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Abstract

Slow switching phenomenon in globally coupled oscillators is discussed. The phenomenon
appears as a result of approach of the system to heteroclinic loops. A particular stability
property of two-cluster states and a certain symmetry of our model are responsible for
the formation of the heteroclinic loop. The resulting heteroclinic loop is stably formed
through invariant subspaces that exist for the certain symmetry of our model, and it is
robust under small perturbation unless the symmetry is broken. The physical mechanism
of the formation of the heteroclinic loop does not depend on the structure of elements
and the origin of coupling. The phenomenon actually arises in a wide class of coupled
oscillator system. The heteroclinic loop is easily formed near the bifurcation point where
the state of perfect synchrony loses stability. By the analysis near the bifurcation point, it
is argued that the local stability conditions for the formation of an attracting heteroclinic
loop are generally satisfied just above the bifurcation point. Such bifurcation can be
induced by time delay in coupling. We assume weak coupling in theoretical approaches,

which provides considerable advantages in analytic study of the system.
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Chapter 1

General Introduction

Studies on collective motion of coupled oscillators have attracted considerable attention
over the last few decades. One of the strong driving force behind the study would be an
interest in biological rhythms [1,2]. It is commonly seen that a population of autonomous
elements behaves collectively and make a macroscopic rhythm, such as heartbeats [3],
flashing fireflies [4], synchronous sugar metabolism of yeast cells [5]. Such macroscopic
rhythms are formed when not only frequency but also phase of elements are synchronized.
Many significant results about such synchronization have been obtained by studying glob-
ally coupled oscillators, i.e., a population of oscillators coupled through a mean-field (see
Refs. [6-8]; Chaps. 4 and 12 in Ref. [9]; and references therein). One may think global
coupling is unrealistic. However, there actually exist systems with global coupling, such
as spatially extended chemical oscillators coupled via optics or gas, Josephson junction ar-
rays, and multimode lasers. Besides, there could be certain cases that the global coupling
is an appropriate approximation of long range interactions in biology, such as flushing
fireflies, yeast cells communicating via a common medium, and the network of neurons.

A system with globally coupled oscillators, in spite of its simple form of dynamical
equations, shows rich behavior even if all the oscillators are identical, i.e., obey the same
dynamical equations. One of the remarkable discovery there would be that identical dy-
namical elements do not necessarily behave identically. K. Okuda has shown that identical
oscillators can form several clusters each of which is perfectly phase-synchronized [10]. It
is interesting that a population of identical elements causes a spontaneous phase separa-
tion. Recently, such a clustering phenomenon has actually been reported experimentally
in spatially extended chemical oscillators coupled globally [11,12].

There is a peculiar type of clustering phenomenon, which has first been studied by
D. Hansel et al. in a particular class of globally coupled phase oscillators [13]. They
showed numerically that the system slowly switches back and forth among pairs of two-

cluster states, and each switching is accompanied by intriguing collective dynamics. This



phenomenon is called slow switching. The slow switching phenomenon was interpreted
in terms of the formation of a heteroclinic loop between the pair of two-cluster states,
which was supported by all numerical results presented there (see Chap. 2 for details).
Although their findings are important, explanation is still needed as to why the heteroclinic
loop arises inevitably and persists robustly against our common belief in its structural
instability.

The present thesis is organized as follows. We briefly review the work of D. Hansel et
al. studied in Ref. [13] in Chap. 2 for an introduction of the slow switching phenomenon.
In Chap. 3, we show and discuss the phenomenon in a network of neural oscillators. By
considering the stability of cluster states and symmetry possessed by the model, we argue
that a heteroclinic loop between a pair of two-cluster states arise inevitably and persists
robustly in the system. The physical mechanism we describe there does not depend on
the nature of elements (phase oscillator, limit cycle oscillator, excitable elements, chaotic
elements, etc.) and the origin of couplings (diffusive coupling, pulse coupling, delayed
coupling, etc.). The slow switching phenomenon actually arises in various classes of cou-
pled oscillator models, which is demonstrated in Chap. 4. We also argue there that the
heteroclinic loop is easily formed near the bifurcation point where the state of perfect

synchrony loses stability. Such bifurcation can be induced by time delay in coupling.



Chapter 2

The Slow Switching Phenomenon

The content of this chapter is a brief review of Ref. [13]



2.1 Slow switching in the phase model

The population model we consider in this chapter consists of N identical phase oscillators

with global coupling, given by

d KL
Elﬁz‘(t) =wt 32231 (i — ), (2.1)

where 1; (0 < 9; < 2m) is the phase of the i-th oscillator (7 = 1,2,--- ,N), I'(z) is
the coupling function with 27 periodicity, w is arbitrary constant denoting the intrinsic
frequency of each oscillator, and K is arbitrary positive constant denoting the coupling
strength.

We assume the following particular coupling function:
['(z) = —sin(z + 1.25) + 0.25sin(2z). (2.2)

Numerically integrating the above model under initial conditions, we generally observe
slow switching phenomenon provided N > 4. The collective behavior of the system can

conveniently be described in terms of the order parameter defined by

N
O(1) = |3 explivs]. (23)

j=1
Its value is 1 for perfect synchrony and 0 for unform distribution of the phases. A time
trace of the order parameter is displayed in Fig. 2.1. We can see undulation of the or-
der parameter for a long time after which the parameter converges to a nontrivial value
constant in time, implying that the system converges to a certain collective state rotating
steadily. Peculiar dynamics is observed until the convergence. As exhibited in Fig. 2.2,
the whole population, which is initially distributed almost uniformly, splits into two sub-
populations, each of which converges almost to a point cluster. After some time, however,
this seeming convergence turns out to be unstable, and the phase-advanced cluster starts
to scatter. Then, after some time, a group of the scattered oscillators converges again
as it comes behind the preexisting cluster. In this way, the preexisting cluster becomes
a phase-advanced cluster. After some time, again, this phase-advanced cluster begins to
scatter, and a similar process repeats again and again. In other words, the system switches
back and forth between a pair of two-cluster states. The time interval during which the
system 1is trapped near two-cluster states increases exponentially with time. At a certain

time, however, the system converges to one of the two-cluster states and stops switching.
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2.2 Stability analysis of two-cluster states and the hetero-

clinic loop

We study the existence and stability of a two-cluster state in which the two clusters
consist of Np and N (1 — p) oscillators. The oscillators inside each cluster are completely
phase-synchronized. The phase difference of the two clusters denoted by A is constant in
time, and the clusters rotate at a constant frequency. Such a steadily rotating two-cluster
state can be denoted by (p, A). In a two-cluster state, the phase difference A obeys from
Eq. (2.1)

