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ABSTRACT

We formulate a linear phase and frequency response theory for hyperbolic flows, which generalizes phase response theory for autonomous
limit cycle oscillators to hyperbolic chaotic dynamics. The theory is based on a shadowing conjecture, stating the existence of a perturbed
trajectory shadowing every unperturbed trajectory on the system attractor for any small enough perturbation of arbitrary duration and a cor-
responding unique time isomorphism, which we identify as phase such that phase shifts between the unperturbed trajectory and its perturbed
shadow are well defined. The phase sensitivity function is the solution of an adjoint linear equation and can be used to estimate the average
change of phase velocity to small time dependent or independent perturbations. These changes in frequency are experimentally accessible,
giving a convenient way to define and measure phase response curves for chaotic oscillators. The shadowing trajectory and the phase can be
constructed explicitly in the tangent space of an unperturbed trajectory using co-variant Lyapunov vectors. It can also be used to identify the
limits of the regime of linear response.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0064519

Phase response curves are a powerful tool to predict and analyze
synchronization of weakly forced or coupled oscillators. The state
of chaotic oscillators, however, is not characterized by a unique
geometric phase. Even if a geometric phase is imposed, the phase
difference between two identical chaotic oscillators is not asymp-
totically constant or even bounded, whereas phase response is
commonly measured as the asymptotic phase shift caused by a
single pulsed perturbation. In this report, we reinterpret phase
as a time isomorphism rather than a geometric angle. This allows
us to generalize linear phase response theory to chaotic oscilla-
tors as well as to predict and measure the phase response via
experimentally accessible frequency shifts.

I. INTRODUCTION

Synchronization, the adaptation of frequencies of self-
sustained oscillators to a driving force, plays a vital role in many
systems, ranging from biological and chemical systems to artifi-
cial devices,1–4 and its understanding is essential for the prediction
and control of collective behavior. Synchronization can manifest in

many forms, weakly as a resonance in periodically forced stochas-
tic oscillators5 or more strongly as locking of oscillation frequencies,
phases, complete or generalized synchronization.6 Phase synchro-
nization in weakly coupled or weakly forced, autonomous limit cycle
oscillators can be understood by linear phase response theory, which
describes the evolution of a phase ϕ = ϕ(t), defined on a circle with
the perimeter of its natural period T0 = 2π/ω0, in the linear order
of a perturbation εEp(ϕ, t) as

ϕ̇ = 1 + εEZ(ϕ) · Ep(ϕ, t). (1)

Note that in this convention phase, ϕ has the dimension of time.
While Eq. (1) describes the change of phase velocity in the linear
order of ε, the equation is nonlinear in ϕ and even small perturba-
tions can aggregate to nonlinear synchronization effects. Equations
like (1) are sometimes referred to as Winfree-type phase equations
in recognition of his unifying works in mathematical biology.2,7 The

function EZ(ϕ) is called phase sensitivity function and its compo-
nents are proportional to phase response curves (PRCs). The PRCs
essentially determine a system’s synchronization behavior and are
used in mathematical modeling of weakly coupled oscillators across
scientific disciplines from biology, in particular, neuroscience8 and
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chronobiology,2 chemistry, ecology to electrical engineering, and
many others.1 Based on the PRCs, it is possible to design pertur-
bation protocols that can stabilize or destabilize various collective
modes in ensembles of oscillators including complete synchroniza-
tion, clustering, and the asynchronous state9 or perform other con-
trol tasks in an optimal way.10 In this paper, we will discuss if and in
what sense Eq. (1) can be used for more general dynamics than limit
cycle oscillators. The key is to note that the phase in Eq. (1) has the
dimension of time and evolves as time in an unperturbed system.11

Thus, instead of interpreting the phase as a geometric angle-like
variable, we can reinterpret the phase as a time isomorphism ϕ

= ϕ(t) ∈ R defined by Eq. (1), which parameterizes a typical trajec-
tory Ex0(ϕ) on a hyperbolic attractor. Indeed, in the following, we will
adopt the viewpoint that phase is time in the unperturbed system,
i.e.,

dEx0

dϕ
= Ef(Ex0). (2)

For stable limit cycle oscillators, the distance between a perturbed
trajectory Ex(t) with

Ėx = Ef(Ex)+ εEp(Ex, t) (3)

and the phase shifted unperturbed trajectory Ex0(ϕ(t)) is bounded
by O(ε) for all times and arbitrary perturbations. Then, Eq. (1)

with EZ(ϕ) = EZ(Ex0(ϕ)) and Ep(ϕ, t) = Ep(Ex0(ϕ), t) predicts the phase
velocity in the linear order of ε. Throughout the paper, we assume
Ex0 = Ex0(ϕ) to be a solution of the unperturbed system (2), evolving
on an invariant set, e.g., a limit cycle or a chaotic attractor. Vec-
tor fields such as the phase sensitivity can be expressed as functions

of space or of time EZ = EZ(Ex0) = EZ(ϕ) with respect to the points of
the trajectory. Note that the scalar ε in (3) quantifies to the linear
order the strength of any perturbation. Such a perturbation does
not need to be additive but can be applied to a system parameter,

as well, e.g., with Ef = Ef(Ex,µ) and µ = µ0 + ε1µ (3) takes the form

Ėx = Ef(Ex,µ0)+ ε1µ∂µEf(Ex,µ0).
In Sec. II, we review the classic experimental and numerical

methods to obtain the phase sensitivity for autonomous limit cycle
oscillations. In Sec. III, we generalize these methods to hyperbolic
chaotic oscillators. We show in Sec. III A how our re-interpretation
of phase as time in the unperturbed system can be used to define
phase sensitivity from the frequency response of an oscillatory sys-
tem. In Sec. III B, we improve on a well established linear least
squares method12 to define approximate isochrons for chaotic oscil-
lators. The main contribution of this paper in Sec. III C is the
proposal to use covariant Lyapunov vectors13 to define the phase
sensitivity function for hyperbolic chaotic oscillators. We test this
proposal in numerical examples in Sec. IV.

II. PHASE RESPONSE FUNCTIONS OF LIMIT CYCLE

OSCILLATORS

There are three common and equivalent approaches to obtain
the linear PRCs of autonomous limit cycle oscillators as described
in the works of Winfree, Kuramoto, and Malkin. These are based,
respectively, (i) on the asymptotic phase or time shifts caused by sin-
gle impulses at a prescribed phase,7 (ii) on calculating the gradient
of isochrons, which are parameterized by the periodic phase,3 and

(iii) on the solution to an adjoint linearized equation.14,15 The direc-

tion and amplitude of EZ(Ex0) at a point Ex0 of a limit cycle follow from

two geometric considerations: EZ must be perpendicular to the stable
invariant manifold since perturbations on this manifold do not lead
to phase shifts. Second, a perturbation in the direction of the flow
advances the phase by an amount inversely proportional to the flow

velocity, i.e., EZ(Ex) · Ef(Ex) = 1.

