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We study a large population of globally coupled phase oscillators subject to common white Gaussian noise
and find analytically that the critical coupling strength between oscillators for synchronization transition de-
creases with an increase in the intensity of common noise. Thus, common noise promotes the onset of
synchronization. Our prediction is confirmed by numerical simulations of the phase oscillators as well as of
limit-cycle oscillators.
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Synchronization of an ensemble of periodic oscillators
has attracted considerable attention because of its broad ap-
plications in many fields ranging from physics to engineering
�1–4�. In particular, synchronization plays an essential role in
numerous biological functions, including the formation of
pacemaker tissues of the heart and of the circadian master
clock �5�.

Because real systems are inevitably subject to noise, it is
important to understand the effect of noise on the synchroni-
zation of periodic oscillators. Some types of noise, including
thermal noise or intrinsic noise in cells, act independently on
individual components, which usually inhibits synchroniza-
tion �1,6�. However, there are many situations where a single
noise process, such as that originating from environmental
fluctuations, acts on an entire system. Whether such common
noise enhances or inhibits synchronization is actually un-
clear. This issue is thought to be relevant to biological pace-
maker tissues in that external noise could have a positive
effect on synchronization. However, clarification of the out-
come of fluctuating input is necessary in cases, such as that
of deep brain stimulation for Parkinson disease �7�, in which
global external stimulation is used to destroy synchronization
of dynamic components.

The effect of common noise on uncoupled oscillators or
coupled-oscillator networks with small sizes has been exten-
sively studied for both periodic and chaotic oscillators, and
rigorous theoretical frameworks have been proposed �8�. In
contrast, for a large population of coupled oscillators, despite
a numerous body of numerical and experimental evidence
�9�, theoretical treatment is still an open and challenging
problem.

In this paper, we investigate a large population of non-
identical phase oscillators that are globally coupled and sub-
ject to common Gaussian white noise to clarify the effect of
common noise on coupled oscillators. Utilizing the anzatz
recently proposed by Ott and Antonsen �10�, we analytically
show that the addition of common noise leads to a decrease
in the critical coupling strength for synchronization transi-
tion. Our prediction is corroborated by direct numerical
simulations of the model. We also numerically confirm that
globally coupled limit-cycle oscillators show the same de-

pendence on common noise. The employed phase model ap-
proximates many realistic systems with weak coupling and
weak forcing. Thus, our results suggest that weak common
noise generally promotes synchronization of oscillators with
week and global coupling.

Consider globally coupled phase oscillators, known as the
Sakaguchi-Kuramoto model �11�, subject to a common ex-
ternal force

d�i

dt
= �i +

K

N
�
j=1

N

sin�� j − �i + �� + p�t�sin �i, �1�

where �i and �i are the phase and the natural frequency,
respectively, of the ith oscillator, K�0 is the coupling
strength, � is a parameter of the coupling function
�−� /2���� /2�, and p�t� is a common external force. We
assume that the natural frequency distribution is given by a
Lorentzian function f freq���= 1

�
1

��−�0�2+1
. We will further as-

sume white Gaussian noise for p�t� �12�, but first we treat
p�t� as a general time-dependent function for a while.

Note that Eq. �1� approximates various realistic oscillators
with weak coupling and weak forcing �1,3,13�. Note also that
the common external force is multiplied by a function of the
phase, sin �i, which is called a phase sensitivity function.
The phase sensitivity function naturally appears in the phase
description of limit-cycle oscillators �1,2,13�. We will later
demonstrate these facts using a limit-cycle-oscillator model
that generally appears near a Hopf bifurcation.

We examine the synchronization transition in the large-N
limit. For a better presentation, we set �=0 �corresponding
to the Kuramoto model �1��. The extension to nonzero � is
straightforward; we will only show a final result for nonzero
� in the present paper. In the limit N→�, Eq. �1� becomes
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p� f	 = 0, �2�

where f�� ,� , t� is the distribution function for the phases of
the oscillators with natural frequency �, r=
−�

� d�
0
2�d�fei�

is the Kuramoto order parameter, and � represents the com-
plex conjugate. For p�t�=0, the synchronization transition
�the so-called Kuramoto transition� occurs at K=Kc=2,
above which �r� is nonvanishing �1�.*nagai.ken@ocha.ac.jp
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To investigate the transition in Eq. �2�, we first derive a
dynamical equation for the order parameter r. For this, we
employ the Ott-Antonsen ansatz for the phase distribution

f =
f freq���

2�
�1 + �

n=1

�

���ei��n + ���e−i��n�	 , �3�

where ��� , t� is a certain function �10�. Substituting Eq. �3�
into Eq. �2�, we obtain a dynamical equation for �

��

�t
+

K

2
�r�2 − r�� + i�� +

p

2
�1 − �2� = 0. �4�

Note that r�t�=����0− i , t� because r=
−�
� d�
0

2�d�fei�

=
−�
� d�f freq�

� and f freq���= 1
�

1
��−�0+i���−�0−i� . Thus, by

setting �=�0− i in Eq. �4�, we obtain
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2
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By letting r=�Aei��0t+	�, we further obtain

dA

dt
= h�A� + gA�A,�0t + 	�p , �6�

d	

dt
= g	�A,�0t + 	�p , �7�

where h�A�= �K−2�A−KA2, gA�A ,�0t+	�
=−�A�1−A�cos��0t+	�, and g	�A ,�0t+	�
= �1+A�

2�A
sin��0t+	�.

Now we assume that p�t� is white Gaussian noise with
p�t��=0 and p�t�p�s��=2D
�t−s�, and interpret Eq. �7� as a
Stratonovich differential equation. Then we obtain the
Fokker-Planck equation for the probability distribution
q�A ,	 , t�, given by
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Because h, gA, g	, and q are 2�–periodic functions, integrat-
ing of both sides of Eq. �8� over 	 from 0 to 2� yields
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where Q�A , t�=
0
2�qd	.

At this stage, we additionally assume that K and D are
sufficiently small compared to a typical natural frequency
�0. It is natural to assume this because this is the condition
under which Eq. �1� approximates coupled limit-cycle oscil-
lators. Under this assumption, Q evolves sufficiently slowly

compared to a typical oscillation time scale, i.e., 2� /�0.
Thus, to a good approximation, the right-hand side of Eq. �9�
can be time-averaged over the duration of 2� /�0, leading to
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= −
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��D
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Letting �Q /�t=0, we obtain the stationary distribution
Q��A� as

Q��A� = C exp� 2

D
�−

2A

1 − A
− �K + D�log�1 − A�	� ,

�11�

where C=1 /
0
1dA exp� 2

D �− 2A
1−A − �K+D�log�1−A���. In sto-

chastic systems, the maximum of the probability distribution
function is often adopted as the order parameter characteriz-
ing a transition �14�. From Eq. �11�, it follows that Q��A�
assumes its maximum at

Amax = � 0 �K + D � 2�
K + D − 2

K + D
�K + D � 2�� . �12�

Thus we find that the critical coupling strength at which Amax
becomes nonvanishing is Kc=2−D; the common noise de-
creases the critical coupling strength by D as compared to
that in the original Kuramoto transition.

For nonzero �, one can show that K in Eq. �12� is re-
placed by K cos �. Thus, the critical condition is given by
Kc= 2−D

cos � .
We confirmed our prediction by numerical simulation of

Eq. �1� with N=10 000 and �=0. The Lorentzian distribu-
tion for the natural frequency was given by �15�

�i = �0 + tan�i
�

N
− �N + 1�

�

2N
	 �1 � i � N� . �13�

We set �0=100 to ensure that K and D are much smaller than
�0. We employed random initial conditions and numerical
data were obtained from t=10 000 to t=60 000. As shown in
Fig. 1�a�, the phase distribution did not cluster for K=1.99
and D=0�K+D�2�. In contrast, a cluster of oscillators was
observed for K=1.99 and D=0.02 �K+D�2�. To estimate
Amax from the numerical data, the logarithm of the histogram
of A around the peak was fitted to the logarithm of Eq. �11�,
i.e., a+ 2

b �− 2A
1−A − �c+b�log�1−A�� with fitting parameters a,

b, and c. The obtained data were well fitted �Fig. 1�b��. The
numerically identified values of Amax= b+c−2

b+c were plotted in
Fig. 2, which shows excellent agreement with the theoretical
prediction of Eq. �12�. In our preliminary numerical simula-
tions, we also confirmed that a similar transition behavior
occurs in the case of the Gaussian distribution for the natural
frequency �data not shown�.