9 A= K{(2p—1)0(0) + (1 - pIT(&) ~ pP(~A)}. (2.4)

Since A is constant in a steadily rotating two-cluster states, we obtain the relation between

p and A, given by

o= ['(0) —-T(a)

" 20(0) —-T(A) —T(-A) (2.5)

Various (p, A) exist with different sets of p and A.
We then study the stability of the two-cluster states. Calculation of stability matrix

is rather complicated but straightforward. Eigenvalues of the stability matrix are

Ao = 0, (2.6)
A= K{pl'(0) + (1 - p)T'(A)}, (2.7)
A2 = K{(1 - p)I'(0) +pI"(-A)}, (2.8)
A3 = K{(1 - p)I'(A) +pI'(-A)}, (2.9)

where I"(z) means (d/dz)I'(z). The multiplicity of X\; (i = 0,1,2,3) are 1, Np — 1,
N(1 — p) — 1 and 1, respectively. \g vanishes identically because of the invariance of
Eq. (3.18) with respect to an identical shift of all the phases. A; and Ay correspond to
fluctuations in phase of the two oscillators inside the phase-advanced and phase-retarded
cluster, respectively. A3 corresponds to a fluctuation in A.

Substituting Eq. (2.2) into Eq. (2.5), we obtain the relation between p and A, shown
in Fig. 2.3(a). By using the relation, the eigenvalues of (p, A) can be calculated, which is
displayed in Fig. 2.3(b). We find that all of the two-cluster states to which the system con-
verges are linearly unstable. The seeming contradiction here, however, can be interpreted
in terms of the formation of heteroclinic loops between pairs of the two-cluster states. We

denote such a pair by (p,A) and (p,A’) with A > 0 and A’ < 0. Under the assumption
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Figure 2.3: The existence and stability condition of the two-cluster states. (a)The relation
between p and A in the two-cluster state. (b)The eigenvalues of the two-cluster state

plotted as a function of A.



of the existence of a heteroclinic loop between (p, A) and (p, A’), one can verify that the
heteroclinic loop is attracting if

_ )
=N

> 1, (2.10)

where \; and A} (i = 1,2) are the eigenvalues of (p,A) and (p, A’), respectively. In that
case, a trajectory moves along the heteroclinic loop and comes to be closer to these fixed
points. After 2n switching (i.e., n cycles), the time spent around the fixed point and the

distance to it will be

T, ~ Toy", 2.11
¥

en~e - (2.12)
In numerical integrations, €, goes to zero in a finite time due to the round-off error, so

that the system converges to one of the fixed point.

2.3 Dynamics under small noise

When the system is disturbed by small noise, switching between a pair of two-cluster

states occurs almost periodically. To demonstrate it, we generalize the model as follows:

Ly =wr & irw )+ otilh) (2.13)
A = Nj:1 i ' i\l), .

where ¢;(t) is a Gaussian white noise with the variance 1, and o is a constant denoting the
intensity of the noise. The coupling function I is given by Eq. (2.2) here also. Figure 2.4
displays a time trace of the order parameter for the noisy system. The flat and descendent
parts of the order parameter respectively indicate the periods in which each cluster is
almost a point cluster and one of the clusters is scattering. For such a noisy system, the

time it take for the system to perform a cycle of switching is estimated at

1 1
T~——4+ —)lno. 2.14
<,\1 +/\’2> no (2.14)

The value of the slope obtined is in good agreement with the slope obtained from Fig. 2.5.
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Chapter 3

Leaky Integrate-and-Fire Oscillators
with Delayed Pulse-Coupling



3.1 Introduction

It has been pointed out that collective motion of neurons in the brain is crucial to infor-
mation processing and transmission (see, e.g. Ref. [14]). In the brain, the neurons are
exclusively coupled through chemical synapses, i.e., the neurons communicate by pulses
of transmitter [15]. Chemical synapses commonly form dense and complex networks. For
mathematical modeling of neuronal networks, homogeneous all-to-all (i.e. global) coupling
is often adopted. Although the global coupling may be a little too idealistic, the corre-
sponding networks share a lot of properties in common with systems with complex and
dense networks.

In this chapter, we consider a population of neural oscillators with delayed, all-to-all
pulse-coupling. The oscillator we use is called the leaky integrate-and-fire (LIF) model.
There are a large amount of papers concerning LIF in physics and neuroscience, e.g.
see [16-18]. This is because LIF is a quite simple model, still it captures some essential
characteristics of neuronal dynamics, i.e., it represents an integrator with relaxation, and
resets after it fires. Although our population model is commonly used, (see, e.g. [19]),
its collective dynamics does not seem to have been studied so carefully. We will show
that various kind of cluster states arise in our model, and discuss the slow switching

phenomenon in particular.

3.2 Model

The population model we consider consists of N identical elements with delayed, all-to-
all pulse-coupling. The dynamics of each elements is described by a single variable v;
(1=1,2,...,N) which corresponds to the membrane potential of a neuron. The equation

for v; is given by

d K
E'Ui(t) = a—vi + (b —v) E(2). (3.1)

The parameter a is the so-called resting potential to which v; relaxes when the coupling
is absent. It is assumed that when v; reaches a threshold value which is set to 1, it is
instantaneously reset to zero. This event is interpreted as a spiking, or firing, event. The
dynamics is thus called LIF. When a neuron spikes, it emits a pulse toward each neuron
coupled to it, and the latter receives the pulse with some delay called a synaptic delay. The
coupling is assumed to be homogeneous and all-to-all, so that its effect can be represented

by one global variable E, given by

N
E@t) =) et—£P 1) (3.2)

j=1 spikes
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Here, t;-pikes represents a series of times at which the j-th neuron spikes and denotes

spikes
a summation over the series of such spikes; 7 is the synaptic delay, and e(t) is a pulse
function, given by
op
B8 —a

where O(¢) is the Heaviside function; a and 8 are constants satisfying > a. a~

e(t) = (e™® — e PHo(t), (3.3)

L and

B! give characteristic time scales of the pulse function. In the limit 8 — «, e(t) becomes
a’te~®!, which is called the alpha function [15]. b is called the reversal potential to which
v; relaxes when E(t) is positive, i.e. while the neuron receives the pulses. K is a positive
constant characterizing the strength of the coupling. The coupling assumed above is
characteristic to the synaptic coupling. The coupling becomes excitatory (EPSP) if b > 1,
and inhibitory (IPSP) if b < 0.