A. Measuring time shifts

The first method is an experimental approach and requires
no mathematical model of the system dynamics. Deviations from
a stable limit cycle caused by a small, single pulsed perturba-
tion Ep = 1Exδ(t − t0) at a phase ϕ0 = ϕ(t−0 ) decay exponentially

fast. The instantaneous phase shift ϕ(t+0 )− ϕ(t−0 ) = 1ϕ = ε EZ(ϕ0) ·
1Ex according to Eq. (1) remains constant afterward and can be
measured as a permanent time shift between the perturbed and
an unperturbed system signal. Z1(ϕ0) = limε→01ϕ/ε is a phase
response function. The index 1 stands for any experimentally real-
izable pulsed perturbation, either in the dynamic variables or in the
system parameters. e.g., kicking the system in a single component
of the state variable Ex, i.e., replacing x by x + ε1x, will result in
a time shift 1ϕ/ε → Zx1x = Z1. In control problems, the system
state may not be directly accessible and a system parameter µ may
only vary within practical limits. In this case, it is impossible to apply
a delta kick and a localized parametric forcing µ = µ0 + ε1µ(ϕ)

over a finite time interval [ϕ0 − τ ,ϕ0 + τ ] and finite strength must
be applied which results in a time shift

1ϕ

ε
→ Z1(ϕ0) =

∫ ϕ0+τ

ϕ0−τ
EZ(Ex0(ϕ)) · ∂µEf ·1µ(ϕ) dϕ. (4)

B. Isochrons

Isochrons (or isophases) Iϕ are invariant manifolds under the
system propagation over one oscillation period T0. They intersect
the limit cycle in one point Ex0(ϕ), which is an attracting fixed
point of the time T0 forward map on Iϕ . All points on an isochron
have the same phase ϕ(Iϕ) = ϕ(Ex0) and the same phase velocity
ϕ̇(Iϕ) = ϕ̇(Ex0) = 1. Thus, the phase is defined everywhere in the
basin of attraction of the limit cycle as a scalar field ϕ = ϕ(Ex). Phase
response is not restricted to small perturbations of a system close
to the limit cycle.3,16 The phase sensitivity is given as the gradient
EZ(Ex) = E∇ϕ(Ex), which is orthogonal to the isochrons and with ϕ̇ = 1

follows ϕ̇ = E∇ϕ · Ėx = EZ · Ef = 1 everywhere.

C. Malkin’s adjoint method

Malkin’s method considers deviations from the limit cycle only
to the linear order. Here, isochrons are linear subspaces in the

tangent space at each point Ex0 of the limit cycle. Vectors Eh in the tan-
gent space evolve under the periodic action of the system Jacobian
matrix Jf(ϕ) = Jf(Ex0(ϕ)) with (Jf)ij = ∂fi/∂xj along the limit cycle as

dEh/dϕ = Jf
Eh . Invariance under system propagation over one period

means that an invariant subspace is spanned by Floquet vectors. Per-
turbations in the stable directions do not change the phase, whereas
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perturbations in the direction Ef of the flow does not decay. The co-

vectorfield EZ(Ex0), which is the unique solution of the adjoint linear
equation

d

dϕ
EZ = −J>f (ϕ)EZ (5)

on the limit cycle normalized to EZ · Ef = 1 is orthogonal to the stable
invariant subspace (see Sec. III D) and, therefore, equal to the linear
phase sensitivity.14,15 Malkin’s adjoint method is the standard way to
obtain the phase sensitivity numerically, when the linearization Jf(ϕ)

of the dynamics at the limit cycle Ex0(ϕ) is available.

III. PHASE RESPONSE FOR CHAOTIC OSCILLATORS

Since the discovery of chaotic phase synchronization,17 many
heuristic approaches have been suggested to generalize phase
response theory to autonomous chaotic oscillators and to define
PRCs or phase coupling functions.12,18–22 The main difficulty is that
due to mixing and chaotic phase diffusion, usually no globally dif-
ferentiable isochrons exist in chaotic oscillators. Phase shifts caused
by perturbations are not asymptotically constant and can, therefore,
not be measured in a unique way. All three methods must and can
be modified if one wants to apply them to chaotic oscillators.

In the following, we will distinguish a time like phase ϕ from
an angle-like geometric phase ϑ(Ex), which parameterizes a periodic
foliation of the state space into Poincare sections Pϑ = Pϑ+2π and is
increasing monotonously (dϑ/dϕ > 0) along a trajectory Ex0(ϕ). In
general, a geometric phase ϑ0, e.g., reconstructed from a time series
by Hilbert-transform or some other embedding technique does not
evolve uniformly. Such a geometric phase is called a protophase. For
limit cycles, a simple rescaling from an arbitrary protophase ϑ0 to a
uniformly evolving geometric phase ϑ is always possible.23

A. Measuring frequency response

Equation (1) describes a time isomorphism ϕ = ϕ(t). Con-
versely, time as a function of phase evolves to the linear order in
ε as

dt

dϕ
= 1

1 + εEZ · Ep
= 1 − εEZ(ϕ) · Ep(ϕ, t)+ O(ε2). (6)

For perturbations, Ep = Ep(ϕ) = Ep(Ex0(ϕ)) without explicit time
dependence, we can take the average over ϕ corresponding to an
average along an unperturbed trajectory Ex0(ϕ) and obtain

Tε

T0

= 1 − ε

〈

EZ(ϕ) · Ep(ϕ)
〉

ϕ
, (7)

where T0 = 1/ν0 and Tε = 1/νε are the average periods, ν0 and νε
are the frequencies of the unperturbed and of the perturbed system,
respectively. Instead of measuring an asymptotic time shift caused
by a single perturbation pulse, it is also possible to measure the shift
of the average oscillation period or frequency in linear response to a

perturbation that only depends on the position on the attractor

〈

EZ(ϕ) · Ep(ϕ)
〉

ϕ
= lim

ε→0

1

ε

T0 − Tε

T0

= lim
ε→0

1

ε

(

νε

ν0

− 1

)

. (8)

The phase sensitivity may be expanded into a set of vector fields EZ
= ∑

k zk Epk, which are orthonormal under the scalar product on the
left hand side such that

zk =
〈

EZ(ϕ) · Epk(ϕ)

〉

ϕ
. (9)

Or the system is kicked with Ep = 1Ex ∑

i δ(t − ti) every time ti a
Poincaré section Pϑ is crossed after one oscillation. Then from
Eq. (1) follows that the average PRC on that Poincaré section is

Z1(ϑ) = lim
ε→0

1

ε
(T0 − Tε), (10)

if the limit exists, i.e., the chaotic system does have a linear response

to the perturbation Ep. All propositions for a phase sensitivity EZ must
be judged by comparing the predicted frequency shifts to measure-
ments. The works21,22 use frequency response to define such average
or effective PRCs on Poincare sections Pϑ constructed from the T0

forward map.

