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ABSTRACT

The neural oscillator model proposed by Matsuoka is a piecewise affine system that exhibits distinctive periodic solutions. Although such
typical oscillation patterns have been widely studied, little is understood about the dynamics of convergence to certain fixed points and
bifurcations between the periodic orbits and fixed points in this model. We performed fixed point analysis on a two-neuron version of the
Matsuoka oscillator model, the result of which explains the mechanism of oscillation and the discontinuity-induced bifurcations such as
subcritical/supercritical Hopf-like, homoclinic-like and grazing bifurcations. Furthermore, it provided theoretical predictions concerning a
logarithmic oscillation-period scaling law and noise-induced oscillations observed around those bifurcations. These results are expected to
underpin further investigations into oscillatory and transient neuronal activities concerning central pattern generators.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0220075

The Matsuoka oscillator model is a neuronal network model that
exhibits oscillatory activities owing to the adaptation properties
of each neuron and the mutual inhibitions between neurons.
This is often applied for modeling the spinal oscillatory neuronal
circuits known as central pattern generators (CPGs) and for sim-
ulating biological locomotion such as human bipedal walking.
However, most previous studies have overlooked its dynamics
that converge toward stationary states, corresponding to tran-
sient neuronal activities and non-oscillatory movements. In this
study, we conducted fixed point analysis on a two-neuron case
of the Matsuoka oscillator model. We (I) formulated the exis-
tence and stability of all possible fixed points, (II) demonstrated
the emergence of oscillatory solutions and bifurcation mecha-
nisms between oscillatory and convergent dynamics, and (III)
predicted a logarithmic oscillation-period scaling law and noise-
induced oscillation. Our results indicate that the central nervous
system might use CPGs for both rhythmic locomotion and non-
oscillatory or discrete movements. The discussion of limitations
presented herein will, in the future, probably be followed by

extending the Matsuoka oscillator model to understand an inte-
grative mechanism for neural control of both rhythmic and
discrete movements.

I. INTRODUCTION

A biological neural circuit, the CPG, is the basis of rhythmic
movements, for example, locomotion and respiration, in animals.1,2

The CPGs of vertebrates are located in the spinal cord and can
generate stable oscillatory activities by receiving stationary inputs
or tonic drives descending from a part of the brainstem called the
mesencephalic locomotor region (MLR). Moreover, the CPGs’ oscil-
lation patterns are modulated by feedback from peripheral sensory
organs, contributing to highly autonomous and adaptive motor con-
trol. Recent studies have suggested that the spinal interneuronal
networks thought to implement CPGs are also involved in discrete,
transient, non-oscillatory movements such as point-to-point reach-
ing with the upper limbs.3–5
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Various dynamical system models mathematically describe the
CPG functions. The Matsuoka oscillator model, which focuses on
the dynamics of neuronal firing rates, is an example.6–8 Despite hav-
ing less precise temporal resolution than spiking neuronal network
models,9,10 firing rate models are useful for understanding neural
phenomena in macroscopic timescales such as neuromuscular activ-
ity and motor control.11 Thus, the Matsuoka oscillator model has
been applied to simulation studies of human bipedal walking.12–15

Additionally, the physiological interpretation of the model is feasible
compared to more abstract models without neuronal configuration,
such as the phase oscillator model.1,16 The Wilson–Cowan model17,18

is another firing rate model, although it addresses neither the adap-
tation properties nor the mutual inhibitory connections of neurons.
In particular, the latter feature follows the half-center structure of
spinal circuits,2,3 which validates the Matsuoka oscillator as a basic
hypothetical model for CPGs.

For dynamical systems, rhythmic oscillatory activities are rep-
resented as stable limit cycles in the Matsuoka oscillator model.
The original paper on this model (Ref. 6) presents several proofs
for the existence condition of oscillatory solutions. However, pre-
vious studies have solely focused only on its distinctive oscillatory
solutions,19 whereas some transient activities with convergence to
stationary states or fixed points have been insufficiently discussed.
Reference 20 highlighted this problem; however, the terminal sta-
tionary states are not realized by positive constant inputs and
positive neuronal inner states. Furthermore, little is known and
understood about the bifurcation types, mechanisms, and critical
behaviors in the vicinity of the bifurcations that emerge between
such fixed points and the well-known limit cycles. Therefore, further
investigation into attracting fixed points and their relevant bifurca-
tions is essential for grasping the possibility of transient activities in
the Matsuoka oscillator model, which could be related to discrete,
transient movements.19,21

This study mainly aims to systematically formulate possible
fixed points corresponding to stationary states that appear in the
Matsuoka oscillator model and to investigate bifurcations between
oscillatory solutions and fixed points in addition to the oscilla-
tion mechanism. We first review the original Matsuoka oscillator
model (Sec. II); thereafter, we discuss the classification of oscillation
types and approximations of the oscillation period (Sec. III). This
review is followed by a comprehensive fixed point analysis regard-
ing the existence and stability of fixed points (Sec. IV). Based on
the analysis results, we present theoretical formulations to explain
the emergence of oscillations and bifurcation scenarios (Sec. V).
A logarithmic oscillation-period scaling law and a novel predic-
tion of noise-induced oscillations are also proposed. Throughout
this paper, we attempt to provide a foundation for understanding
the common mechanisms underlying the oscillatory and convergent
neuronal activities that both emerge in one of the well-known CPG
models.

II. BASIS OF THE STUDY

A. The Matsuoka oscillator model

The Matsuoka oscillator model6–8 is a neural oscillator
model comprising n firing neurons with neuronal adaptation
properties and mutual inhibitions. The time evolution of the ith

neuron (the neuron-i) is described using the following differential
equations:

τx

dxi

dt
= −xi − byi −

n
∑

j6=i

aijzj + si, (1a)

τy

dyi

dt
= −yi + zi, (1b)

zi = max(xi, 0), (1c)

where xi is the membrane potential or inner state of the neuron-
i; yi is the variable of adaptation or fatigue; zi is the firing rate;
si is the constant input stimulus into the neuron-i; aij ≥ 0 is the
synaptic weight from neuron-j to the neuron-i; b > 0 is the constant
determining adaptation intensity; τx > 0 and τy > 0 are the time
constants of xi and yi, respectively. Here, aij is non-negative because
the model supposes mutual inhibitions between neurons. No exci-
tatory synapses or self-inhibitions are considered in this original
form of the Matsuoka oscillator model. Although not specified in
this study, the second is assumed as the time unit in most previous
studies.

The outline of this model resembles regular recurrent neural
networks (RNNs), adding the specific property of adaptation. The
nonlinear transformation (1c) is the same as that of the rectified
linear unit (ReLU) function, which is piecewise linear as follows:

zi =
{

xi (xi > 0),
0 (xi ≤ 0).

(2)

Note that this activation function should have a firing threshold θ

as zi = max(xi − θ , 0). This threshold parameter can, however, be
erased without loss of generality by redefining xi − θ and si − θ as
xi and si, respectively.6 By applying this procedure, the threshold
parameter θ can be ignored in this study.

Despite being named an “oscillator,” a single neuron in the
Matsuoka oscillator model (n = 1) cannot sustainably oscillate by
itself. According to the case classification (2), a single neuron fol-
lows different dynamics depending on the positivity or negativity of
xi. For xi ≤ 0, the system (1) is rewritten as

d

dt

[

xi

yi

]

=









−
1

τx

−
b

τx

0 −
1

τy









[

xi

yi

]

+





si

τx

0



 . (3a)

Similarly, in the case xi > 0,

d

dt

[

xi

yi

]

=









−
1

τx

−
b

τx

1

τy

−
1

τy









[

xi

yi

]

+





si

τx

0



 . (3b)

In both cases, the single-neuron state
[

xi yi

]>
asymptotically con-

verges to stable fixed points. According to Ref. 6, under constant
inputs, firing rates of actual neurons are experimentally known for
decreasing monotonically to those fixed points after reaching their
peaks. In terms of dynamical systems, this biological restriction is

Chaos 34, 093107 (2024); doi: 10.1063/5.0220075 34, 093107-2

Published under an exclusive license by AIP Publishing

 20 N
ovem

ber 2024 11:41:19

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

introduced as a condition under which the system (3b) exhibits
either overdamping or critical damping, as follows:

(τy − τx)
2

4τxτy

≥ b. (4)

The adaptation process requires τy > τx, meaning that yi is a slower
variable than xi. Additionally, Eq. (4) requires even sufficient sepa-
ration in the timescale between τy and τx. No oscillatory solution is
possible in the case n = 1 of the Matsuoka oscillator model under
these conditions for any input stimulus si, as shown in Fig. 1 in
Ref. 6.