If a < 1, LIF becomes an excitable neuron, while if ¢ > 1, it repeats periodic spikings,
namely, it represents a neural oscillator. We assume a > 1 hereafter. Then, we can define
a variable varying smoothly with time, which turns out useful in the following discussion.

We definethe phase of the i-th neuron as

1/%':/0% aCl;Uv Zln(afm)- (3.4)

which varies between 0 and the intrinsic period of oscillation T, given by

T:In(ai1>. (3.5)

Note that 1); satisfies di;/dt = 1 in the absence of coupling.

3.3 Numerical results

By numerically integrating our model under random distribution of v;, we find various
types of collective behavior. Among them, we are particularly interested in the slow
switching phenomenon, which actually occurs when b > a and N > 4 (see Chap. 2 for the
explanation of the phenomenon).

The slow switching phenomenon occurs within a broad range of parameter values
provided that K is small and the time constants o', 5~! and 7 are small compared with
T. For larger o~ !, 37! and 7, the slow switching phenomenon becomes less probable, and
the appearance of steady multi-cluster states becomes more probable instead. For b < a,
we find no two-cluster states involving slow switching, while steady multi-cluster states

are observed in most cases. A detailed phase diagram will be presented in §3.7.
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3.4 Weak coupling limit

Our model given by Eq. (3.1) is relatively simple, still it is not easy to get some insight
into its collective dynamics analytically. Fortunately, however, our main results given in
§3.3 do not change qualitatively in the weak coupling limit, i.e. K — 0. In this limit,
our model is reduced to a much simpler form with which we can study the existence and
stability of various cluster states analytically. Derivation of the reduced model is given as
follows.

Substituting v; = a(1 — e~¥) into Eq. (3.1), we obtain

N
d K spikes
GO =145 > Zie(t - 7 — 1), (3.6)
j=1 spikes
where
b —a Pi
Z(’lﬁz) = a e’ 4 1. (37)

It is convenient in the following calculation to redefine Z as a T-periodic function, i.e.
Z (i +nT) = Z(¢;) (n = £1,£2,---). Note that sudden drop of Z(1;) at ¥; = 0 is due
to the rule employed in our model, i.e., the membrane potential is reset instantaneously

at v; = 0. We also define a residual phase ¥; by
;= — t. (3.8)
Substituting Eq. (3.8) into Eq. (3.6), we obtain
d K& -
Z0it) =% SN Z(i + te(t — £P 7). (3.9)
j=1 spikes

We now assume that K is sufficiently small so that the r.h.s of Eq. (3.9) is sufficiently
smaller than the intrinsic frequency 7. This allow us to make averaging of the r.h.s of
Eq. (3.9) over the period T'. The zeroth order approximation with respect to the smallness

of K, which corresponds to the free oscillations of the oscillators, is given by

U,(t) = const. (3.10)
and

P =1, —nT, (n=0,1,2,...), (3.11)

where ¢; is the latest time at which the j-th neuron spikes. In the first order approximation,

we may time-average Eq. (3.9) over the range between ¢ — T' and ¢ using Eqgs. (3.10) and

13



%gi(t) _ %é % /;Tg% Z(T;(t) + Ne(h — t; + nT — 7)dA (3.12)
= %é % /Ooo Z(T(t) + tj + 7+ N)e(X)dN (3.13)
- §+%;G)§:F(\I!i(t)+tj+7), (3.14)
where -
Po) = 5 {Hax(a) - Hya(a)} (3.15)
Horl(z) = %Awwmm+UMMHWM%Nﬁ

_ (e" = 1) expla(z mod T)] — (e*” — 1) exp[z mod T
- T(1 = a)(ee” — 1) | (3.16)

Note that I'(z) is a T-periodic function. Figure 3.1 illustrates a typical shape of the
coupling function given by Eq. (3.15). Furthermore, using the identity

T(ts) = ¥i(ty) —t; = -, (3.17)

and the zeroth order approximation V;(¢;) = ¥;(t), we may replace t; by —¥;(¢) in
Eq. (3.14) in the first order approximation. Thus, we finally obtain

o XN
_¢z = le i) +7), (3.18)

where w = 1+ K/T and K' = K(b — a)/a. Equation (3.18) is the standard form of the
phase model. Note that the error involved in Eq. (3.11) may look to diverge as n — oo,
still the final error vanishes in the first order approximation due to the decay of e(t). It
is remarkable that the reduced model is free from memory effects, and the effect of delay
has been simply converted to a phase shift in the coupling function. As shown in §4.4,
similar form of the phase model is generally obtained in delayed coupled oscillators when
the coupling is sufficiently weak.

The phase model given in Eq. (3.18) is invariant under a constant phase shift of all the
phases, so that the dynamics of the mean phase (i.e., the center of mass) can be decoupled.
We will ignore the degree of freedom associated with this dynamics hereafter.

Important parameters of our phase model given by Eq. (3.18) with Eq. (3.15) are
T,a, 3,7 and the sign of K’ (i.e. the sign of b — a). The reason is the following. We

14



may take |K'| = 1 by properly rescaling of ¢ and w, while its sign is crucial because the
local stability of any solution depends on it. w gives the frequency of steady rotation of
the whole system, which is irrelevant to collective dynamics. T' gives a characteristic time
scale of our model, which can be chosen as an independent parameter by which a becomes
dependent through Eq. (3.5). It is remarkable that our coupling function is independent
of b. In fact, change in b causes no qualitative change in our result as far as the sign of
b — a remains the same. Furthermore, even if we replace the term b — v; by a constant c
in Eq. (3.1), i.e.,

D oit) = a— i + %E(t), (3.19)

then we can reduce this model similarly and obtain the same coupling function as in
Eq.(3.15), which is a little surprising result. We have checked that Eq. (3.19) actually
reproduces qualitatively the same results as those given in §3.3. In that case, negative ¢
corresponds to the case b < a in Eq. (3.1). In the following sections, we assume b > a and

B8 — « unless stated otherwise.