B. Optimizing a geometric phase

A possible heuristic approach is to define isochrons as a fam-
ily of Poincaré sections Pϑ parameterized by a geometric phase
ϑ ∈ [0, 2π) and optimize these surfaces under a set of constraints
such that the variance of the return time is minimized.12 Here,
instead of the time domain, we perform the optimization in the fre-
quency domain which has some advantages, as we will see. As in
Ref. 12, we expand a geometric phase ϑσ (Ex) around a protophase
ϑ0(Ex) in the neighborhood of the attractor into an appropriate set of
non-constant, differentiable functions qk(Ex),

ϑσ (Ex) = ϑ0(Ex)+
∑

k

σkqk(Ex)mod 2π , (11)

e.g., Laguerre polynomials and spherical harmonics in spherical
coordinates or Taylor polynomials and Fourier components in
cylindrical coordinates. Given the vector fields Ev(l)(Ex0) in the stable,

unstable and Ev(0) = Ef neutrally stable directions on the attractor, we

require the gradient E∇ϑσ to be orthogonal to the stable and unsta-

ble directions E∇ϑ · Ev(l 6=0) ≈ 0 and E∇ϑ · Ef = ϑ̇ ≈ ω0. Indeed, such a

vector field EZ ‖ E∇ϑ exists and is uniquely determined by the vectors
Ev(l). It can be used as phase sensitivity function in some sense, as we
will discuss in Sec. III C. As a finite sum of differentiable functionsϑ0

and qk, the gradient E∇ϑσ of the geometric phase ϑσ is a differentiable

approximation of EZ such that E∇ϑσ ≈ ω0
EZ and

E∇ϑσ · Ev(l) = E∇ϑ0 · Ev(l) +
∑

k

σk
E∇qk · Ev(l) = ω0δl0 + ηl. (12)

Applying the method of linear least squares to Eq. (12), the coef-
ficients σk can be found which minimize the square norm of the
deviations ηl(Ex0) over all points on the attractor. Choosing l = 0,

i.e., Ev(0) = Ef, we can include points and calculate Ef there, which are

close but not exactly on the attractor. Then, E∇ϑσ · Ef = ϑ̇σ ≈ ω0 will
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evolve approximately uniformly in the neighborhood of the attrac-
tor. The advantages over the method12 of Schwabedal et al. are that
the phase velocity of points, which are not on the attractor can easily
be calculated in contrast to the return times and that we can include
additional linear constraints if the stable and unstable directions are
available. Note that the lengths of the vectors Ev(l) with l 6= 0 are arbi-
trary. Choosing them, e.g., in some relation to the flow velocity,
Ef makes Eq. (12) a weighted linear least squares problem. Second,
including all Lyapunov vectors in the linear least squares problem
essentially results in a smooth geometric phase with a phase gradient
that on the attractor approximates the theoretical phase sensitivity
1
ω0

E∇ϑ ≈ EZ.

C. Using co-variant Lyapunov vectors

Measuring the frequency response will give some approxima-

tion of EZ(Ex0) or rather projections of EZ on the chosen perturbations.
However, the response of chaotic systems is often not differentiable.
In Fig. 1(a), we show the mean period as a function of system
parameter b in the chaotic Roessler oscillator (see Sec. IV B). At
bifurcation points where the system attractor changes nondifferen-
tiably, the mean period is also not differentiable. Then, the limits
Eqs. (8) and (10) (with ε ∼ 1b) may not exist and the frequency
measurements can give contradicting results for different ε. For uni-
formly hyperbolic chaos, on the other hand, the linear response
has been proven.24 In this class of systems, the stable, unstable, and
neutrally stable manifolds intersect in each point Ex0 of the attrac-
tor and are nowhere tangential. The tangent space at Ex0 is spanned

by the co-variant Lyapunov vectors Ev(k)(Ex0) in the stable, unstable,
and neutrally stable directions. These vector fields on a hyperbolic
chaotic attractor have their correspondence in the Floquet vectors

on a limit cycle. In the unperturbed system, a small deviation Eh(ϕ)
from a trajectory Ex0(ϕ) is evolved by the aperiodic Jacobian matrix
Jf(ϕ) = Jf(Ex0(ϕ))

d

dϕ
Eh = Jf(ϕ)

Eh. (13)

In a co-moving (co-variant) base of Lyapunov vectors, the dynamics

of the components hk of Eh(ϕ) = ∑

k hkEv(k) decouple as

d

dϕ
hk = λ(k)(ϕ)hk. (14)

The λ(k) are local Lyapunov exponents and the averages 3(k)

= 〈λ(k)〉ϕ are the Lyapunov exponents on the system attractor. If Ef
= Ef(Ex) is time independent, one Lyapunov exponent3(0) = λ(0) = 0
is zero, globally and locally, and the corresponding Lyapunov vec-

torfield is Ev(0) = Ef. Shifts h0 in the direction of Ef result in time shifts,

which do not grow or decay. The vector field EZ(Ex0)which is orthogo-
nal to the Lyapunov vectors in the stable and unstable directions and

is normalized to EZ · Ef = 1 is the obvious generalization of the phase
sensitivity function to chaotic oscillators (see Fig. 2). However, any
perturbation with components in the unstable directions will lead to
an exponentially growing deviation of a perturbed trajectory from
the unperturbed trajectory. The distance between these trajectories
is not bounded as O(ε), they have no well defined phase relationship

FIG. 1. (a) The mean frequency of the chaotic Roessler oscillator [Eqs. (30)–(32), a = 0.25, c = 6.0] is not a differentiable function of the system parameter b at points
of bifurcation. Shown are histograms of return times to the Poincaré section Pϑ0 at ϑ0 = π/3 and the mean period (blue line) as functions of b. (b) Unstable periodic
orbit (solid blue line) of the chaotic Roessler oscillator Eqs. (30)–(32), (a = 0.25, b = 0.9, c = 6.0) with natural frequency ω0 = 1.04. The invariant linear subspaces under
system propagation of one period (black polygons) are linear approximations of the unstable periodic orbit (UPO)’s isochrons. The red line is the linear approximation of the
UPO’s shadow under periodic forcing of ε sin(�t) in the x-direction. The UPO was found via numerical root finding on a Poincaré section, the stable and unstable directions
by forward and backward integration, and the shadow was constructed with the method described in Sec. III D. With ε = 0.4 and � = 1.07, the shadowing trajectory is
synchronized and phase locked to the forcing.
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FIG. 2. Three dimensional schematics for the linear dynamics near a point Ex0(ϕ)
of an unperturbed trajectory (light green line). The subspace spanned by the
stable and unstable directions (co-variant Lyapunov vectors Ev− and Ev+) is an
isochron (black polygons). The phase sensitivity EZ is orthogonal to the isochron. A
single kick of amplitude and direction1Ex takes the shadow trajectory [Ex(ϕ), dark
red line] from a point on the unstable manifold to a point on the stable manifold

and advances the phase by1ϕ = EZ ·1Ex.