When mutually connected with inhibitory synapses, neurons
in the Matsuoka oscillator model assume oscillatory properties as
a network. In cases where more than three neurons are intercon-
nected (n ≥ 3), many network topologies and corresponding diverse
oscillation patterns can be observed, as shown in Figs. 3–5 of Ref. 6.
The following sections report on the case of n = 2 because the two-
neuron model is the fundamental and simplest element of oscillatory
circuits. This four-dimension system is written as

τx

dx1

dt
= −x1 − by1 − a12z2 + s1, (5a)

FIG. 1. Neuronal activity patterns for n = 2 of the Matsuoka oscillator model. Note that a = a12 = a21, r = s2
s1
, and the parameters b, τx , τy , and s1 are all fixed as written

in SubSec. III A. (a) a = 2, r = 1. (b) a = 1.13, r = 1. (c) a = 2, r = 1.73. (d) a = 1.6, r = 0.47. (e) a = 1, r = 1. (f) a = 2, r = 0.56.
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FIG. 2. Trajectories of oscillation pattern of Fig. 1(a) plotted on the x1–x2 plane (Left), and the x1–y1 plane (Right). The symbols SA, SB, SC, and SD on the left figure are
defined in Sec. IV.

τy

dy1

dt
= −y1 + z1, (5b)

τx

dx2

dt
= −x2 − by2 − a21z1 + rs1, (5c)

τy

dy2

dt
= −y2 + z2, (5d)

z1 = max(x1, 0), (5e)

z2 = max(x2, 0). (5f)

Here, we define a new parameter r as the input ratio between the two
input stimuli,

r :=
s2

s1

. (6)

Figure 1 shows several neuronal activity patterns as solutions of
the two-neuron model (5) with symmetric connection a = a12 = a21

and various values of r and a. Although the system does not always
exhibit oscillations [e.g., Figs. 1(e) and 1(f)], the observed oscillatory
solutions are empirically stable limit cycles when the system displays
oscillatory properties [e.g., Figs. 1(a)–1(d)]. These oscillation trajec-
tories can also be visualized through projections to the x1–x2 plane
or the x1–y1 plane, an example of which is shown in Fig. 2.

B. Existence condition of oscillatory solutions

The original papers (Refs. 6 and 7) derived the condition for the
existence of oscillatory solutions concerning synaptic connection

a12, a21, and input ratio r. When n = 2, this condition is
√

a12a21 > ainf, (7a)

r > rinf, (7b)

r < rsup, (7c)

where

ainf := 1 +
τx

τy

, (8a)

rinf :=
a21

1 + b
, (8b)

rsup :=
1 + b

a12

. (8c)

Equation (7a) requires that synaptic weights a12 and a21 are suffi-
ciently large. Equations (7b) and (7c) provide a constraint for r = s2

s1

so that oscillatory solutions emerge when the level of input s2 into
the neuron-2 is roughly comparable with input s1 into the neuron-1.
From Eqs. (7a)–(7c), a necessary condition for a12 and a21 is given as

1 +
τx

τy

<
√

a12a21 < 1 + b. (9)

Considering Eqs. (4) and (9) together, we can obtain inequalities,

τx

τy

< b ≤
(τy − τx)

2

4τxτy

, (10)

which forms an additional necessary condition for τx, τy > 0 as

τy > 3τx. (11)
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Specifically, the parameter setting in Ref. 8 does not satisfy Eq. (11),
which inappropriately results in permitting the damped oscillation
of a single neuron.

Equations (7a)–(7c) are the conditions under which no “stable”
fixed point exists in the system. According to Ref. 6, any solu-
tions of the general system (1a)–(1c) are proved to be bounded for
t ≥ 0. Hence, if Eqs. (7a)–(7c) are satisfied, the system state does
not converge to any fixed points but only travels in the bounded
region; thus, nonstationary solutions occur. Note that these oscilla-
tions are empirically observed as limit cycles, which have not been
mathematically guaranteed yet.

For the symmetric network a = a12 = a21, we can rewrite
Eqs. (7a)–(7c) as

a > ainf, (12a)

r > rinf, (12b)

r < rsup, (12c)

where

ainf := 1 +
τx

τy

, (13a)

rinf :=
a

1 + b
, (13b)

rsup :=
1 + b

a
. (13c)

III. NUMERICAL OBSERVATIONS

A. Classification of oscillation types

Because we are interested in the effects of neuronal interactions
and external inputs, we do not consider the changes in values of
b, τx, τy. Moreover, the multiplication of s1 and s2 by a common
positive constant µ only increases the amplitude µ times with no
change in the period or frequency of oscillation owing to the piece-
wise linearity of the system.7 Although s1 is fixed, changing input
ratio r = s2

s1
introduces an asymmetry between the external inputs

into two neurons, which qualitatively transforms the system dynam-
ics. Therefore, in the following discussions on the bifurcations of this
model, we mainly attempt to vary parameters r, a12, and a21 for fixed
τx, τy, b, and s1 values. Additionally, in all numerical simulations and
figures in this study, we fix τx = 0.05, τy = 0.6, b = 2.5, and s1 = 5.
Note that the positivity or negativity of s1 is still important concern-
ing the condition of existence for several fixed points, as discussed
in the next section.

Figure 3 shows the oscillation period in the (r, a) space for
the symmetric network a = a12 = a21. On this plane, three critical
borderlines are defined by

∂�1 := {(r, a) ∈ R × R>0 | a = ainf} , (14a)

∂�2 := {(r, a) ∈ R × R>0 | r = rinf} , (14b)

∂�3 :=
{

(r, a) ∈ R × R>0 | r = rsup

}

, (14c)

where ainf, rinf, and rsup are given by Eqs. (13a)–(13c), respectively.
Specifically, we can obtain a certain borderline threshold a∗

+, which
meets ainf < a∗

+ < 1 + b, and can define the upper and lower parts
of ∂�2 and ∂�3,

∂�+
2 :=

{

(r, a) ∈ R × R>0 | r = rinf, a ≥ a∗
+
}

, (15a)

∂�−
2 :=

{

(r, a) ∈ R × R>0 | r = rinf, a < a∗
+
}

, (15b)

∂�+
3 :=

{

(r, a) ∈ R × R>0 | r = rsup, a ≥ a∗
+
}

, (15c)

∂�−
3 :=

{

(r, a) ∈ R × R>0 | r = rsup, a < a∗
+
}

. (15d)

The borderlines ∂�1, ∂�2, and ∂�3 surround an area �, where
Eqs. (12a)–(12c) are all satisfied and stable limit cycles emerge,

� :=
{

(r, a) ∈ R × R>0 | a > ainf, rinf < r < rsup

}

. (16)

In �, four qualitatively different types of oscillation patterns
appear, as shown in Figs. 1(a)–1(d);

• Oscillation type (a) shown in Fig. 1(a)
Of those discussed in previous studies, the most typical is this,
where the neurons alternate between the firing and resting
modes.

• Oscillation type (b) shown in Fig. 1(b)
This is a relatively small and fast oscillation in the vicinity of
∂�1, where the oscillation period is virtually independent of r
and decreases as a decreases.

• Oscillation type (c) shown in Fig. 1(c)
This emerges near ∂�+

2 and ∂�+
3 when a is greater than or equal

to a∗
+. In the neighborhoods of these borderlines, a neuron’s fir-

ing duration is greatly extended. On the borderline ∂�+
2 or ∂�+

3 ,
this neuron fires constantly while the other neuron remains
quiescent, as shown in Fig. 1(f).

• Oscillation type (d) shown in Fig. 1(d)
This is the remaining non-trivial oscillation type observed when
a < a∗

+ and r are near borderlines ∂�−
2 and ∂�−

3 . This pattern
has an invariant oscillation period under a fixed value of a. In
this pattern, only one neuron is permanently excited while the
other alternates between the firing and quiescent states.