3.5 Two-oscillator system

In this section, we study a two-oscillator system, i.e. N = 2. Although the two-oscillator
system is not directly related to the main subject of the present chapter, one may learn

some basic properties of our phase model from this simple case. Defining A = 1)1 — 19,

we obtain
dA K
= = 5 (C(A+7) ~T(-A+7) =G (A). (320)

Phase locking solutions are obtained by putting dA/dt = 0, and the associated eigenval-
ues are given by dG,/dA. Figure 3.2 shows a bifurcation diagram of the phase locking
solutions, in which we take 7 as a control parameter. We find that for small 7 the triv-
ial solutions A = 0 (in-phase locking) and 7'/2 (anti-phase locking) are unstable, while
there are a pair of stable branches of non-trivial solutions. The point 7 = 0 is close to
the bifurcation point where the in-phase state loses stability via a subcritical pitchfork
bifurcation. The bifurcation occurs at 7 = 7., where 7. corresponds to the minimum of
['(z) (see Fig. 3.1). Because 7. is negative, the in-phase state cannot be stable for small or
vanishing delays (while it can be stable for delays comparable to T' due to the T-periodic
nature of our phase model). The width of the stable branches of the trivial solutions is
the same as that of the decreasing part of I'(z). Owing to the peculiar shape of Z(z),
the width is of the same order as the width of e(t), which is O(a~!). The stability of the

in-phase state is identical with that of the state of perfect synchrony.
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Figure 3.1: The solid line shows the coupling function I'(z) for a = 1.05 (T' ~ 3.0),
a”! = 0.2 and 8 = . The minimum appears at z = 7. (~ —0.003) which is a small

negative. For comparison, Z(z) is also displayed with the broken line.

7721

-1/2+

Figure 3.2: Bifurcation diagram of a two-oscillator system with the same parameter values
as in Fig. 3.1. Solid and dotted lines respectively represent stable and unstable branches,

where b > a is assumed. The stability property is reversed when b < a.
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In terms of the original model, we will now present a qualitative interpretation of
why the in-phase locking state is unstable for small or vanishing delays. We consider the
dynamics of two neurons which are initially very close in phase. The effect of a pulse
on the phase v; is larger for smaller dv;/dt. dv;/dt is monotonously decreasing except
the instant it is reset (which reflects on the property of Z(z) that it is increasing except
z = 0). Thus, the neuron with larger v; makes a larger jump in phase when it receives a
pulse, by which the phase difference between the two neurons becomes larger when they
receive a pulse. On the other hand, the situation becomes different if two neurons lie
before and after the resetting point, i.e., if the phase-advanced neuron has smaller v;. In
that case, the phase difference becomes smaller when they receive a pulse. According
to our employed rule, however, resetting and spiking occur simultaneously, so that the
phase-advanced neuron almost always has larger v; when they receive pulses. Therefore,
the in-phase state becomes inevitably unstable even without delay. If we want to obtain
a stable in-phase state for small or vanishing delays, we should employ a rule such that
a neuron spikes before it is reset, which would be more physiologically plausible than the

rule employed here.

3.6 Local stability analysis for a large population

The trivial in-phase solution and the non-trivial solutions of the two-oscillator system
correspond respectively to the state of perfect synchrony and two-cluster states in the
case of a large population. In this section, we study local stability of the two-cluster
states. Although non-trivial solutions are stable for small delays in the two-oscillator
system, the corresponding two-cluster states turn out unstable.

We consider a steadily oscillating two-cluster state in which the two clusters consist of
Np and N(1—p) oscillators, respectively. The oscillators inside each cluster are completely
phase-synchronized, and the phase-difference between the clusters is constant in time,

which is denoted by A. From Eq. (3.18), the phase difference obeys the equation

% =K'{(2p - )T(r) + (1 - p)T(A +7) + pI(~A + 1)} . (3.21)

When A is constant, we obtain a relation between p and A as

(3.22)

I'(0) —-T(A)
r

20(0) ~ T(A) ~ T(-A)°

We designate a two-cluster state satisfying Eq. (3.22) as (p,A). The eigenvalues of the

stability matrix are calculated as
M = K'{pl'(r) + (1 = p)T'(A + 7)), (3.23)
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Ao = K'{(1 —p)'(1) + pI"(-A + 1)}, (3.24)
A3 = K'{(1-p)T'(A+7) +pI"(-A+ 1)}, (3.25)

where I''(z) means (d/dz)T'(z). The multiplicities of A1, Ao and A3 are Np—1,N(1—p)—1
and 1, respectively. A; and Ay correspond to fluctuations in phase of the two oscillators
inside the phase-advanced and phase-retarded cluster, respectively. A3 corresponds to fluc-
tuations in the phase difference A between the clusters. Note that there always exists the
trivial solution A = 0 corresponding to the state of perfect synchrony, and its eigenvalue
is K'T'(7) with N — 1 multiplicity.

Substituting Eq. (3.15) into Eq. (3.22), we obtain a relation between p and A, the
corresponding curve being shown in Fig. 3.3(a). By using this relation, the eigenvalues of
(p, A) can be obtained, which are displayed in Fig. 3.3(b) as a function of A. It is found
that any two-cluster states (including the state of perfect synchrony given by A = 0)
are unstable, and there is a set of (p, A) for which A; > 0 and A2, A3 < 0. Positive A\
means that the two-cluster state is unstable with respect to perturbations inside a phase-
advanced cluster. On the other hand, negative Ay and A3 mean that it is stable against
perturbations inside a phase-retarded cluster as far as the perfect phase-synchrony of the
phase-advanced cluster is maintained. Within a certain range of p, there are pairs of two-
cluster states represented by (p, A) and (p, A’) with the same stability property, as they
appear as the solid lines in Fig 3.3(a). In the next section, we explain how a heteroclinic
loop between (p, A) and (p, A’) is persistently formed in our model.

Similarly to the discussion in §3.5, the stability property mentioned above can also be
understood in terms of the original model. Every neuron inside the phase-advanced cluster
almost always receives pulses when its membrane potential is increasing. Then, the phase-
difference between two neurons inside the cluster, if any, almost always increases, so that
the phase-advanced cluster is inevitably unstable. On the other hand, the neurons inside
the phase-retarded cluster can receive pulses (that was emitted by the phase-advanced
cluster) during their resetting. Then, the phase-differences between neurons inside the
phase-retarded cluster, if any, become smaller, so that the phase-retarded cluster can be
stable.