ϕ(t) and shifts in any geometric angle-like phase due to pulsed per-

turbations are not asymptotically constant. Nevertheless, EZ(Ex0) does
have all necessary properties for a phase sensitivity function for one
particular perturbed trajectory, which depends on the perturbation
Ep(Ex, t) and shadows the unperturbed trajectory Ex0(ϕ).

Phase response conjecture for shadowing trajectories: Given
a trajectory Ex0(ϕ) on a uniformly hyperbolic invariant set of a

flow generated by a dynamics dEx0/dϕ = Ef(Ex0), and without any
other continuous symmetries than time-shift invariance, for any
sufficiently small perturbation εEp(Ex, t) of arbitrary but finite dura-
tion, i.e., |Ep(Ex, t)| = 0 for t /∈ [t0, t0 + τ ], there exists a unique time
isomorphism ϕ = ϕ(t) with ϕ(t0) = t0 and a unique ε-close tra-

jectory Exε(t) such that dExε/dt = Ef(Exε)+ εEp(Exε , t) holds exactly and
limt→±∞ |Exε(t)− Ex0(ϕ(t))| = 0. The time derivative of ϕ in the
linear order of ε is given by

ϕ̇ = 1 + εEZ(Ex0(ϕ)) · Ep(Ex0(ϕ), t), (15)

where the phase sensitivity function EZ(Ex0) is the unique vector
field orthogonal to the stable and unstable manifolds at Ex0 and

normalized to EZ(Ex0) · Ef(Ex0) = 1. �
Equation (15) defines the linear order instantaneous time-shift

of the shadowing trajectory relative to the unperturbed trajectory
for arbitrary perturbations. After the perturbation is switched off
the shadowing trajectory Exε will converge to the unperturbed tra-
jectory with an accumulated asymptotic phase shift 1ϕ = ϕ(t)− t.
A mathematical proof of the existence of a shadowing trajectory for
flows and equivalence of Lipschitz boundedness of the shadow to
structural stability was given in Refs. 25 and 26. In our conjecture, by

imposing the boundary condition ϕ(t0) = t0 and requiring asymp-
totic convergence of the shadow to the unperturbed trajectory in
both temporal directions the isomorphism ϕ = ϕ(t) and the shadow
Exε(t) are defined uniquely. Moreover, using co-variant Lyapunov
vectors,13 the phase and the shadowing trajectory can be constructed
explicitly in the linear order of ε. The conjecture is also valid for
structurally stable invariant sets of non-hyperbolic dynamics, i.e.,
unstable periodic orbits (UPOs) embedded into a non-hyperbolic
chaotic attractor. Phase sensitivity of UPOs has been used in Ref. 18
to study chaotic phase synchronization. In Fig. 1(b), we demonstrate
linear phase response by constructing the shadow of the period-1
UPO in the chaotic Roessler oscillator under periodic forcing. We
chose a forcing amplitude and frequency such that the shadow-
ing trajectory is synchronized to the forcing. Equation (15) has the
same significance as Eq. (1) for periodic oscillators; it is a nonlinear
equation for the phase dynamics based on the linear response the-
ory, expressing the effect of a perturbation as a product of a phase
sensitivity function and the perturbation itself. This makes it, for
instance, possible to use linear methods to construct perturbations
that optimize the response for some purpose.9,10 Using the method
of linear least squares from Sec. III B, it is possible to construct a

differentiable geometric phase ϑσ (Ex), which approximates EZ on the

attractor as E∇ϑσ ≈ ω0
EZ(Ex).

D. Construction of the shadow trajectory

Let us consider a solution Ex0(ϕ) of an autonomous dynam-
ics Eq. (2) on a hyperbolic attractor with Jacobian matrix (Jf)ij

= ∂fi/∂xj and a small deviation Eh(ϕ) = ∑

k

(

Eu(k) · Eh
)

Ev(k) = ∑

k hkEv(k),
where Ev(k) = Ev(k)

(

Ex0

)

and Eu(k) = Eu(k)
(

Ex0

)

are co-moving bases of
biorthonormal Lyapunov vectors and co-vectors following the equa-
tions

d

dϕ
Ev(k) =

[

Jf − λ(k)
]

Ev(k), (16)

d

dϕ
Eu(k) = −

[

J>f − λ(k)
]

Eu(k). (17)

λ(k) = λ(k)(ϕ) ∈ R are local Lyapunov exponents of the system.
Equations (16) and (17) conserve biorthonormality Eu(k) · Ev(l) = δkl

along a trajectory, while the λ(k) on average compensate for the
expansion or contraction in the directions of the Lyapunov vectors.13

Equation (16) for λ(0) = 0 is trivially solved by Ev(0) = Ef, the Lya-
punov vector field corresponding to the neutrally stable direction
of the flow. We now consider the evolution of Exε(t) = Ex0(ϕ(t))

+ Eh(ϕ(t)) in a perturbed system

d

dt
Exε = Ef

(

Exε
)

+ εEp
(

Exε , t
)

. (18)
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Here, we have introduced the isomorphism ϕ = ϕ(t). To the linear

order of ε and |Eh|, we have

d

dϕ
Eh = dt

dϕ

d

dt
Exε − d

dϕ
Ex0 = dt

dϕ

(

Ef + Jf
Eh + εEp

)

− Ef

=
(

dt

dϕ
− 1

)

Ef + Jf
Eh + εEp. (19)

Multiplying Eq. (19) by Eu(k) from the left, using biorthonormality,
d

dϕ
Eh = ∑

k hk
d

dϕ
Ev(k) + Ev(k) d

dϕ
hk and Eq. (16), we obtain

dhk

dϕ
= λ(k)hk + εEu(k) · Ep, for k 6= 0 (20)

and
dh0

dt
= dt

dϕ
− 1 + εEu(0) · Ep, for k = 0. (21)

For the correct isomorphism t = t(ϕ), the perturbed trajectory
Ex(t(ϕ)) is always contained in the subspace spanned by the stable
and unstable directions at Ex0(ϕ), i.e., dh0/dt = 0. Therefore,

dt

dϕ
= 1 − εEu(0) · Ep. (22)

Let the perturbation be of finite but arbitrary long duration, i.e.,
|Ep(Ex, t)| = 0 for t /∈ [t0, t0 + τ ]. Then, the sufficient conditions for
convergence of the perturbed trajectory to the unperturbed tra-
jectory for perturbations of any form are h0 = 0, hk(t0) = 0 for
3(k) < 0, and hk(t0 + τ) = 0 for 3(k) > 0. In other words, the per-
turbed trajectory is fully contained in the unstable manifold at the
beginning of the perturbation, hence, convergence for t → −∞,
and fully contained in the stable manifold at the end of the pertur-
bation such that the shadow converges to the unperturbed trajectory
for t → ∞ (see Fig. 2). Using these as initial and final conditions,
we can integrate Eqs. (20) and (22) forward in time, beginning at

t0 for the components of Eh in the stable directions and backward in
time beginning at t0 + τ for the components in the unstable direc-

tions. Equation (20) being linear, the distance |Eh| of the perturbed
trajectory is always of order ε on uniformly hyperbolic invariant sets,
i.e., when the dynamics in the stable and unstable directions is uni-

formly contracting or expanding. Furthermore denoting EZ = Eu(0),
Eq. (22) is identified as Eq. (6) and can in the linear order of ε
be rewritten as Eq. (15). It is, however, easier to integrate Eq. (22)
when Ex0(ϕ) is given at discrete time points ϕi. Using ϕ(t0) = t0

as the initial condition makes the time isomorphism unique. The

phase sensitivity function EZ(Ex0) is the unique vector field solving the

adjoint equation d EZ/dϕ = −J>f EZ, i.e., Equation (17) for k = 0, on

the hyperbolic attractor normalized to EZ · Ef = 1.