As discussed later, there are additional borderlines 11 and 12

between the oscillation pattern (d) and the other patterns (a)–(c)
on the (r, a) space (see Fig. 6). The borderline threshold value a∗

+
above is derived in SubSec. V B. Note that the three critical border-
lines ∂�1, ∂�2, and ∂�3 defined by Eqs. (14a)–(14c) can also be
generalized to the asymmetric connection case a12 6= a21, where the
values of ainf, rinf, and rsup are in the asymmetric version given by
Eqs. (8a)–(8c), respectively (displayed on the inset of Fig. 3).

B. Approximation of oscillation period

Reference 8 provided an approximated angular frequency of
the limit cycle oscillation ω in the symmetric case a = a12 = a21 and

Chaos 34, 093107 (2024); doi: 10.1063/5.0220075 34, 093107-5
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FIG. 3. Plot of oscillation period T of limit cycle solutions on the r–a plane in the symmetric case a = a12 = a21 of the system (5). Oscillatory solutions exist only in � (T is
plotted), which is surrounded by the three borderlines ∂�1, ∂�2, and ∂�3 (black solid lines). Each circle plot indicates the parameter set (r , a) corresponding to the activity
patterns of Figs. 1(a)–1(f). (Inset) the similar plot in the asymmetric connection case where a = a12 and a21 = 1.44a.

r = s2
s1

= 1,

ω =
1

τy

√

(τx + τy)b − τxa

τxa
. (17)

Using this expression, we obtain the approximated oscillation
period, Tharm, as

Tharm :=
2π

ω
= 2πτy

√

τxa

(τx + τy)b − τxa
. (18)

Equation (17) is based on the approximations of xi by a pure
sinusoidal wave and the system (5) by a harmonic oscillator. This is

a good approximation when the nonlinear transformation from xi to
zi given by Eq. (2) does not change the overall waveform (i.e., xi ≥ 0
at almost all time points). This corresponds to a critical behavior as
the oscillation type (b) seen in the vicinity of ∂�1. Figure 4 plots the
actual oscillation periods (circle) and the approximated oscillation
periods given by Eq. (18) (dotted line) along the cross section (S1)
are represented by the vertical dotted line in Fig. 3. As the value of
a decreases to ainf, the theoretical prediction Tharm approaches the
numerically observed oscillation period T.

Two main problems arise concerning the approximation form
Tharm given by Eq. (18). First, Tharm is less accurate when a is suffi-
ciently large to approach borderlines ∂�2 and ∂�3. This is because
the larger the waveform distortion from xi to zi, the poorer the
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FIG. 4. (Left) Plot of the oscillation period T vs the symmetric synaptic weight a with a fixed value r = 1 corresponding to the dotted line (S1) in (Fig. 3). (Right) Another plot
version of ln(1 + b − a) vs the oscillation period T .

prediction accuracy of Eq. (17), as mentioned in Ref. 8. Second,
Tharm can only be applied to the cases a = a12 = a21 and r = 1, which
correspond to the line (S1) in Fig. 3. This means that asymmetric
oscillations like the oscillation type (c) cannot be well evaluated by
the approximation form Tharm.

Numerical observations imply the logarithmic divergence of
the oscillation period under the larger value of a. In SubSec. V C,
we propose a novel scaling law given by Thomo, which can roughly
approximate this logarithmic divergence [as represented by solid
lines in Fig. 4]. We see that this approximation Thomo is also
applicable to the cases of a12 6= a21 and r 6= 1, unlike the previous
approximation Tharm.

IV. EXISTENCE AND STABILITY OF FIXED POINTS

Within a single linear dynamical system, only a neutrally sta-
ble oscillation around a center is possible, and no stable limit cycle
emerges as a periodic solution. Nevertheless, a typical class of hybrid
systems, the piecewise affine system, which consists of several dis-
cretely combined linear systems, sometimes possesses nontrivial
solutions of stable limit cycles. The Matsuoka oscillator model is an
example of piecewise affine systems, because the system dynamics
switch discontinuously across the x1 axis and x2 axis that represent
the boundaries xi = 0 of Eq. (2).

Now, we apply fixed point analyses to the n = 2 model (5) for
a precise discussion regarding the existence and stability of fixed
points, which correspond to stationary neuronal activities observed
in Figs. 1(e) and 1(f). As discussed later, these analyses are essen-
tial for understanding the generation and bifurcation mechanisms

of limit cycle oscillations and deriving the oscillation period predic-
tion (34). For convenience, we represent a system state or a phase
point X in the phase space R

4,

X :=
[

x1 y1 x2 y2

]>
. (19)

We also define an operator [·]q that extracts the q-coordinate of the

variable
(

e.g., [X]y1
= y1

)

.
Depending on the positivity or non-positivity of x1 and x2, we

can divide the phase space R
4 into four different regions, which

correspond to four orthants on the x1–x2 plane,

SA :=
{

X ∈ R
4 | x1, x2 ≤ 0

}

,

SB :=
{

X ∈ R
4 | x1 > 0, x2 ≤ 0

}

,

SC :=
{

X ∈ R
4 | x1 ≤ 0, x2 > 0

}

,

SD :=
{

X ∈ R
4 | x1, x2 > 0

}

.

(20)

These regions are divided by the discontinuity boundaries below,
which are defined as three-dimensional manifolds corresponding to
parts of the x1 and x2 axes,

6AB = 6BA :=
{

X ∈ R
4 | x1 = 0, x2 ≤ 0

}

,

6BD = 6DB :=
{

X ∈ R
4 | x1 > 0, x2 = 0

}

,

6AC = 6CA :=
{

X ∈ R
4 | x1 ≤ 0, x2 = 0

}

,

6CD = 6DC :=
{

X ∈ R
4 | x1 = 0, x2 > 0

}

,

(21)

Note that through this paper, unless there is any confusion, the dis-
continuity boundaries in the phase space above are all termed as
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“boundaries,” which are distinguished from “borderlines” such as
∂�1 and 11 in the (r, a) parameter space. Although notation cou-
ples such as 6CD and 6DC refer to the same switching manifold, in
this study, they are labeled separately depending on which direction
the system state follows through this manifold. For example, when
the system state transits from SC into SD, it is designated as cross-
ing 6CD; when it goes from SD into SC, it is represented as crossing
6DC.

Similar to the single neuron analysis (SubSec. II A), the two-
neuron system (5) can be represented as a set of four linear systems
by replacing zi with either xi or 0 according to Eq. (2). The linear
dynamics of each is defined within one of the divided regions. For
instance, within region Si (i ∈ {A, B, C, D}), the dynamic is

dX

dt
= JiX + s, (22)

where s =
[ s1

τx
0 s2

τx
0
]>

. A fixed point X
∗
i of these dynamics

meet dX

dt
= 0, or

JiX
∗
i + s = 0, (23)

the stability of which is characterized by the eigenvalues of matrix
Ji; if at least one of the eigenvalues λi has a positive real part, the
fixed point X

∗
i is unstable because the trajectories of the system are

repelled from it in the corresponding eigendirection. Conversely,
when the real parts of all eigenvalues are negative, the fixed point
is stable.22 In this sense, Ji is equivalent to the Jacobian matrix
around the fixed point X

∗
i . Note that stability here means linear and

asymptotic stability.
A key point is that the fixed point X

∗
i is determined correspond-

ing to the dynamics dX

dt
= JiX + s, independently of the region Si.

This means that X
∗
i ∈ Si does not always hold. Suppose that

X
∗
i ∈ Sj (j 6= i), (24)

then X
∗
i does not exist, or in other words, is a “virtual” fixed point23

because the system state at X
∗
i can follow

dX

dt
= JjX

∗
i + s 6= 0, (25)

so that the system is no longer stationary in this situation (see also
Fig. 5). Conversely, if

X
∗
i ∈ Si, (26)

then the fixed point X
∗
i is regarded as “regular” (or “admissi-

ble”) because it exists.23,24 Differently expressed, the condition (26)
provides the existence condition of X

∗
i . In the following subsec-

tions, the four cases of dynamics are investigated for each index
i ∈ {A, B, C, D}, regarding

• the Jacobian matrix Ji,
• the fixed point X

∗
i ,

• the eigenvalues λi, and
• the existence condition X

∗
i ∈ Si.