3.7 Heteroclinic loop

We first note that there is a particular symmetry of our model which turns out crucial to

the persistent formation of the heteroclinic loop. The symmetry is given by

%{vi(t) —v(t)} =0 for any i and j. (3.26)
vi(t)=v; (t)
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Figure 3.3: (a)Relation between p and A associated with two-cluster states. (b)Eigenvalues
of two-cluster states as a function of A. In (a), the solid and broken lines correspond to
the two-cluster state of negative and positive A3, respectively. The parameter values are
a =105 (T ~ 3.0),b > a,a”! =0.3,8 = a and 7 = 0.1. Variation of the parameter
values do not change the results qualitatively provided the time constants o', 37! and 7

are small compared with 7.
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Figure 3.4: Schematic representation of a saddle connection between a pair of two cluster
states, starting with the two-cluster state A (a) ending up with the other two-cluster state
B (c).
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Due to this symmetry, the units which have the same membrane potential at a given time
behave identically thereafter. In other words, once a point cluster is formed, it remains a
point cluster forever.

We assume that a pair of two-cluster states (called A and B) exists and has the same
stability property as that discussed in §3.6, i.e., the phase-advanced cluster is unstable,
and the phase-retarded clusters is stable. Suppose that our system is in a two-cluster
state A initially. When the oscillators inside the phase-advanced cluster are perturbed
while the phase-retarded cluster is kept unperturbed (see Fig. 3.4(a)), the former begins to
disintegrate while the latter remains a point cluster. Then, a group of dispersed oscillators
and the point cluster coexist in the system (see Fig. 3.4(b)). We know, however, that in
the presence of a point cluster, there exist a stable two-cluster state in which the existing
point cluster is phase-advanced. From this fact, the dispersed oscillators are expected
to converge to form a point cluster coming behind the preexisting point cluster. In this
way, the system relaxes to another two-cluster state B (see Fig. 3.4(c)). From the above
statement, it is implied that in our high-dimensional phase space there exists a saddle
connection from the state A to the state B. The existence of a saddle connection from the
state B to the state A can be argued similarly. A heteroclinic loop is thus formed between
the pair of the two cluster states A and B.

In terms of the phase model, the above argument can be reinterpreted in a little more
precise language. In the phase model given by Eq. (3.18), a symmetry property similar to
Eqg. (3.26) also holds:

di{zp,-(t) (1)) ~0 for any i and j. (3.27)
¢ Yi(t)=9; (t)

Our argument will be based on the following assumptions:
(a) (p,A) with A\; > 0 and Ay, A3 < 0 exits,
(b) (p,A’) with A5 > 0 and A}, A5 < 0 exits,

where we define A > 0 and A’ < 0; \; and A, (: = 1,2, 3) are the eigenvalues of (p,A) and
(p, A"), respectively. Note that if p = 0.5, the two clusters in question are identical, or
A’ = —A, so that (a) and (b) are identical. Figure 3.5 illustrates a schematic presentation
of the N — 1 dimensional phase space structure (where we ignore the degree of freedom
of the mean phase). E, and E, denote the subspaces where the phase-advanced and
phase-retarded clusters of (p,A) remain point clusters, respectively. By considering the
direction of eigenvectors, one can easily confirm that E, and E, are identical with the
stable subspaces of (p,A) and (p,A’), respectively. Furthermore, because E, and E,
are invariant subspaces due to the symmetry given by Eq. (3.27), (p,A) and (p, A’) are

attractors within F, and E,, respectively. Thus, on the assumption that
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(c) each attractor is within the basin of attraction of the other attractor,

a heteroclinic loop between (p, A) and (p, A’) is formed.
The saddle connections are stably formed through the invariant subspaces that exist for
the symmetry of equations of motion, or Eq. (3.26). The heteroclinic loop is thus robust
under small perturbations unless the symmetry of Eq. (3.26) is broken. The physical
mechanism of the formation of the heteroclinic loop we describe here does not depend on
the nature of elements (phase oscillator, limit cycle oscillator, excitable elements, chaotic
elements, etc.) and the origin of couplings (diffusive coupling, synaptic coupling, delayed
coupling, etc.). It is expected, therefore, that the heteroclinic loop is formed in wide class
of population models. We actually find that it arises in a population of coupled limit-cycle
oscillators, which is demonstrated in Chap. 4.
Whether the resulting heteroclinic loop is attracting or not depends on the following
quantity:
_ Ay
=N

(3.28)

It was argued in Ref. [13] that if v > 1, the system approaches the heteroclinic loop
and comes to move along it. In that case, the time interval during which the system is
trapped near one of the two-cluster states increases exponentially with time. Substituting
the eigenvalues obtained from Egs. (3.23) and (3.24) using Eq. (3.15) into Eq. (3.28), we
find that the heteroclinic loops within a certain range of p are in fact attracting for small
o~ 87! and 7. We thus conclude that the slow switching phenomenon discussed in §3.3
results from the existence of an attracting heteroclinic loop.

A phase diagram of the heteroclinic loops and symmetric multi-cluster states is shown
in Fig. 3.6, where we choose 7 as a control parameter (see Appendix A for the stability
analysis of the symmetric multi-cluster states). We have checked that the phase diagram
obtained is in good agreement with results obtained by numerical integrations of Eq. (3.1)

when K is sufficiently small.

3.8 Conclusion

In this chapter, we have discussed the slow switching phenomenon in a population of de-
layed pulse-coupled oscillators. We found that the phenomenon is caused by the formation
of a heteroclinic loop between a pair of two-cluster states. A particular stability property
of the two-cluster states and a certain symmetry of our model are responsible for its for-
mation. Our original model given by Eq. (3.1) is reduced to the standard phase model in
the weak coupling limit, by which we succeeded in studying the stability of various cluster

states analytically, and confirming the structure of the heteroclinic loop.
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Figure 3.5: Schematic representation of the structure of a heteroclinic loop. (p,A) and

(p, A’), atractor of Er

Er

(p, A") become attractors within the invariant subspaces E, and E,, respectively.
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Figure 3.6: Phase diagram of cluster states obtained in the weak coupling limit, where 7

is chosen as a control parameter. The parameter values are the same as in Fig. 3.1 with

(a)b > a and (b)b < a. For given p and 7 inside the gray region, -y is larger than one, i.e.,

the heteroclinic loop between (p, A) and (p, A’) is attracting. Each rectangle placed at

n indicates the region of 7 within which the symmetric n-cluster state is stable. In (b),

there are stable symmetric n-cluster state for n > 10 (not shown).
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Chapter 4

Coupled Limit-cycle Oscillators

and Its Bifurcation Structure



4.1 Introduction

In this chapter, the slow switching phenomenon is discussed in three specific models. Each
model has different property in coupling; the first one is a general coupling (i.e., the system
obeys ordinary differential equations), the second one is a delayed coupling, and the last
one is (delayed) pulse coupling. In the latter two models, it is shown that time delay in
coupling plays a essential role in the formation of heteroclinic loops. In particular, we
will argue that the stability condition for the formation of the heteroclinic loop is easily
satisfied near the bifurcation where the state of perfect synchrony loses stability. Through
the discussion in this chapter, one may understand the slow switching phenomenon occurs

in a wide class of globally coupled oscillators.