E. Discussion

This method of generating a shadowing trajectory is of equiva-
lent accuracy as a recently proposed linear least squares method,27

which, however, cannot reproduce the correct time isomorphism
or the phase sensitivity. It is reasonable to assume linear response

theory is valid for perturbations εEp that lead to small distances |Eh|
in Eq. (20). The more the stable and unstable directions Ev(k) align,

the larger the Lyapunov co-vectors Eu(k) become. This puts prac-

tical limits on the perturbation strength. If |Eh| ≤ hmax for a given
perturbation εEp, then hmax depends linearly on ε. In particular, for
non-uniformly hyperbolic systems, hmax may occasionally become
very large even for small ε. Furthermore, while the trajectory Exε(t) is
an exact solution of the perturbed system, it may, however, not be a
typical solution, i.e., time averages are not necessarily equal to aver-
ages with respect to the natural invariant measure on the perturbed
attractor. If the chaotic attractor is not structurally stable then in the
vicinity of a larger bifurcation, e.g., a periodic window, the attrac-
tor, and thus the oscillation period, can change discontinuously in
response to the perturbation [see Fig. 1(a)]. The measured frequency
response Eqs. (8) and (10) may only approximately be predicted by

the projection of the perturbation on EZ, i.e., by the averaged response
of the UPOs embedded in the chaotic attractor, which are not close
to a bifurcation.

Although many analytic results are valid for hyperbolic sys-
tems, physical examples of hyperbolic chaotic flows are rare.28 On
the other hand, the algorithm13 for the numerical determination of
the Lyapunov vectors is quite robust against occasional near tan-
gencies of stable and unstable manifolds along the trajectories on
the chaotic attractor. Even for non-hyperbolic systems such as the
Roessler system for small enough perturbations, one can construct
shadowing trajectories, which remain close to an unperturbed tra-
jectory for periods of time longer than expected from the largest rate
of divergence given by the largest Lyapunov exponent. In Secs. IV A
and IV B, we present examples of non-hyperbolic chaotic oscillators
where our method can reliably predict the frequency response. In
Sec. IV C, we show that our method works with a known example
of hyperbolic chaotic oscillations and in IV D we discuss why our
method works poorly in the non-hyperbolic Lorenz system.

IV. EXAMPLES

A. Electrochemical oscillations

As an example, we consider current oscillations during the elec-
trodissolution of a metal in an acidic environment. A mathematical
model for such electrochemical oscillations, which exhibits a period
doubling route to non-hyperbolic chaos, was developed in Ref. 29
and used in Ref. 30 to reproduce in simulations the experimentally
observed chaotic current oscillations through a nickel electrode in
sulfuric acid. After an appropriate re-scaling, we obtain

Ė = Va − (E + 36)

Rs

− 6g(E)U, (23)

U̇ = −1.25
√

dg(E)U + 2d

(

1

15
W + 40

3
− U

)

, (24)

Ẇ = 1.6d(15U − 3W), (25)

with nonlinearity

g(E) = 2.5e−(E+1)2 + 0.01e
1
2 (E+6). (26)

The applied voltage Va and the electrode potential drop E can
be measured and controlled. At the parameters Va = 36.7380,
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FIG. 3. Numerical integration of chaotic elec-
trochemical oscillator model Eqs. (23)–(26) over
400 time units with dϕ = 1 × 10−3. Transients for
the convergence of Lyapunov vectors have been
discarded. (a) chaotic attractor in the time-de-
lay embedding (x, y, z) = (E(t), E(t − 0.3),
E(t − 0.6)) Color coded are small intervals of the
optimized phase ϑ = ϑσ . Blue shades signify
regions of positive PRC and red hues negative
values. (b) Chaotic attractor in the original dynamic
variables (E,U,W). The color code of the phase
intervals is the same as for the corresponding
points in (a). In (c), we show the velocity of the
geometric protophase ϑ0 (blue lines, left axis)
and compare them to the velocity of the optimized
phase (orange lines, right axis) with much smaller
standard deviation (3.67 vs 0.03). Both phase
velocities are shown as functions of the optimized
geometric phase. In panel (d), we compare the

component of EZ(Ex0) in the E direction obtained
by the method of Lyapunov vectors (light blue
lines) and their average at constant angle ϑ

(large red squares) with frequency response
curves obtained from kicking the oscillator in the
E direction every time the Poincare section Pϑ
is crossed after completing one rotation. Up to
a kick strength of 1E ≤ 5 × 10−4 the curves
follow the theoretical prediction via the method of
Lyapunov vectors. (e) Local Lyapunov exponents
λ(+) and λ(−) for the Lyapunov vectors in the
unstable and stable directions. Both have large
deviations in the positive and negative directions,
but 3(+) = 〈λ(+)〉 = 0.07 (blue dashed line)
and 3(+) = 〈λ(+)〉 = −2.5 (red dashed line) are
rather small. Finally, in (f), we show the distance

|Eh| of the shadow trajectory which is kicked at opti-
mized geometric phase ϑ = 0 with strength 1E
= 1 × 10−4. For larger values of1E, the distance
of the shadow in linear approximation would
increase proportionally.

Rs = 0.02, and d = 0.119, the system attractor has developed two
chaotic bands around an unstable period-two orbit. The applied
voltage Va needs to be controlled precisely since the region of chaotic
oscillations in parameter space is very small. Only the phase sensi-
tivity in the E component is of experimental interest since U and W
quantify a gradient of chemical concentrations in the solution (dou-
ble layer approximation) and cannot be measured. However, for
the computation of the Lyapunov vectors, the full knowledge of the

system state, velocity, and Jacobian is assumed. We have
calculated the Lyapunov exponents on the chaotic attractor as
(3(0),3(+),3(−)) = (0, 0.07, −2.5). For Lyapunov vectors Ev(±) of
unit length, the local Lyapunov exponents λ(±) exhibit large
excursions to both positive and negative values [Fig. 3(e)]. As
a consequence, the deviations of a shadowing trajectory in
Eq. (20) can become quite large, even for small
perturbations.
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FIG. 4. Frequency response in the chaotic Roessler system (30)–(32). (a) Chaotic attractor with color-coded small intervals of optimized geometric phase ϑ(Ex0). Blue hues
indicate negative values of Zx and red hues positive values. Panels (b)–(d) show the components of the phase sensitivity EZ(Ex0) (thin blue lines) as a function of the optimized
geometric phase ϑ , a narrow Gaussian average of these values as red dots, disregarding values of Z larger than three standard deviations, and (white square markers) the
linear response of the oscillation period to delta kicks of strength ε = 0.05 in the three dynamical variables (b) x, (c) y, and (d) q at the crossing of a given Poincaré section
in the optimized geometric phase after each full rotation.