FIG. 5. Conceptual example of a virtual fixed point. Suppose that a fixed point X∗
i

determined with respect to dynamics dX
dt

= JiX + s is stable but virtual because
X

∗
i ∈ Sj ; when the system state is in the region Si , it is about to converge to

X
∗
i ; after crossing the boundary 6ij , however, the system state comes to follow

the other dynamics dX
dt

= JjX + s; thus, X∗
i no longer functions as a stable fixed

point in Sj .

A. Dynamics in the region SA

JA =



























−
1

τx

−
b

τx

0 0

0 −
1

τy

0 0

0 0 −
1

τx

−
b

τx

0 0 0 −
1

τy



























, (27a)

X
∗
A =

[

s1 0 rs1 0
]>

, (27b)

λA = −
1

τx

, −
1

τy

. (27c)

This case is the simplest because neither neuron fires, resulting
in no reciprocal interaction between the two. In this sense, each neu-
ron can be treated as an independent single neuron. The existence
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condition X
∗
A ∈ SA is

s1, rs1 ≤ 0. (27d)

It is obvious that X
∗
A is stable because the eigenvalues (27c) are

negative real numbers.

B. Dynamics in the region SB

JB =



























−
1

τx

−
b

τx

0 0

1

τy

−
1

τy

0 0

−
a21

τx

0 −
1

τx

−
b

τx

0 0 0 −
1

τy



























, (28a)

X
∗
B =

[

s1

1 + b

s1

1 + b

(1 + b)r − a21

1 + b
s1 0

]>

, (28b)

λB = −
1

τx

, −
1

τy

,
−τx − τy ±

√
QB

2τxτy

, (28c)

where QB = (τy − τx)
2 − 4bτxτy. The existence condition X

∗
B ∈ SB is

s1 > 0 and r ≤
a21

1 + b
. (28d)

In this case, neuron-2 is significantly more strongly inhib-
ited by neuron-1 than the direct external input s2; therefore, with
only the neuron-1 activated, the neuron-2 no longer fires. Two of
the eigenvalues λB = − 1

τx
, − 1

τy
are both negative real numbers, and

the same holds for the remaining two λB = −τx−τy±
√

QB

2τxτy
because of

the non-damped oscillation condition (4). Therefore, X
∗
B is a stable

node. The neuronal activity pattern shown in Fig. 1(f) corresponds
to the convergence to X

∗
B.

C. Dynamics in the region SC

JC =



























−
1

τx

−
b

τx

−
a12

τx

0

0 −
1

τy

0 0

0 0 −
1

τx

−
b

τx

0 0
1

τy

−
1

τy



























, (29a)

X
∗
C =

[

(1 + b) − ra12

1 + b
s1 0

rs1

1 + b

rs1

1 + b

]>

, (29b)

λC = −
1

τx

, −
1

τy

,
−τx − τy ±

√
QC

2τxτy

, (29c)

where QC = (τy − τx)
2 − 4bτxτy. This case is completely symmetric

to the dynamics in the region SB, with indices 1 and 2 switching to
each other. The existence condition of X

∗
C ∈ SC is

s2 = rs1 > 0 and
1

r
≤

a12

1 + b
. (29d)

D. Dynamics in the region SD

JD =



























−
1

τx

−
b

τx

−
a12

τx

0

1

τy

−
1

τy

0 0

−
a21

τx

0 −
1

τx

−
b

τx

0 0
1

τy

−
1

τy



























. (30a)

This is the most complicated case and requires a fixed-point
analysis of X

∗
D. If (1 + b)2 6= a12a21, then X

∗
D is written as

X
∗
D =

s1

(1 + b)2 − a12a21







(1 + b) − ra12

(1 + b) − ra12

(1 + b)r − a21

(1 + b)r − a21






. (30b)

In the remaining singular case 1 + b = √
a12a21, the fixed point can-

not be simply written as Eq. (30b). If (ra12 − √
a12a21)s1 = 0 in

addition to 1 + b = √
a12a21, a set of non-isolated fixed points is

represented as a line in the four-dimensional system space,

X
∗
D =

{

X ∈ R
4

∣

∣

∣

∣

x2 = −
√

a21

a12

x1 +
1

a12

s1, y1 = x1, y2 = x2

}

.

(30c)

Note that X
∗
B and X

∗
C are both on the line (30g) in these conditions.

By contrast, no solution satisfies dX

dt
= 0 when (ra12 − √

a12a21)s1

6= 0.
Whether or not the fixed point X

∗
D is written as Eqs. (30b)

or (30g), its stability is determined by eigenvalues λD, which are
solutions of the characteristic equation det(λDI − JD) = 0. Here,

det(λDI − JD)

=
(

λ2
D +

τx + τy + τy

√
a12a21

τxτy

λD +
1 + b + √

a12a21

τxτy

)

×
(

λ2
D +

τx + τy − τy

√
a12a21

τxτy

λD +
1 + b − √

a12a21

τxτy

)

.

(30d)
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The first two eigenvalues are represented by λD+ as the solu-
tions of

λ2
D+ +

τx + τy + τy

√
a12a21

τxτy

λD+ +
1 + b + √

a12a21

τxτy

= 0. (30e)

The real parts of λD+ are always negative, which suggests that
the dynamics converge to X

∗
D on the plane spanned by the two

corresponding eigenvectors vD+.

The remaining two eigenvalues λD− are given by the equation

λ2
D− +

τx + τy − τy

√
a12a21

τxτy

λD− +
1 + b − √

a12a21

τxτy

= 0. (30f)

The two corresponding eigenvectors vD− span a plane on the phase
space

PD :=







X ∈ R
4

∣

∣

∣

∣

∣

∣

x2 = −
√

a21

a12

x1 +
r +

√

a21
a12

1 + b + √
a12a21

s1, y2 = −
√

a21

a12

y1 +
r +

√

a21
a12

1 + b + √
a12a21

s1







. (30g)

According to the discussion above, the system state outside PD

is asymptotically attracted to PD through the stable eigendirections
vD+. This means that the stability of X

∗
D is finally determined as the

stability on the two-dimensional plane PD, according to the values of
λD−;22

• X
∗
D is a stable node or spiral if

√
a12a21 < min

(

1 +
τx

τy

, 1 + b

)

. (30h)

Figure 1(e) is the neuronal activity converging to X
∗
D, where X

∗
D

is a regular stable spiral.

• X
∗
D becomes a center if

√
a12a21 = 1 +

τx

τy

< 1 + b. (30i)

Conservative oscillation occurs around it on the plane spanned
by the two corresponding eigenvectors.

• X
∗
D behaves as an unstable node or spiral, if

1 +
τx

τy

<
√

a12a21 < 1 + b, (30j)

which repels from the remaining two eigendirections if
• X

∗
D comprises non-isolated fixed points written as Eq. (30g), if

√
a12a21 = 1 + b, (30k)

where one eigenvalue, λD−, is 0, and the corresponding eigen-
vector is parallel to the line (30g). This is equivalent to the
non-isolated fixed point as the line given by Eq. (30g). Addition-
ally, in the remaining eigendirection, X

∗
D attracts if b < τx

τy
and

repels if τx
τy

< b. If
√

a12a21 = 1 + b = 1 + τx
τy

, then X
∗
D becomes

further non-isolated fixed points as a plane equal to PD.
• X

∗
D is a saddle point if

1 + b <
√

a12a21. (30l)

Trajectories are repelled from X
∗
D in a single eigendirection

corresponding to a positive eigenvalue λD−.

The existence condition X
∗
D ∈ SD is also separately discussed

depending on the relation between 1 + b and
√

a12a21.

• When 1 + b >
√

a12a21, X
∗
D ∈ SD is true if and only if

1 + b

a12

> r >
a21

1 + b
> 0 and s1 > 0. (30m)

In this situation, the necessary and sufficient condition below is
also true.

X
∗
A /∈ A and X

∗
B /∈ B and X

∗
C /∈ C ⇐⇒ X

∗
D ∈ SD. (30n)

• When 1 + b = √
a12a21, X

∗
D ∈ SD is true if and only if

r =
1 + b

a12

=
a21

1 + b
> 0 and s1 > 0. (30o)

Note that the repelling eigendirection of X
∗
D leads to X

∗
B or X

∗
C.