We also observed the distribution of the averaged fre-

quencies �i
ave defined as the long-time average of �̇i. Numeri-

cal results are shown in Fig. 3. Without noise, the distribu-
tion had a delta-function peak at �0, whereas for D�0, this
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peak disappeared and the distribution was continuous. This
qualitative difference can be explained as follows. Using the
Kuramoto order parameter r, Eq. �1� can be written as

�̇i=�i+K�r�sin��0t+	−�i�+ p�t�sin �i. For D=0, �r� and 	
are time-independent after transient �1�. Then, oscillators
with ��i−�0�� �r� are phase locked to the mean field, so that
their actual frequencies are exactly the same as that of the
mean field, which is �0. However, for D�0, �r� fluctuates
with time and becomes vanishingly small with a finite prob-
ability �see Eq. �11� and Fig. 1�b��. This implies that any
oscillator except that with �i=�0 cannot be phase-locked to
the mean field for an infinitely long time. Therefore, oscilla-

tors with �i��0 ��i��0� tend to have a larger �smaller�
averaged frequency than that for D=0, so that the delta-
function peak vanishes.

Finally, we demonstrate the validity of our prediction in
limit-cycle oscillators. We introduce the following model

dWi

dt
= �1 + i�i�Wi − �Wi�2Wi +

K

N
�
j=1

N

�Wj − Wi� + �p�t� ,

�14�

where Wi is the complex state variable of the ith oscillator, 
is a small parameter to denote that the coupling strength and
the noise strength smaller than both the relaxation rate of the
amplitude dynamics and the natural frequencies of oscilla-
tors, and p�t� is a common white Gaussian noise with
strength D. Each individual oscillator is called a Stuart-
Landau oscillator, which generically appears when the sys-
tem is near a Hopf bifurcation �1�. Equation �14� is approxi-
mated by Eq. �1� with �=0 for small  �1�, so similar
behavior is expected.

We numerically simulated Eq. �14� with N=1000. We
defined A as �� j=1

N ei�j /N�2 with � j =arg Wj and estimated Amax
in the same manner as for the phase oscillators. The numeri-
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FIG. 1. �Color online� Numerical results for the phase model
given by Eq. �1�. Crosses �black� and open circles �orange� repre-
sent numerical data for D=0 and D=0.02, respectively. �a� Snap-
shot of the phase distribution for K=1.99. �b� Distribution of A for
�b-1� K=1.96, �b-2� K=1.99, and �b-3� K=2.1. Lines on the points
are fitting curves. Histograms and curves are normalized for the
maximum of curves to be 1. Point-dashed line �blue� and dashed
line �green� represent the numerically identified Amax for D=0 and
D=0.02, respectively.
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FIG. 2. �Color online� Amax for the phase model as a function of
K. Crosses �black�, open circles �orange� and filled circles �red�
indicate the numerically identified Amax for D=0, D=0.02, and
D=0.04, respectively. Error bars represent the variance of Amax for
ten trials with different initial conditions and different noise pro-
cesses. Point-dashed line �black�, dashed line �orange�, and a solid
line �red� represent Eq. �12� for D=0, D=0.02, and D=0.04,
respectively.
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FIG. 3. �Color online� Distribution of the long-time averaged
frequencies of the phase oscillators for K=2.02. Crosses �black� and
open circles �orange� with connecting lines are the numerical results
for D=0 and D=0.02, respectively.
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FIG. 4. �Color online� Numerical results for the limit-cycle os-
cillators given by Eq. �14�. Legends for �a� and �b� are the same as
those in Figs. 2 and 3, respectively. �a� Order parameter Amax as a
function of K. Lines represent Eq. �12�. �b� Distribution of the long-
time averaged frequencies for K=2.02. We used the data
from t=5�106 to t=10�106. N=1000, =0.01, and
�i=0.1+ tan�i �

N − �N+1� �

2N �.
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cally determined Amax values are shown in Fig. 4�a�, which
agrees reasonably well with the prediction of Eq. �12�. We
also observed that the distribution of �i

ave was continuous for
D�0 �Fig. 4�b��.

To conclude, we have studied the Sakaguchi-Kuramoto
model subject to common noise and analytically showed that
the critical coupling strength for the synchronization-
desynchronization transition decreases with an increase in
the strength of the common noise. The prediction has been
numerically corroborated. We have also found that the distri-
bution of the averaged frequencies is continuous when

common noise is present. Our results suggest that weak com-
mon noise generally promotes synchronization of weakly
coupled oscillators. Nevertheless there are few reports on
synchronization induced by common noise in biological sys-
tems or chemical systems. Experimental observation of the
effect of common noise on such systems would be of great
interest.
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