We define x = E, y = E(t − 0.3), and z = E(t − 0.6). A geo-
metric protophase ϑ0 with positive phase velocity and an amplitude
R can be defined via x = R cosϑ0 and y = R sinϑ0. The phase ϑ
= ϑσ (ϑ0, R, z) that we want to optimize is expanded into

ϑσ = ϑ0 +
6

∑

k=0

3
∑

l=0

3
∑

m=0

σ±
klmq±

klm, (27)

with

q+
klm = cos(kϑ0)R

lzm, q−
klm = sin(kϑ0)R

lzm, (28)

σ+
000 = 0 and σ−

0lm = 0. The choice of the cutoff values for the Fourier
harmonics k and polynomial orders l, m depends on the particu-
lar geometry of a system. Lower values avoid over-fitting with large

deviations at points that are not on the attractor, whereas larger val-
ues can give better results for the points on the attractor. Since the
stable and unstable directions in the time delayed coordinates are

not known, we only use Eq. (12) with l = 0 and Ef = d
dϕ
(x, y, z) to

minimize the variance of the deviations η0 in

ϑ̇σ = ϑ̇0 +
∑

k

σkq̇k = ω0 + η0. (29)

The delay embedding of the chaotic attractor with color-coded opti-
mized phase is shown in Fig. 3(a). The velocity of the protophase and
of the optimized phase as functions of ϑ are shown in Fig. 3(c). In
both cases, the mean phase velocity is ω0 = 3.001 but the standard
deviation of the optimized phase velocity is at 0.03 within 1% of ω0.
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FIG. 5. Hyperbolic activator–inhibitor dynamics (33)–(36) of two
coupled oscillators with chaotic phase dynamics.28 (a) Log-ampli-
tudes qi = log ai and square amplitudes a

2
i = x2i + y2i (shown in

inset). (b) x coordinates of the two oscillators as a function of geo-
metric phase ϑ over nine periods of the amplitude oscillations.
(c) The Poincaré map of the angleψ1 at geometric phase ϑ0 = 0

is an expanding circle map. (d) Distance h = |Eh| of the perturbed
trajectory from an unperturbed trajectory for log-amplitude δ-Kicks
of strength ε = 0.01 at geometric phase ϑ = 0. The distance
after the kick is smaller than before because relaxation in the
unstable directions is slower and in that direction the shadowing
trajectory is by construction kicked back to the unperturbed trajec-
tory. (e) Component Zq1 and (f) component Zψ1 of the Lyapunov

co-vector EZ = Eu(0) (thin lines) and period response (8) to kicking
the log-amplitude q1 or the angleψ1 of the first oscillator at a given
geometric phase ϑ (dot markers) with ε = 0.1.

Next, we perform a series of perturbation experiments. A small
delta kick in the applied potential Va is executed after each full rota-
tion when the system crosses the Poincaré section Pϑ at a given
optimized geometric phase ϑ in the delay coordinates. The mea-
sured shift in the average period according to Eq. (10) gives the PRC
Z1(ϑ) [Fig. 3(d), small markers]. This PRC can be compared with

the components Z1 of EZ(ϑ) in the E direction. Here, EZ = EZ(Ex0) is
calculated numerically from the co-variant Lyapunov vectors.13 As
a function of ϑ(Ex0), the values of Z1(Ex0) form a family of curves,
shown as thin blue lines in Fig. 3(d). An average response 〈Z1〉(ϑ) is
calculated via narrow Gaussian filtering of the data points Z1(ϑ) (red
squares). For this chaotic oscillator, our linear frequency response
theory predicts the measured PRC Z1(ϑ) very well. However, the
strength of the delta kicks must be very small

(

1E < 5 × 10−4
)

in

order to approximately retain the structure of the chaotic attractor,
and even smaller 1E ≈ 1 × 10−4 for a shadow trajectory, which in
the linear order of the perturbation stays within an acceptable small
distance to the unperturbed trajectory [Fig. 3(f)].

B. Roessler oscillator

The chaotic Roessler oscillator is often used as an example of
chaotic phase synchronization.1,17,31 Chaotic phase diffusion in the
Roessler system is extremely small,31 which facilitates phase syn-
chronization in this system. Tangencies of the Lyapunov vectors
occur but the directions of the co-variant Lyapunov vectors are well
separated most of the time.13 The transition to chaos occurs via
period doubling with frequent bifurcations of the attractor where
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(a) (b)

(c) (d)

FIG. 6. Frequency response in the chaotic Lorenz system (37)–(39). (a) Projection of the chaotic attractor to the coordinates (x, z)with color-coded small intervals of optimized

geometric phase ϑ . Blue hues indicate negative values of Zz and red hues positive values. (b) Projection of the chaotic attractor to coordinates (
√

x2 + y2, z) with the same
intervals of optimized geometric phase. (c) Component Zz of the phase sensitivity (family of thin blue lines) as a function of ϑ , average value of 〈Zz〉ϑ (black line), average
restricted to values |Zz| ≤ 3std(Zz) (yellow line) and shift of average oscillation period in perturbation experiments with delta kicks of strength ε = 0.5 in the z direction.
(d) Range of values of the Zz (thin blue lines) and average value (black line) as a function of ϑ . The dashed lines mark three standard deviations.

the response is not differentiable [Fig. 1(a)]. However, these struc-
tural changes in the attractor can be small if the main UPOs are not
close to a bifurcation. We study the chaotic Roessler oscillator with a
logarithmic variable z = exp(q), effectively making additive pertur-
bations in q multiplicative in z, ensuring that z remains positive. The
dynamics in these variables is given by

ẋ = −y − eq, (30)

ẏ = x + ay, (31)

q̇ = be−q + (x − c), (32)

where we have used a = 0.25, b = 0.9, and c = 6.0. Unusually large

values of the phase sensitivity EZ(ϕ) (Lyapunov co-vector) do occur
which have a strong influence on the average phase response. In
the averages 〈Zi〉(ϑ), we, therefore, disregard values of the phase
sensitivity larger than three standard deviations. A protophase ϑ0

and radial distance R for this system is defined as x = R cosϑ0 and
y = R sinϑ0. For the optimized phase, we use the same expansion
and cutoff as in the previous example of the electrochemical oscilla-
tor (Sec. IV A). However, we determine the optimized phase using
the full information of the unit length Lyapunov vectors Ev± and the

flow direction Ev0 = Ef. The resulting optimized phase ϑ(Ex) is then
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FIG. 7. Tangencies between the unstable direction Ev + and the flow Ef lead to divergence of the phase sensitivity, which is orthogonal to the stable and unstable directions
but is normalized as EZ · Ef = 1. (a) Histogram of the angles between the unstable subspace Ev + (blue), the stable subspace Ev − (red), and the flow Ef . (b) Double logarithmic
histogram with logarithmic binning of the values |Zz| shows power-law scaling over two orders of magnitude. The dashed line marks three standard deviations.

used in the perturbation experiments to measure the average shift
in the rotation period in response to delta kicks at the crossing of a
given Poincaré section Pϑ after each full rotation. We compare the
predicted average response by the method of Lyapunov vectors to
the measured response to delta kicks of strength ε = 0.05 in Fig. 4.