• When 1 + b <
√

a12a21, X
∗
D ∈ SD is true if and only if

a21

1 + b
> r >

1 + b

a12

> 0 and s1 > 0. (30p)

This agrees with the condition under which X
∗
D becomes a

saddle point.

In all cases, a necessary condition for X
∗
D ∈ SD is described as

s1, r > 0.

Consequently, the external inputs into the neuron-1 and neuron-2
are both excitatory.

V. BIFURCATIONS BETWEEN FIXED POINTS AND

OSCILLATORY SOLUTIONS

According to Eq. (27d), the stable fixed point X
∗
A does not exist

when the two neurons are both suppressed by non-positive inputs.
The other three fixed points X

∗
B, X

∗
C, X

∗
D can exist when at least s1 or

s2 = rs1 is positive. Specifically,

• the existence conditions X
∗
B ∈ SB given by (28d),

• the existence conditions X
∗
C ∈ SC given by (28c), and

• the conditions (30h) and (30m) under which X
∗
D ∈ SD is a stable

fixed point,
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are all separated from the existence condition of the oscillatory solu-
tions Eqs. (7a)–(7c). Otherwise expressed, if any oscillation occurs
under the conditions (7a)–(7c), then

X
∗
B, X∗

C, X∗
D ∈ SD, (31)

which means that only X
∗
D is regular, while X

∗
B and X

∗
C are virtual

fixed points. Satisfying Eqs. (7a)–(7c) leads to the necessary condi-
tion (9), which is equivalent to Eqs. (30j). Hence, the existing fixed
point X

∗
D is an unstable node or spiral. Figure 6, which shows the

same r-a plane as Fig. 3, is a phase diagram specifying the parameter
regions where either X

∗
B, X

∗
C, X

∗
D, or oscillatory solutions of the types

(a)–(d) exist as attractors. The overlapped purple area of Fig. 6 sat-
isfies both (28d) and (29d); thus, stable fixed points X

∗
B and X

∗
C exist

simultaneously.

A. Emergence mechanism of oscillatory solutions

Figure 7 displays the same oscillation patterns (a)–(d) as in
Figs. 1(a)–1(d) on the x1-x2 plane (left column) and in the x1-x2-Y
space (right column) for Y = y1 − y2. Note that the latter plot for-
mat is effective for observing overviews of the oscillation trajectories,
as previously proposed in Ref. 8. Here, the emergence mechanism
of oscillations under the conditions (7a)–(7c) is explained as repeti-
tions of convergence to the stable but virtual X

∗
B, X

∗
C and divergence

from the regular but unstable X
∗
D. Since (31), if the system state

is currently in the region SB (or SC), it transits across the bound-
ary 6BD (6CD) into the region SD before converging to X

∗
B (X∗

C)
[the cyan (magenta) dotted lines shown in Fig. 7 are the imaginary
extended trajectories assumed if this convergence continues in the
region SD]. In the region SD, the system state follows the dynamics
dX

dt
= JDX + s, in the eigendirection vD+ gets attracted to the plane

PD, and in turn, escapes from SD and crosses 6DC, 6DB, (6DB, or
6DC). In the oscillation types (a)–(c), the system state transits across
6DC (6DB) into SC (SB), after which the system state follows similar
itineraries from SC (SB) to SD and returns to SB (SC):

SB → SD → SC → SD → SB → SD → SC → · · · .

The remaining oscillation type (d) is exceptional because the sys-
tem state immediately returns to SB (SC) across 6DB (6DC); thus, the
periodic orbit is captured in regions SD and SB (SC) like

SB → SD → SB → SD → SB → SD → SB → · · · ,

Note that if the system state is currently in region SA, it is
immediately transferred into regions SB, SC, or SD similar to the
convergence to the virtual stable fixed point X

∗
A outside SA.

B. Bifurcation scenarios

The oscillation types (b)–(d) represent those observed in the
neighborhoods of the borderlines ∂�1, ∂�2, and ∂�3 in the param-
eter space of Fig. 6. Here, we can expect several bifurcation scenarios
to emerge between these limit cycles and fixed points (Fig. 8). The
first is a subcritical Hopf-like bifurcation observed on the border-
line ∂�1, where the stability of X

∗
D changes from an unstable spiral

via a center to a stable spiral [Fig. 8(I)]. The previously proposed
approximation of the oscillation period (18) completely coincides
with the actual oscillation period at the borderline ∂�1, which

is identical to the harmonic oscillation period around the center
X

∗
D. In this bifurcation point, the outermost periodic orbit grazing

either or both SB and SC can be regarded as semihalf; it is neu-

trally stable from and toward its interior; and it is attracting from
its exterior because of the attracting flow in the outer regions SB

and SC toward SD. Beyond ∂�1 in the parameter space, the peri-
odic orbits across multiple regions disappear because the system
dynamics in the region SD are now incapable of carrying the system
state through divergence outward to SB or SC. Through this scenario,
the limit cycle instantaneously emerges with non-zero (sufficiently
large) value of oscillation amplitude, which is a subcritical Hopf-like
behavior.

The second bifurcation is homoclinic-like, which emerges at
∂�+

2 and ∂�+
3 . The oscillation type (c) is close to this bifurcation. In

the vicinity of ∂�+
2 (or ∂�+

3 ), the virtual stable fixed point X
∗
B (X∗

C)
becomes regular upon entering the region SB (SC) on the pre-existing
limit cycle orbit [Fig. 8(II)]. When the parameter set (r, a) is on the
∂�+

2 (∂�+
3 ), then X

∗
B (X∗

C) is precisely on the boundary 6BD (6CD)
and identical to X

∗
C, which is termed a boundary equilibrium.23,24

Because X
∗
B (X∗

C) attracts from SB (SC) and repels into SD, it functions
as a saddle-like point [this behavior is reflected in Fig. 7(c)]. At this
bifurcation point, the regularity of X

∗
D and the virtuality of X

∗
B can be

regarded as exchanged with each other. This is termed persistence, a
type of boundary-equilibrium bifurcation.23,24 At the intersection of
∂�2 and ∂�3, where (r, a) = (1, 1 + b), this homoclinic-like bifur-
cation becomes codimension-two through which two homoclinic
orbits are expected to merge into a heteroclinic orbit.

Finally, the bifurcation pattern corresponding to the oscillation
type (d) emerges on ∂�−

2 and ∂�−
3 . Similar to the homoclinic-

like bifurcation, X
∗
D disappears and X

∗
B (or X

∗
C) comes to exist

through a persistence [Fig. 8(III)], when r or a crosses the bor-
derline ∂�−

2 (∂�−
3 ). However, in this bifurcation, the limit cycle

trajectories as the combination of divergence from X
∗
D and con-

vergence to X
∗
B (X∗

C) become extremely small [see also Fig. 7(d)],
converging to zero oscillation amplitudes. Although the oscillation
period is constant in the neighborhoods of the borderlines (men-
tioned in Sec. III A), this bifurcation seems supercritical Hopf-like,
or a so-called discontinuity-induced Hopf bifurcation.24

The second homoclinic-like bifurcation and the third super-
critical Hopf-like bifurcation are both boundary-equilibrium bifur-
cations caused by regular-virtual exchanges between fixed points,
through which their stability or instability is conserved. Corre-
sponding to the oscillation patterns (c) and (d), these bifurcations
are distinguished by whether X

∗
D works as an unstable node or an

unstable spiral. If X
∗
D is an unstable node, then the dynamics in the

region SD certainly transport the system state from 6BD (or 6CD) to
the opposite side 6DC (or 6DB), in the fastest eigendirection corre-
sponding to one of λD− with the largest absolute value [the lower
black solid line shown in the right of Fig. 7(c) is almost straight,
which is extremely close to this eigendirection]. Conversely, when
X

∗
D is an unstable spiral, the rotational dynamics around this point

can afterward return the system state coming from 6BD (6CD) to the
same side 6DB (6DC) [the black solid lines on the right-hand side of
Figs. 7(b) and 7(d) are curling due to this spiral effect]. Therefore,
the threshold a = a∗