4.2 Hindmarsh-Rose oscillators coupled by gap junctions

We consider a general model of globally coupled identical oscillators with the form:

d

K N
7Xi(®) :F(XZ-)+WZG(XZ-,X]-), (4.1)

j=1
Here X;, F and G are m-dimensional real vectors ; and K is a positive constant. In
Eq. (4.1), a symmetry property similar to Eq. (3.26) or Eq. (3.27) also holds, which is

represented as

d

X)) - X;(0)} =0 forall iandj. (4.2)

Xi(t)=X;(t)

Note that all the models introduced in this chapter possess the similar symmetric property,

so that once a point cluster is formed in the system, it remains a point cluster forever.
Suppose that the local dynamics is two-dimensional, i.e. X = (z,y), and the specific

forms of F' and G are given by

F 32,2 —z3 4y —
Fx) =" )= 2% TE TR (4.3)
F, 1-5z,2—vy;

G(X;, X;) = ( g ) = ( f)”" o ) , (4.4)
Yy

The corresponding equation X = F' is called the Hindmarsh-Rose model which was origi-
nally proposed for a neural oscillator [20]. Each elements becomes a limit-cycle oscillator
if —11.5 < p < 0.8 [21]. We set p = —1, which gives the intrinsic period 7' ~ 6.2. The
coupling given by Eq. (4.4) is called a diffusive coupling, and in terms of neurophysiology,

this corresponds to the electrical synapse formed by gap junctions [22].
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In the model given above, the slow switching phenomenon is generally obtained for
small K. Some numerical results obtained with K = 0.1 and N = 100 under random
initial conditions are summarized as follows. In each trial of numerical integration, the
system converges after a long transient to a two-cluster state which is periodic in time.
Figure 4.1 displays a time series of the order parameter. Before the convergence, we can
see that the system repeats switching back and force between a pair of two-cluster states.
Relative population of the clusters is generally depends on the initial condition. If we give
very small perturbations independently to the oscillators in a two-cluster state after the
convergence, the clusters start to disintegrate, implying its linear instability. Thus, an

attracting heteroclinic loop between a pair of two-cluster states should exist.

4.3 Stability analysis

We can perform the stability analysis of the two-cluster states through the method of the
phase reduction. In general, coupled oscillators is reduced to the phase model when the
coupling is sufficiently weak [6]. There is a general formula to derive an evolution equation
for phases of the oscillators. For the model given by Eq. (4.1), the corresponding phase
dynamics reads
N
Sty =1+ %jzlrwi ~4y) (4.5
where 1; is the phase of the i-th oscillator which varies between (0 and the intrinsic period
T, and T is the coupling function which is T-periodic. Roughly speaking, 1); is defined so
as to have a constant velocity along a limit-cycle in the one-oscillator phase space when
K = 0. The coupling function is computed numerically for specific F' and G given by
Egs. (4.3) and (4.4), which is displayed in Fig. 4.2. One should notice that the similarity
between Fig. 4.2 and Fig. 3.1. The existence and stability analysis are performed similarly
to §3.6, which shows that the stability property of the two-cluster states admit, based on
the argument in §3.7, the existence of attracting heteroclinic loops within a certain range
of p.
When K becomes too large, such as O(1), the two-cluster states gives way to the
state of perfect synchrony by which the heteroclinic loop disappears. It seems that the
heteroclinic loop does not persist when the coupling is so strong that the phase description

completely breaks down.
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Figure 4.1: Time series of the order parameter. The order parameter O is conveniently
defined in the following way. Let ¢; (j = 0,1,2,---) denote the time at which the represen-
tative point of the j-th oscillator crosses a given section 3 in the 1-oscillator phase space.

The order parameter at time ¢ = ty is defined as O(t = ty) = + ‘Zjvzl exp [ZQWTS%?)]

as a generalization of Eq. (3). Since the oscillators cross ¥ again and again, the order
parameter at discrete times t = ¢y (kK = 1,2,---) can be defined similarly. Note that
O(t) = 1 when the oscillators are perfectly synchronized and O(t) = 0 when their phases

are uniformly distributed.
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Figure 4.2: Coupling function of the reduced model. The minimum of I'(z) appears at a

negative z. T ~ 6.2 in the figure.
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4.4 Hindmarsh-Rose oscillators with delayed coupling

It is well known that the state of perfect synchrony, i.e. all the oscillators have an identical
phase, is often obtained in globally coupled identical oscillators. For example, it is generally

stable for arbitrary coupling strengths with the following form of coupling;:
G(Xi, X ) = X (1) — Xi(t). (4.6)

We show in this section that time delay introduced into coupling causes instability of the
state of perfect synchrony, which at the same time is accompanied by the appearance of
the heteroclinic loop. We again assume F as Eq. (4.3), and G as a uniformly delayed
coupling, given by

G(X:, X)) = X;(t—7) — Xi(t) (4.7)

where 7 denotes delay. Note that the symmetry property (4.2) still holds when the coupling
involves a uniform delay. We will show some numerical results with the same parameter
values as in §4.2. Figure 4.3 displays a time trace of the order parameter. Without delay,
the system under various initial conditions immediately converges to the state of perfect
synchrony. As 7 is increased, the one-cluster state persists up to a critical value 79 beyond
which the cluster splits into two and at the same time heteroclinic loops are formed. In
the parameter values given above, this critical value seems to be about 0.18.