C. Hyperbolic chaotic oscillations

We will now demonstrate our theory in the following example
of hyperbolic chaotic dynamics28

ẋ1 = 2πy1 +
(

1 − a2
2 + 1

2
a2

1 − 1

50
a4

1

)

x1 + κx2y2, (33)

ẏ1 = −2πx1 +
(

1 − a2
2 + 1

2
a2

1 − 1

50
a4

1

)

y1, (34)

ẋ2 = 2πy2 +
(

a2
1 − 1

)

x2 + κx1, (35)

ẏ2 = −2πx2 +
(

a2
1 − 1

)

y2. (36)

The amplitudes a2
1 = x2

1 + y2
1 and a2

2 = x2
2 + y2

2 of two oscil-
lators are coupled via a negative feedback loop where the first
oscillator acts as an activator and the second as an inhibitor leading
to sequential switching between low and high amplitude oscilla-
tions. Through weak forcing with κ = 0.3, the phase of the lower
amplitude oscillator synchronizes to the phase of the high amplitude
oscillator. By coupling the first oscillator to the second harmon-
ics of the second oscillation via the product κx2y2, the phases of
the oscillators after each round of switching are chaotic follow-
ing an expanding circle map. The system’s Lyapunov exponents

are λ ∈ {−1.34, −0.97, 0, 0.09}. Because the amplitudes can become
very small, for numerical stability we simulate (33)–(36) using angle
and log-amplitude variables ψ and q, i.e., x + iy = exp(q + iψ).

The phase sensitivity has components EZ = (Zq1 , Zq2 , Zψ1 , Zψ2) in
these variables corresponding to delta Kicks in the log-amplitudes
and angles or Epq = (x, y)δ(t − t0) and Epψ = (−y, x)δ(t − t0) in the
original variables. As Poincaré sections, we define the sets of geo-
metric angles ϑ0 with a2

1 −
〈

a2
1

〉

= R cosϑ0 and a2
2 −

〈

a2
2

〉

= R sinϑ0.
We re-parameterize these angles ϑ0 → ϑ such that ϑ is uniformly
distributed over [0, 2π). This is achieved by defining ϑ(ϑ0) linearly
increasing with the rank of the protophases sorted over the points
of the attractor. Optimization of the shapes of the Poincaré sections
is not necessary. In Fig. 5(a), we show a projection of the hyper-
bolic chaotic attractor in the (q1, q2) plane and (a2

1, a
2
2) in the inset.

The switching dynamics can be seen in Fig. 5(b), where x1 and x2

are plotted as a function of ϑ . The mapping of the angle ψ1 of the
first oscillator from one crossing of the Poincare section ϑ0 = 0 to
the next is shown in Fig. 5(c). It follows an expanding circle map. In
Figs. 5(e) and 5(f), we show the components Zq1 and Zψ1 of the phase
sensitivity function, i.e., the respective components of the Lyapunov

co-vector Eu(0) with Eu(0) · Ef = 1, as a function of ϑ , corresponding to
phase shifts from perturbations in the log-amplitude or the angle of
the first oscillator. Next, we measured the frequency shift caused by
pulsed perturbations in the log-amplitude or the angle of the first
oscillator as a function of ϑ . That is, after each full oscillation of
the system at a Poincaré section at a given geometric phase ϑ the
log-amplitude or the angle of the first oscillator was increased by
ε = 0.1 and the mean period was determined by the elapsed time
between 1000 crossings. The frequency response function at ϑ is
then calculated as Z1(ϑ) = 1

ε
(T0 − Tε) . This measure is also shown
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in Figs. 5(e) and 5(f), and it traces the corresponding components of

the Lyapunov co-vector field EZ very well. Finally, by integrating (20)
with kicked log-amplitude q1 perturbations of strength ε = 0.01 at

crossings of ϑ = 0, we have calculated the displacements Eh(ϑ) of

the shadowing trajectory and plotted h = |Eh| as a function of ϑ in
Fig. 5(d).

D. Lorenz system

Finally, we present phase and frequency response in the non-
hyperbolic chaotic Lorenz system

ẋ = σ(y − x), (37)

ẏ = x(ρ − z)− y, (38)

ż = xy − βz. (39)

We use σ = 16, β = 2.0, and ρ = 28 where the system is chaotic
with Lyapunov exponents 3+ = 0.8 and 3− = −20. The pro-

tophase is defined by R cosϑ0 = z − z0 and R sinϑ0 =
√

x2 + y2

− u0 with respect to the fixed point coordinates u0 = √
2β(ρ − 1)

and z0 = ρ − 1. We expand the optimized phase around that pro-
tophase as

ϑσ = ϑ0 +
5

∑

k=0

3
∑

l=0

σ±
kl q

±
kl , (40)

with

q+
kl = cos(kϑ0)R

l, q−
kl = sin(kϑ0)R

l, (41)

σ+
00 = 0 and σ−

0l = 0 and find the coefficients σ±
ml, which minimizes

the variance of the phase velocity. In Fig. 6(a), we show a projec-
tion of the Lorenz attractor to the (x, z) coordinates. The points
are colored according to 100 intervals of the optimized geometric
phase. Red and blue shades, respectively, signify positive and nega-
tive average frequency response to perturbations in the z direction,

predicted by the z-component of the phase sensitivity EZ. In Fig. 6(b),

we project the chaotic oscillations to the coordinates
(

√

x2 + y2, z
)

used in the definition of the protophase. In numerical experiments,
we have performed 1000 kicked perturbations εEp = 0.5Eezδ(t − tkick)

at constant optimized geometric phase after each oscillation and
measure the resulting shift of the oscillation period. In Fig. 6(c), we
compare the frequency response in the perturbation experiments
to the average phase sensitivity at that geometric phase predicted

by the z-component of EZ. Shown are the average phase sensitivity
after convolution of Zz with a narrow Gaussian (black curve) and
the average phase sensitivity restricted to values within three stan-
dard deviations (yellow curve). Apparently, large deviations in Zz

have a strong influence on the predicted average response. The fre-
quency response measured in the perturbation experiments (blue
crosses) follow in parts the features of both averages but can also
deviate significantly from the predictions. The standard deviation
std(Zz) = 0.17 is ten times larger than the actual response, and the
extreme values seem to follow a power-law over two orders of mag-
nitude [Figs. 6(d) and 7(b)]. The reason for this are frequent near
tangencies of the unstable Lyapunov direction and the flow, which

can be seen in Fig. 7(a) from the distribution of angles (blue his-
togram). The Lorenz system is an example of a non-hyperbolic
chaotic oscillator where our method performs poorly.