+ between these two bifurcations is determined
by the point at which X

∗
D changes between a node and a spiral. This
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FIG. 6. Phase diagram of the same r-a plane as in Fig. 3. The parameter region colored in cyan, magenta, or gray is where only either X∗
B , X

∗
C , or X

∗
D exists as a stable

fixed point, respectively; in the purple-colored region, two stable fixed points X∗
B and X∗

C simultaneously exist. Stable oscillations emerge in � (white) surrounded by the
borderlines ∂�1, ∂�2, and ∂�3 (black solid lines). The notations (a)–(d) express the rough locations where the corresponding oscillation types (a)–(d) are observed. Note
that the oscillation type (d) non-smoothly transits to the other oscillation types (a)–(c) at the 11 and 12 borderlines (dotted line).

is where the discriminant QD− of Eq. (30f) is 0. Solving an equation
QD− = 0 for a, we obtain two solutions as

a = a∗
+, a∗

−, (32)

where

a∗
+ :=

τy − τx + 2
√

bτxτy

τy

, (33a)

a∗
− :=

τy − τx − 2
√

bτxτy

τy

. (33b)

The former satisfies ainf < a∗
+ < 1 + b, whereas the latter meets

0 < a∗
− < ainf. Thus, the threshold value a∗

+ holds by (33a). The
zenith of the dotted lines 11 and 12 on the vertical a axis in Fig. 6
corresponds to a = a∗

+. Note that even if X
∗
D is a spiral, the system
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FIG. 7. Trajectories of oscillation patterns
of Figs. 1(a)–1(d) plotted on the x1-x2 plane
(left column) and the x1-x2-Y space (left col-
umn, for Y = y1 − y2). The system dynam-
ics switch at6BD (positive part of the x1 axis)
and 6CD (positive part of the x2 axis), where
the color of the periodic orbit (solid line)
changes. For i ∈ {B,C,D}, the “extended
trajectory from Si ” (dotted line) would be
hypothetically realized if the dynamics in the
region Si continued to operate after the sys-
tem state escaped from Si .
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FIG. 8. Schematic diagram of the discontinuity-induced bifurcation scenarios. The bifurcations (I)–(IV) in the right-hand side are observed when parameter set (r , a) changes
crossing the borderlines ∂�1, ∂�2, or ∂�1, and11 or12 as shown in the left-hand side, which is the same phase diagram as Fig. 6. In general, the periodic cycle generated
through the subcritical Hopf-like bifurcation (I) is of both the oscillation types (b) and (d). In the bifurcation point of (I), the fixed point X∗

D is a center. Although there are other
regular and virtual fixed points in the bifurcations (I) and (IV), which are not directly related to the bifurcation scenarios, they are omitted for simplicity.

state entering SD by crossing a boundary is not always destined to
return to the same boundary. Suppose that the parameter condi-
tion is not in the neighborhood of ∂�−

2 and ∂�−
3 , then X

∗
D can be

separated from the two boundaries 6BD and 6DC. In this situation,
it may be sufficient to bridge the system state from 6BD (6CD) to the
opposite side 6DC (6DB), no matter how the spiral dynamics around
X

∗
D work. The borderline of whether the stable limit cycle grazes

the boundary 6DC (6DB) and the system state thereby successfully
bridges to the opposite side, is represented as the dotted lines 11 and
12 shown in Fig. 6. At these borderlines, the oscillation type (d) and
the others (a)–(c) are clearly separated, and the transition between
them can be regarded as a grazing bifurcation23 of the limit cycle
[Fig. 8(IV)].

C. Derivation of the logarithmic oscillation-period

scaling law

In SubSec. III B, we discuss the limitations of the approximated
oscillation period Tharm given by Eq. (18), which was previously
proposed by Ref. 8. Instead of Tharm, we introduce a logarithmic
scaling law Thomo as a more plausible approximation of oscilla-
tion period for larger asymmetric synaptic weights a21 6= a21 and
asymmetric inputs given by r 6= 1,

Thomo := τy

[

ln
1

(1 + b)a12δ2
− ln

(rsup − r)(r − rinf)

r

]

, (34)
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where

δ :=
τy − τx

bτy

. (35)

These logarithmic forms of oscillation periods are commonly
observed in the vicinity of homoclinic bifurcations.25,26 Figure 9 plots
both the theoretical prediction Thomo by Eq. (34) and the actual oscil-
lation period T along the cross section (S2) as the horizontal dotted
line drawn in Fig. 3, with the fixed value a = 2.2. The simplified
version of Eq. (34) under a = a12 = a21 and r = 1 is obtained as

Thomo = 2τy

[

ln
1

δ
− ln(1 + b − a)

]

. (36)

The theoretical curve of Eq. (36) is illustrated by the solid lines in
Fig. 4, which better agree with the actual oscillation period T (circle)
than Tharm (dotted line). Note that even Eq. (34) cannot be applied
to the oscillation type (d) shown in Fig. 7(d), which has a constant
oscillation period for any r under fixed a12, a21.

To derive the scaling law Thomo of Eq. (34), we first divide an
oscillation period T into four pieces corresponding to the separately
colored trajectories in Figs. 7(a)–7(c),

T = TB + TC + TD1 + TD2 , (37)

where TB, TC, TD1 , and TD2 are the time durations required to pass
through SB, SC, SD from 6BD to 6DC, and SD from 6CD to 6DB,
respectively.

Next, we make several main assumptions.
Assumption 1. TD1 and TD2 can be ignored because these

durations are shorter than TB and TC.
Assumption 2. The values of y1 and y2 remain almost

unchanged while the system state passes the region SD.
Assumption 3. The system state in the region SB (or SC)

approaches X
∗
B (X∗

C) along the slowest eigenvector vB (vC) correspond-

ing to the eigenvalue λB = − 1
τy

(

λC = − 1
τy

)

.

Applying Assumption 1 to Eq. (37), we obtain

T ≈ Thomo = TB + TC. (38)

According to Eq. (28a), the dynamics in the region SB are simply a
first-order differential equation regarding y2,

τy

dy2

dt
= −y2. (39)

Hence, TB is simply evaluated by the variation amount of y2 as

TB = τy ln

[

X
0
B

]

y2
[

X
1
B

]

y2

, (40)

where X
0
B and X

1
B are the initial and terminal points of the passing

trajectory in SB, respectively. Similarly, y1 follows the dynamics

τy

dy1

dt
= −y1, (41)

in the region SC considering Eq. (29a). Therefore, TC is given by

TC = τy ln

[

X
0
C

]

y1
[

X
1
C

]

y1

, (42)

where X
0
C and X

1
C are the start and end states of the oscillation path

in the region SC. Applying Assumption 2 results to the following
approximation:

[

X
0
B

]

y2
≈

[

X
1
C

]

y2
, (43a)

[

X
0
C

]

y1
≈

[

X
1
B

]

y2
. (43b)

Now, the problem is reduced to calculating X
1
B and X

1
C. Consid-

ering Assumption 3, X
1
B is derived as an intersection between 6BD

and the slowest eigenvector vB extended from the virtual fixed point
X

∗
B (this extension is roughly represented by the cyan dotted lines in

Fig. 7). The eigenvector is

vB =
[

0 0 1 −δ
]>

. (44)

Providing that X
1
B = X

∗
B + kvB, then

[

X
1
B

]

x2
= 0 when

k = −
(1 + b)r − a21

1 + b
s1. (45)

Therefore, we can confirm

X
1
B =

[

s1

1 + b

s1

1 + b
0

(1 + b)r − a21

1 + b
δs1

]>

. (46a)

Similarly, we get

X
1
C =

[

0
(1 + b) − ra12

1 + b
δs1

rs1

1 + b

rs1

1 + b

]>

. (46b)

Considering Eqs. (43a), (43b), (46a), and (46b), Eqs. (40) and (42)
are written as

TB = τy ln

(

1

δ

r

(1 + b)r − a21

)

, (47a)

TC = τy ln

(

1

δ

1

(1 + b) − ra12

)

. (47b)

Substituting Eqs. (47a) and (47b) into Eq. (38) and simplifying, the
logarithmic scaling law of Eq. (34) holds.