The phase reduction of the model, which is applicable when the coupling is weak,
provides a clear understanding of the above result. For a system with a uniformly delayed

coupling such as Eq. (4.7), the corresponding reduced model takes the form

jw =1+ = Zrzpz — it — 7). (4.8)

Since the second term on the right-hand side is much smaller than the first term by

assumption, (4.8) is further reduced to the form
_¢z =1+ = Z F "/’z - ) + 7') (4'9)

Thus, there is no explicit delay in coupling, while its effect has now been converted to a
phase shift of the coupling function by 7, as illustrated in Fig. 4.4. The stability of the
state of perfect synchrony depends entirely on the sign of IV(7) (see §3.6), so that the
state is stable for small 7. As 7 increases, it becomes less stable, and at 7 > 7. it becomes
unstable, where 7 is defined as the value of 7 which minimizes I'(7) (see Fig. 4.4). Note
that the ciritical value 79 which was obtained through numerical simulations is expected

to agree with 7. when the coupling is sufficiently weak. For 7 > 7, the coupling function
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Figure 4.3: Time series of the order parameter. The definition of the order parameter is
the same as in Fig. 4.1. For 7 < 79, the system shows perfect synchrony. On the other
hand, for 7 > 7y the slow switching phenomenon arises. The critical value 79, which is

evaluated by numerical simulations, is about 0.18.

TI'(x#7)

-T2 0 72

Figure 4.4: Coupling functions. The dotted line is obtained numerically from (4.1) with
(4.3) and (4.6), while the solid line is obtained just by a phase shift of dotted line by —.
The effect of the delay is equivalent to a simple modification of the coupling function in

the weak-coupling limit. 7' ~ 6.2 and 7, ~ 0.13 in the figure.
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assumes a similar shape to Fig. 3.1 and Fig. 4.2. We have checked by using this coupling
function that the stability of the two-cluster states within a certain range of p admits the
existence of attracting heteroclinic loops for 7 > 7.

This transition occurs through a pitchfork bifurcation at p = 0.5 and a transcritical
bifurcation at p # 0.5. In a two-cluster state (p, A) (the definition of (p, A) is given in
§3.6), the phase difference A obeys the equation

% =K{2p-1I(1)+ (1 =p)L(A+7)+pl(-A+7)}. (4.10)

Using I'(z) readed out from Fig. 4.4, we obtain bifucation diagrams for given p, which is
shown in Fig. 4.5. The solid and broken lines correspond to steady solutions with negative
and positive A3, respectively. We can see that the state of perfect synchrony (A = 0)
loses stability at 7 = 7, and a pair of two solid branches arises for 7 > 7.. Evaluating
the eigenvalues A1 and A2 of the solid branches, we confirm that an attracting heteroclinic
loop can be formed between these two brances within a certain range of p. The detailed

analyses near the bifucation point will be given in §4.6.

4.5 Morris-Lecar oscillators with delayed pulse-coupling

The final example is exhibited by a population of neural oscillators. Each neurons obeys

the following evolutional equations called the Morris-Leccar model, given by

C% = —gCaMoo (Vi) (vi — Voa) — grw;(vi — Vi) — gu(vi — VL) + I, (4.11)

dw; | [weo(v;) — wj]

o f Tw(vi) (12
with

Meo(v;) = 0.5[1 + tanh{(v; — V1) /Va}], (4.13)

Woo (v;) = 0.5[1 + tanh{(v; — V3)/Va}], (4.14)
and

Tw(v;) = 1/ cosh{(v; — V3)/(2V4)}, (4.15)

where v; is the membrane potential, w; is the fraction of potassium channel open at ¢,
and I; is the external current injected into the nueron. The Morris-Lecar model is a two-
variable version of the Hodgikin-Huxlex type model, which has been extensively studied
in Ref. [23]. The parameter values follow Ref. [23], given by V] = —1.2, V5, =18, V3 = 12,
Vi =174, gca = 4.0, gk = 8.0, g1, = 2, Vea = 120, Vk = —84, V1, = —60, C' = 20uF /cm?
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and ¢ = 1/15. The basic properties of this model for constant I; are as follows. For
0 < I; < I,, the system has one stable fixed point in the one-oscillator phase plane. Thus,
v converges to a cirtain value, so-called the resting potential. In this range of the current,
the system is excitable. This fixed point becomes unstable at I; = I, via a saddle-node
bifucation and a stable limit cycle then appears by homoclinic connection. The onset of
the periodic motion associated with this limit cycle begins at zoro frequency, which is a
typical property of homoclinic connection. The system is monostable up to I; = I, at
which the subcritical Hopf bifurcation occurs. For the parameter values ginve above, I,
and I, is about 40 and 98 respectively.
We assume the external current input I; as the following form:

K

L =1+ N(‘/}ev - Ui)E(t)’ (4'16)

where I is a constant current input, Vi, is a constant denoting reversal potential, and
E(t) is the same global variable as Eq. (3.2). A series of times at which the j-th neuron
spikes is defined by

. dv.
Vi (#P%) =V, and % > 0. (4.17)

Neumerical results obtained with I = 44 (which corresponds to the intrinsic period
T ~109), K = 0.1, N = 100, = 3.5,8 — a, Vzey = 100 and V4, = 0 are summarized
as follows. For small 7, the system generally shows pefect synchrony. Around 7 = 2,
we can obtain two-cluster states involving slow switching as well as the state of perfect
synchrony, and their appearance depends on initial conditions. Such two-cluster states
seems to vanish around 7 = 4, and steady multi-cluster states begin to arise instead. The
state of perfect synchony remains stable up to about 7 = 4.5 beyound which the steady
multi-cluster states generally arise.

Similarly to the preceding sections, the phase reduction of the model provides a clear
understanding of the results given above. The coupling funtion for the model under
consideration is obtained numerically, which is exhibited in Fig. 4.6. Using this coupling
function, we obtain bifucation diagrams of the two-cluster states for given p, which are
illustrated in Fig. 4.7. We can see that a pair of two-cluster state with negative A3 exist
not only for 7 > 7. but also for 7 < 7.. We checked that the stability of the branches
actually admits the existence of an attrating heteroclinic loop. Thus, both the state of
perfect synchrony and the heteroclinic loops are stable over some region of 7 < 7. This
bistability comes from a particular phase dynamics near the bifucation point, which differs
from that in §4.4. We will explain it in the next section.

Similar results can be obtained if we increase a~! instead of 7, which implies that

1

the delay of the coupling effectively increases with o~ *. This can be seen visually in
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Figure 4.6: Coupling function.7" ~ 109 and 7, ~ 6.4.