V. CONCLUSIONS

Measuring the frequency response to pulsed perturbations at
a given Poincaré section is a simple and experimentally viable way
to define and measure phase response functions of chaotic oscil-
lators. In this work, we have presented a theoretical approach to
predict these frequency shifts with the help of co-variant Lyapunov

vectors. A phase sensitivity EZ = EZ(Ex0) can be constructed for the
points on the chaotic attractor. Time shifts along a chaotic trajec-
tory in response to arbitrary perturbations can be calculated to the
linear order of the perturbation strength in the same way as for limit
cycle oscillators with Winfree type phase equations Eq. (1). These
time shifts are only exact for a certain perturbed trajectory shadow-
ing the unperturbed trajectory. However, averaging the time shifts
for time independent perturbations over the whole attractor can
approximate the frequency shift for arbitrary perturbed trajectories.

Given the phase sensitivity EZ(Ex0), a differentiable geometric phase

ϑ(Ex0) can be constructed with a gradient E∇ϑ , which approximates
the phase sensitivity and minimizes the variance of the phase veloc-
ity on the attractor and in its vicinity. We demonstrate our theory
with a chaotic electrochemical oscillator and the chaotic Roessler
oscillator, both examples of non-hyperbolic, i.e., non structurally
stable systems, where the numerically determined Lyapunov vec-
tors can give good approximations of the linear frequency response.

Because of large deviations in the Lyapunov co-vector field EZ(Ex0),
frequency response in the non-hyperbolic chaotic Lorenz system is
not well predicted. We have also included an example of hyperbolic
autonomous oscillations, where the Lyapunov vectors and the phase

sensitivity EZ(Ex) can be determined numerically robustly.
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APPENDIX: METHODS

We use the method developed by Ginelli et al.13 to determine
the co-variant Lyapunov vectors Ev(k)(ϕ) along a chaotic trajectory
Ex0(ϕ) evolving according to Eq. (2) on the system attractor. Both the
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time step dϕ forward map EM(Ex0, dϕ) = Ex0(ϕ + dϕ),

d

dϕ
EM = Ef

( EM
)

, EM(0) = Ex0(ϕ) (A1)

and its Jacobian matrix JM with

d

dϕ
JM = Jf

( EM
)

· JM, JM(0) = 1 (A2)

are integrated simultaneously by standard RK4 fourth order

Runge–Kutta method. The Lyapunov vectors (except Ev(0) = Ef) are
normalized |Ev(k)| = 1 so that dEv(k)/dϕ and Ev(k) are orthogonal. With
that and from Eq. (16) follow the local Lyapunov exponents

λ(k) = Ev(k) · JEv(k) (for |Ev(k)| = 1). (A3)

Convergence of the Lyapunov vectors means independence from
initial conditions in both forward and backward integrations.
Choosing two different random initial matrices of Lyapunov vec-
tors, convergence to the co-variant Lyapunov vectors can be moni-

tored. Given the matrix V = (Ef, Ev(1), Ev(2), . . . ) of co-variant Lyapunov

vectors, the matrix U = ( EZ, Eu(1), Eu(2), . . . ) of co-variant Lyapunov
co-vectors is simply the inverse matrix of V, i.e.,

U>V = V−1V = 1. (A4)

The Lyapunov co-vectors do not have unit length. Because of
biorthonormality, alignment of the Lyapunov vectors, brings V
closer to degeneracy and results in large Lyapunov co-vectors.
Where Lyapunov vectors, and thus stable, neutrally stable and

unstable subspaces become tangential, U, and EZ, in particular, is
divergent.

REFERENCES
1A. Pikovsky, J. Kurths, M. Rosenblum, and J. Kurths, Synchronization: A Uni-
versal Concept in Nonlinear Sciences, Series No. 12 (Cambridge University Press,
2003).
2A. T. Winfree, The Geometry of Biological Time (Springer Science & Business
Media, 2001), Vol. 12.
3Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Courier Corpora-
tion, 2003).
4L. Glass, “Synchronization and rhythmic processes in physiology,” Nature 410,
277–284 (2001).
5R. Tönjes and H. Kori, “Synchronization of weakly perturbed Markov chain
oscillators,” Phys. Rev. E 84, 056206 (2011).
6N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. Abarbanel, “Generalized
synchronization of chaos in directionally coupled chaotic systems,” Phys. Rev. E
51, 980 (1995).
7A. T. Winfree, “Biological rhythms and the behavior of populations of coupled
oscillators,” J. Theor. Biol. 16, 15–42 (1967).

8F. C. Hoppensteadt and E. M. Izhikevich, Weakly Connected Neural Networks
(Springer Science & Business Media, 2012), Vol. 126.
9I. Z. Kiss, C. G. Rusin, H. Kori, and J. L. Hudson, “Engineering complex
dynamical structures: Sequential patterns and desynchronization,” Science 316,
1886–1889 (2007).
10A. Zlotnik, Y. Chen, I. Z. Kiss, H.-A. Tanaka, and J.-S. Li, “Optimal waveform
for fast entrainment of weakly forced nonlinear oscillators,” Phys. Rev. Lett. 111,
024102 (2013).
11L. Freitas, L. A. Torres, and L. A. Aguirre, “Phase definition to assess synchro-
nization quality of nonlinear oscillators,” Phys. Rev. E 97, 052202 (2018).
12J. T. Schwabedal, A. Pikovsky, B. Kralemann, and M. Rosenblum, “Optimal
phase description of chaotic oscillators,” Phys. Rev. E 85, 026216 (2012).
13F. Ginelli, P. Poggi, A. Turchi, H. Chaté, R. Livi, and A. Politi, “Characterizing
dynamics with covariant Lyapunov vectors,” Phys. Rev. Lett. 99, 130601 (2007).
14I. Malkin, Methods of Poincare and Lyapunov in Theory of Non-linear Oscilla-
tions (in Russian) (Gostexizdat, Moscow, 1949).
15E. M. Izhikevich, Dynamical Systems in Neuroscience (MIT Press, 2007).
16D. Wilson and B. Ermentrout, “Greater accuracy and broadened applicability of
phase reduction using isostable coordinates,” J. Math. Biol. 76, 37–66 (2018).
17M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “Phase synchronization of
chaotic oscillators,” Phys. Rev. Lett. 76, 1804 (1996).
18A. Pikovsky, M. Zaks, M. Rosenblum, G. Osipov, and J. Kurths, “Phase syn-
chronization of chaotic oscillations in terms of periodic orbits,” Chaos 7, 680–687
(1997).
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