The order of logarithmic divergence of T by Eq. (34) indi-
cates a ghost in the oscillation type (c), which is close to the second
homoclinic-like bifurcation. When (r, a) is close to the borderline
∂�+

2 (or ∂�+
3 ), the stable fixed point X

∗
B (X∗

C) is still virtual, yet it
is almost on 6BD (6CD). Consequently, its saddle-like point effect
causes a ghost, which requires a long duration to pass slowly. The
orbit leading to this ghost point works as a bottleneck of time, which
becomes dominant in the entire oscillation cycle.

Now we discuss the validity of the introduced approximations.
Assumption 1 serves to eliminate oscillation patterns observed when
a is small, such as the oscillation types (b) and (d). For oscillation
types (a) and (c), this is a good approximation because the process
of TD1 and TD2 is very fast. Assumption 2 brings an even coarser
approximation. For example, along the lower black trajectories in
the right of Fig. 7(c), which corresponds to the duration TD2 of the
oscillation type (c), the value of Y = y1 − y2 changes sufficiently
that Assumption 2 may be inappropriate here. Another version of
Eq. (34) without Assumption 2 is described in the Appendix.
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FIG. 9. (Left) Plot of the oscillation period T vs the input ratio r with fixed value a = 2.2 corresponding to the dotted line (S2) in (Fig. 3). (Right) Another plot version of
ln(rsup − r)(r − rinf)/r vs the oscillation period T .

Assumption 3 provides a good approximation, specifically for
the oscillation type (c) slightly before the homoclinic-like bifurca-
tion, where X

∗
B (or X

∗
C) is about to appear from the virtual state

crossing the boundary 6BD (6CD). For example, in Fig. 7(c), the
direction of the trajectory in SC (magenta solid line) in the vicinity of
the virtual fixed point X

∗
C (magenta-edged circle) is almost identical

to the slowest eigendirection of X
∗
C. Here, X∗

C is positioned just before
the boundary 6CD is crossed. This approximation is even worse for
the oscillation type (b) shown in Fig. 7(b). According to the formu-
lation in (28b) [or (29b)], the x2-coordinate of X

∗
B (x1-coordinate

of X
∗
C) is expected to increase as a21 (a12) decreases; the oscillation

pattern approaches (b); thus, X
∗
B (X∗

C) moves further away from 6BD

(6CD). According to the numerically simulated trajectories in Fig. 7,
the longer distance between X

∗
B (X∗

C) and 6BD (6CD) is responsible
for the inappropriate approximation by Assumption 3.

D. Noise-induced oscillation

A novel result predicted regarding the second homoclinic-like
bifurcation is that noise-induced oscillations emerge even though
the parameter set (r, a12, a21) is on or slightly outside ∂�2 (or ∂�3).
In this condition, the original noiseless system (1) only converges to

FIG. 10. Neuronal activity patterns observed in the noisy system (5) with Eq. (5a) replaced by Eq. (48), where σ = 0.2 and a = a12 = a21; (Left) a = 2, r = 0.56, which
is the same condition as Fig. 1(f). Similar to oscillation type (c). (Right) a = 1.6, r = 0.455. Similar to oscillation type (d).
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the stable fixed point X
∗
B (X∗

C) existing in the vicinity of 6BD (6CD).
This process is represented by the activity pattern in Fig. 1(f). To
introduce external noise to the system, for example, we can replace
Eq. (1a) by

τx

dxi

dt
= −xi − byi −

n
∑

j6=i

aijzj + si + ση, (48)

where σ determines the noise intensity and η is the standard
Gaussian noise.

If the noise intensity σ is sufficient, then the system state
that almost converges to X

∗
B (X∗

C) may by chance jump across 6BD

(6CD) into S∗
D ⊂ SD. Here, S∗

D is a subregion in which there is a
locally attracting homoclinic-like orbit inherited from the periodic
orbits observed when (r, a12, a21) is inside ∂�2 (∂�3). Nearly rid-
ing on this homoclinic-like orbit, the system state in turn starts
an excursion through SD, SC, again SD, and SB [corresponding to
the oscillation pattern (c)], or only through SD and SB [oscillation
pattern (d)], returning to X

∗
B (X∗

C). This is the overall dynamical
picture of the noise-induced oscillations. Figure 10 shows exam-
ples of noise-induced oscillations observed in the vicinity of the
homoclinic-like and supercritical Hopf-like bifurcations, the wave-
forms of which are inherited from the (c) and (d) oscillation
patterns.

FIG. 11. Plot of average periods Tσ of noise-induced oscillations for various σ and a = a12 = a21 under the condition r = 1, with the plot of Thomo (black) in Fig. 4. Each circle
plot is calculated by averaging the periods of 200 numerically simulated noise-induced oscillation cycles, with error bars of their standard deviations.
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Practically, a noise-induced oscillation cycle can be defined as
an itinerary that starts upon crossing 6BD (6CD) into S∗

D, undergoes
a certain excursion returning to SB (SC), and terminates on cross-
ing 6BD (6CD) again. We can also define the oscillation period of a
noise-induced oscillation as Tσ , which is the duration required for
such a cycle. Here, Tσ is stochastically variable. When the noise is
sufficiently small, the excursion process occupies only a small pro-
portion of Tσ , and most of the remaining duration is allocated to the
process of jumping from X

∗
B (X∗

C) across 6BD (6CD) into S∗
D which

is driven by the external noise perturbations. This jumping duration
is estimated as the minimum time spent to reach S∗

D and is expected
to be shorter as the stochastic perturbation gets larger on average. In
addition, X∗

B (X∗
C) separates further from 6BD (6CD) as the parameter

set (r, a12, a21) moves away from the borderline ∂�2 or ∂�3. Under
the same noise intensity σ , the duration required for the jumping
process could increase as the jumping distance extends.

Thus, Tσ could increase as the noise intensity σ declines, or the
parameter set (r, a12, a21) distances from the borderline ∂�2 or ∂�3.
From another perspective, the divergence of Tσ is relieved, and the
oscillation-existing area � in the parameter space is widened for a
larger σ . These predictions can be numerically verified by evaluating
the arithmetic mean of Tσ for multiple oscillation cycles (Fig. 11).

VI. DISCUSSION

This study’s first step was the fixed point analysis of the two-
neuron Matsuoka oscillator model (Sec. IV), which enabled a quan-
titative evaluation of transient neuronal activities as convergences to
stable fixed points. We found that oscillatory solutions are caused
by convergence to the virtual stable fixed points X

∗
B and X

∗
C and

divergence from the existing unstable fixed point X
∗
D (SubSec. V A).

This could be why the conditions for the absence of stable fixed
points are equivalent to the existence of oscillations. Furthermore,
this oscillation picture provided explanations of several bifurca-
tion scenarios between oscillatory and stationary states, or between
different oscillation types: subcritical Hopf-like, homoclinic-like,
supercritical Hopf-like, and grazing bifurcations (SubSec. V B). The
additional knowledge presented in this paper, such as the logarith-
mic oscillation-period scaling law (SubSec. V C) and noise-induced
oscillation (SubSec. V D), was also obtained following the fixed point
analysis in Sec. IV.

A. Mathematical aspects

The logarithmic scaling law (34), as a new approximation Thomo

for the oscillation period T, was derived in terms of the convergent
linear dynamics of the variables y1 and y2 in the regions SB and SC.
The order of the divergence of Thomo in this scaling law is similarly
observed in the neighborhood of homoclinic bifurcations.25–27 How-
ever, the “homoclinic-like” bifurcation discussed in SubSec. V B
concerning this scaling law is slightly different from other homo-
clinic bifurcations. Standard homoclinic bifurcation has a saddle
point approaching a limit cycle orbit. When these collide and fuse,
the saddle point rides on the limit cycle orbit, with the periodic
oscillatory nature disappearing. Conversely, this model only has a
virtual stable node X

∗
B (or X

∗
C) instead of a saddle point. At the

homoclinic-like bifurcation moment, X
∗
B (X∗

C) reaches the bound-
ary 6BD (6CD) and transforms from a virtual into a regular state.
Because oscillations are caused by convergence to virtual X

∗
B (X∗

C), at
this homoclinic-like bifurcation, it naturally emerges on the original
periodic orbit. Moreover, in this situation, the dynamics flow into
the X

∗
B (X∗

C) from the region SB (SC) and escape to SD, which made
X

∗
B (X∗

C) assume a saddle-like property.
Beyond this bifurcation, X

∗
B (X∗

C) distances from 6BD (6CD).
Even in this situation, an oscillatory excursion along the homoclinic-
like orbit could occur if a sufficient perturbation is adopted to
cross over that gap. This is the noise-induced oscillation pro-
posed in SubSec. V D, which is essentially common to phenomena
described as “noise-invoked resonance,” for instance, in previous
studies concerning homoclinic bifurcations.26,27 It is plausible that
as biological systems, neural circuits are always influenced by noise.
Therefore, the results concerning the noise-induced oscillation in
the present study would provide a foundation for validating CPG
models through biological experiments.