Fig. 4.6, from which we find that the coupling function is further shifted to left for larger
a~ 1. Such an effect of o ! is intuitively understood from the nature of the pulse function
given by Eq. (3.3), i.e., it takes the time of a~! to rise the pulse, so that the coupling is
effectively delayed. The similar effect exists in the case of LIF as well (see Fig. 3.1). Z(x)
is identical with the coupling function in the limit ~! — 0, and the coupling function
['(z) is effectively sifted to left compared by Z. One can check that the coupling function
is shifted further to left for larger a~'. The minimum of the coupling function, however,

is little shifted due to the sudden drop of Z(z).

4.6 Near the bifucation point

In this section, we concentrate on the vicinity of the bifurcation point where the state of
perfect synchrony loses stability. Although we can say nothing about the global structure
of the phase space in the argument here, we show the local stability property necessary
for the existence of an attracting heteroclinic loop, which was aruged in §3.7, is easily

satisfied near the bifurcation point. The model equation we consider is Eq. (4.9), given by

d

x X
Eiﬁi(t) =1+ jz_lf(ﬂﬁi(t) —i(t) + 1), (4.18)

where we treat 7 as a control parameter. We assume that the coupling function I'(z) is

minimum at £ = 7.. Then, for small £ = = — 7., we may expand I as
[(z) = co + c23? — 33 + O(3Y), (4.19)
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Figure 4.7: Bifucation diagrams for (a)p = 0.5 and (b)p = 0.45. T' ~ 109 and 7. ~ 6.4.
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where ¢y is positive. Suppose that c3 is positive, which is actually the case for the coupling
function displyed in Fig. 4.2. In this case, heteroclini loops arises supercritically. We put
co = 0 and ¢3 = 1 by properly rescaling K and shifting the natural frequency in Eq. (4.18).
In order to find possible two-cluster states, we solve Eq. (3.22) using Eq. (4.19). We then
obtain three solutions for A as a function of p and 7. One is the trivial solution A = 0

(the perfect synchrony), and the others are given by

(1 =2p)(ca = 37) (1 —2p)?(co — 37)2
A= 2 i\/ 4

+ 257, (4.20)

where 7 = 7 — 7.. Note that the expression above using the approximate I' given by
Eq. (4.19) is valid only for small A, which is actually the case if p is close to 1/2 and
7 is small. Substituting Eq. (4.20) into Egs. (3.23)-(3.25), we obtain eigenvalues associ-
ated with the two-cluster states. The resulting bifurcation diagram for given p is shown
in Fig. 4.9. The solid and broken lines give the branches of negative and positive s,
respectively. Two solid branches exist for 7 > 0, which are represented by (p,A) and
(p,A’) with A > 0 and A’ < 0. One can easily comfirm that the eigenvalues of these
states satisfy A1, A, > 0 and Ao, A3, A], A} < 0 for arbitrary p and small 7. The quantity
v defined by Eq. (3.28) can also be calculated and turns out to be larger than 1. Thus,
all the local stability conditions for the existence of an attracting heteroclinic loop are
generally satisfied just above the bifurcation point provided c3 > 0.

It is also possible that a heteroclinic loop is formed when ¢35 < 0. In that case, it is
expected to arise subcritically, so that both the heteroclinic loop and the state of perfect
synchrony may coexist over some region of negative 7. We have found that such bistability
actually arises in the model introduced in §4.5. The expansion of the coupling function
displayed in Fig. 4.6 for small Z actually shows that c3 is negative. We have to consider
higher orders to comfirm the bifurcation structure for ¢s < 0, which is complicated in

general and is not studied further.

4.7 Conclusion

We have shown that the heteroclinic loop arise in three specific models of globally coupled
oscillators. In particular, it was argued that time-delay in coupling easily induce bifuca-
tion to the formation of the heteroclinic loop. The heteroclinic loop can arise via both
supercritical and subcritical bifurcations. In the supercritical one, a pair of two-cluster
states arises above the bifurcation point, which always satisfy the local stability condition
for the formation of an attracting heteroclinic loop. In the subritical one, a heterocinic
loop can arise below the bifurcation point, so that both the state of perfect synchrony and

the heteroclinic loop coexist over the some region of the bifurcation parameter.
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Figure 4.8: Coupling functions. The arrows indicate minimum points of the coupling

functions.

Figure 4.9: Bifurcation diagram around 7 = 7, for p # 0.5. A pair of solid branches exist

for 7 > 7., which can be connected heteroclinically.
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Chapter 5

General Conclusion

In the present thesis, we have discussed the slow switching phenomenon in globally coupled
oscillators. The phenomenon appears as a result of approach of the system to heteroclinic
loops. A particular stability property of two-cluster states and a certain symmetry of our
model are responsible for the formation of the heteroclinic loop. The resulting heteroclinic
loop is stably formed through invariant subspaces that exist for the certain symmetry of
our model, and it is robust under small perturbation unless the symmetry is broken. It
was also argued that time delay in coupling easily causes the transition from the state
of the perfect synchrony to the formation of the heteroclinic loop. When the state of
prefect synchrony loses statbility supercritically, local stability conditions necessary for
this formaion is generally satisfied just above the bifurcation point.

We gained considerable advantages in a theoritical approach by assuming weak cou-
pling. In Chap. 3, our model is reduced to a standard phase model that is free from
memory effect involved originally. In Chap. 3, we again obtain a phase model by which
we can ignore irrelevant degrees of freedom associated with amplitude directions. In the
phase model obtained, the effect of delay in coupling is converted a phase shift of the
coupling function, which drastically reduces a difficulty in treating delayed coupling. In
particular, the bifurcation structure induced by delay can clearly be understood through

the phase model obtained.
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Appendix A

Symmetric multi-cluster state

According to Ref. [10], we summarize here the existence and the stability analysis of
symmetric multi-cluster states in the phase model given by Eq. (3.18), in which each cluster
consists of the same number of oscillators. In Eq. (3.18), there always exist symmetric

n-cluster states rotating steadily, which can be represented by

-
o= Q4 om0 (A1)

where €, is a constant frequency of the symmetric n-cluster state, given by
K ' (Tk
Qp=w+— P<—+r). (A.2)
n n

The eigenvalues associated with them are calculated as

! n—1
)\intra = £ ZFI (T_k + T) ) (A3)
n 5—0 n
K'“~_, [Tk
Myer = S T" (; T ) (1 — exp[—iTkp/n]). (A4)
k=0

Aintra 18 a intra-cluster eigenvalue with multiplicity of N —n. X (p=1,...,n-1) are

associated with inter-cluster fluctuations. If all these eigenvalues have negative real part,

the symmetric n-cluster state is stable.
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