of
the dynamics in the head of the same chain around the trav-
eling wave solution. A discontinuous jump of the phase in
the head of the chain will translate at unit speed while the
width of the phase jump grows at the same rate, as a result of
the gamma distribution for the time convolution kernel. In
this linear approximation, the deviation from the traveling
wave solution grows diffusively with the distance from the
head of the chain. Suppose the head of the chain performs a
Brownian motion with ��x0�t�−x0�0��2	=2Dt. Then we ob-
tain

��xn�t� − x0�t��2	 = �xn�t�2	x0�t�=0, �C4�

and

�xn�t�2	x0�t�=0 = �xn�0�2	x0�0�=0

= 
0



dTdT�
�TT��n−1e−�T+T��

�2�n�

��x0�− T�x0�− T��	
x0�0�=0

= 2
0



dTd�
�T�T + ���n−1e−Te−�T+��

�2�n�

��x0
2�− T�	
x0�0�=0

= 4D
0



dT
Tne−T

��n�
��n,T�
��n�

. �C5�

Using

��n + 1,T� = n��n,T� + Tne−T �C6�

we obtain
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�xn
2�0�	
x0�0�=0 = 4D

0



dT
Tne−T

��n + 1�
n

��n + 1�

����n + 1,T� − Tne−T�

= 2Dn�1 – 2
0

 T2ne−2T

�2�n + 1��
= 2Dn�1 −

��2n + 1�
�2�n + 1�

4−n�
� 2Dn�1 −

1
�n�

� . �C7�

The effective spatial phase diffusion constant along a linear
chain of oscillators is the same as the temporal diffusion
constant of the phase in the head of the chain. The complex
correlation function

cL0�0� = �zL
��t�z0�t�	 � ei�L−DL for L � 1 �C8�

has an amplitude that decreases exponentially with the chain
length. A lower shortcut density therefore decreases the cor-
relation between the joints of the network, making it more
difficult to synchronize.
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