Unlike the logarithmic approximation Thomo, the previously
proposed approximation Tharm given by Eq. (18) was derived in
terms of an approximation of a periodic cycle into the behavior
of the harmonic oscillator in the region SD.8 In particular, at ∂�1,
this approximation is strictly accurate because the oscillation pat-
tern becomes neutrally stable around a center, X

∗
D. This change in

the stability of X
∗
D is responsible for the subcritical Hopf-like bifurca-

tion in the vicinity of the borderline ∂�1. There remains the problem
that the previous approximation Tharm is valid only in the symmet-
ric network a = a12 = a21 and not applicable to asymmetric cases
a12 6= a21 like the new approximation Thomo. Hence, it is a future
prospect to modify Tharm given by Eq. (18) into a more general
formulation that also covers asymmetric cases. This approach may
even be essential to answer another question of why the oscillation
type (d) has an invariant oscillation period independent of the value
of r.

The oscillation types (c) and (d) were found by eliminating the
assumption of symmetry input stimuli into the two neurons (r = 1),
which has been adopted in many previous studies. For example,
Ref. 28 investigated the stability of a limit-cycle solution in the sym-
metric r = 1 case of the two-neuron Matsuoka oscillator model.
Because the stability of the oscillation types (c) and (d) was only
numerically confirmed in this paper and not theoretically guaran-
teed, a future undertaking is to resolve this problem by extending
the method of impact maps described in Ref. 28.

B. Biological interpretations and limitations

The external inputs into neurons s1 and s2 were set as con-
stants throughout this study. Suppose that the values of the synaptic
weights a12 and a21 are fixed to satisfy Eq. (9), the input ratio r = s2

s1
is

the only bifurcation parameter between stable stationary states and
stable oscillations. Gradual and continuous incrementation of r is
equal to alterations along the horizontal axis like (S2) in Fig. 3, which
contributes to phase transition among

• convergent dynamics to X
∗
B when (28d),

• oscillatory dynamics under the condition (30m), and
• convergent dynamics to X

∗
C if (29d) is true.
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In this sense, X
∗
B or X

∗
C are supposed to be the start or end

points of transient neuronal activities. This could be a hypothe-
sis for the continuous transition between oscillatory and conver-
gent neuronal activities, and even between rhythmic and discrete
movements.

The present analysis suggests that the Matsuoka oscillator
model has the restriction that X

∗
D cannot be a stable fixed point when

the values of the synaptic weights a12, a21 are fixed to satisfy the exis-
tence condition of oscillatory solutions (9). Two coupled neurons of
the Matsuoka oscillator model have been used to model the flexion
and extension of a single joint by matching each neuron to either
a flexor or extensor muscle.12–15,20 In this situation, however, it is
impossible to achieve the stationary states where the two neurons
are simultaneously activated, leading to stationary co-contraction
of the muscles. To reproduce this sustainable co-activation of neu-
rons with the original Matsuoka oscillator model, synaptic weights
a12 and a21 should change as fast as the ratio of inputs into the
neurons r = s2

s1
. One possible scheme is to assume specific interneu-

rons between the two main neurons.9,29 Parameters a12 and a21 are
regarded as the overall transmission efficiency between the two main
neurons, mediated by the interneurons, the values of which are reg-
ulated by other external input signals imposed on the interneurons.
This structure should involve a time delay in the process of mul-
tiple synaptic transmissions, although this is not assumed in the
original Matsuoka oscillator model. Improving the original model
into a more plausible one that is consistent with physiological find-
ings on neurons and neuronal networks will be an important future
development.

Finally, the analysis of the Matsuoka oscillator model in this
study was consistently limited to the two-neuron case. When the
number of neurons is n ≥ 3, the network topologies become more
complex,6,7 and analysis is harder because it requires the solving of
sixth- or higher-order equations. However, the fixed point analysis
in this study may be useful in understanding the properties of the
multi-neuron dynamical system. Because there are n variables of the
membrane potential xi (i = 1, 2, . . . , n), the solution space is divided
into 2n regions regarding the positivity or negativity of xi. Thus,
we could investigate the dynamics specific to each region, the fixed
points in the relevant dynamics, and the existence and stability of the
fixed points. Extending the present results to the general n-neuron
version of the Matsuoka oscillator model may be necessary to under-
stand CPG circuits in the spinal cord as a huge multidimensional
system.
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APPENDIX: REVISED VERSION OF THE LOGARITHMIC

OSCILLATION-PERIOD SCALING LAW

Instead of Assumption 2, a new one could be introduced;
Assumption 4. The values of y1 and y2 change along the fastest

eigenvector vD of the unstable fixed point X
∗
D in region SD.

This can be available only when X
∗
D is an unstable node, not

an unstable spiral, which occurs under the a ≥ a∗
+ condition. Addi-

tionally, Assumption 4 is consistent with Assumption 1; thus, the
oscillation types (a) and (c) also serve for good approximation by
Assumption 4 because under this condition, the diverging effect of
the slower eigenvector reduces throughout TD1 and TD2 . The fastest
eigenvector vD is

vD =
[

1 v −α −αv
]>

, (A1)

where

α =
√

a21

a12

, (A2)

v =
τx − (1 − √

a12a21)τy −
√

QD−

2bτy

. (A3)

Note that QD− is the discriminant of Eq. (30f). Instead of Eqs. (43a)
and (43b), Assumption 4 leads to

X
0
B = X

1
C + kBvD, (A4a)

X
0
C = X

1
B + kCvD. (A4b)

Solving
[

X
0
B

]

x2
= 0 and

[

X
0
C

]

x1
= 0, we obtain

kB =
rs1

α(1 + b)
, (A5a)

Chaos 34, 093107 (2024); doi: 10.1063/5.0220075 34, 093107-19

Published under an exclusive license by AIP Publishing

 20 N
ovem

ber 2024 11:41:19

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 12. The curves of the revised version T∗
homo are added to the left-hand side of Fig. 4 (left), and the left-hand side of Fig. 9 (right). Note that T

∗
homo is only defined in the

a ≥ a∗
+ region.

kC = −
s1

1 + b
, (A5b)

which is followed by

[

X
0
B

]

y2
= (1 − v)

rs1

1 + b
, (A6a)

[

X
0
C

]

y1
= (1 − v)

s1

1 + b
. (A6b)

Substituting Eqs. (46a), (46b), (A6a), and (A6b) into Eqs. (40)
and (42), we get

TB = τy ln

(

1

δ

(1 − v)r

(1 + b)r − a21

)

, (A7a)

TC = τy ln

(

1

δ

(1 − v)1

(1 + b) − ra12

)

. (A7b)

Finally, in applying Eqs. (A7a) and (A7b) to Eq. (38), the following
result holds:

T∗
homo = τy

[

ln
(1 − v)2

(1 + b)a12δ2
− ln

(rsup − r)(r − rinf)

r

]

. (A8)

This is the revised version of the oscillation-period scaling law.
Compared with the original version, Thomo, given by (34), this form
T∗

homo differs only in the constant term for the coefficient (1 − v)2 in
the logarithm. Figure 12 shows the curve of T∗

homo in the same form
as Figs. 4 and 9. Here, T∗

homo ≤ Thomo holds so that T∗
homo seems less

accurate than Thomo for the numerically observed oscillation period

T. This is because the duration TD is ignored according to Assump-
tion 1. If TD is accurately reckoned, then T∗

homo will be closer to T
than Thomo.
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