
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 87, 030901(R) (2013)

Period variability of coupled noisy oscillators
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Period variability, quantified by the standard deviation (SD) of the cycle-to-cycle period, is investigated for
noisy phase oscillators. We define the checkpoint phase as the beginning or end point of one oscillation cycle and
derive an expression for the SD as a function of this phase. We find that the SD is dependent on the checkpoint
phase only when oscillators are coupled. The applicability of our theory is verified using a realistic model. Our
work clarifies the relationship between period variability and synchronization from which valuable information
regarding coupling can be inferred.
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Oscillators functioning as clocks, such as crystal oscillators
[1], spin torque oscillators [2–5], and circadian and heart
pacemakers [6–8], play an important role in various systems.
Although these clocks are subjected to various types of
noise, including thermal, quantum, and molecular noise, they
are required to perform temporally precise oscillations; i.e.,
oscillations with only a small variability in the period (known
as “period jitter” in electronic engineering [9]).

In many cases, it is sufficient for the clock to strike
precisely at a specific time in each oscillation cycle, and thus
a perfectly regular oscillation wave form is not needed. For
cardiac pacemakers only the moment of stimulation is relevant.
Experimental data regarding circadian activity in mice [10]
indicate that the variability in the period between each activity
onset is smaller than that between each offset. Similar results
have also been obtained in explant circadian pacemaker tissue
[the suprachiasmatic nucleus (SCN)] [10]. These observations
suggest that the onset is more important than the offset in a
circadian clock, which may be designed in such a way that the
crucial moment is expressed with high precision.

Remember that the definition of an oscillation period
requires a fixed beginning or end point for each oscillation
cycle, hereafter referred to as the checkpoint (Fig. 1). Although
the average period does not depend on the particular choice
of checkpoint, the period variability may be sensitive to
the checkpoint. In order to clarify whether the checkpoint
dependence in circadian activity is an artifact due to a technical
problem in determining the onset and offset times or an
essential property of the circadian clock, we need to investigate
under what conditions the period variability is dependent on
the checkpoint; this has received scant attention to date.

Another important aspect of the period variability is
its relationship to synchronization. A clock is commonly
synchronized to its master clock such as in the case of the
SCN in response to the daily variation of sunlight, and in
peripheral clocks in response to the SCN. In addition, most
biological clocks, including the SCN, cardiac pacemakers,
and pacemakers in weakly electrical fish, are composed of
a population of synchronized oscillators [6,7,11]. It is known,
both experimentally and theoretically, that period variability
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is reduced when the oscillators are coupled and synchronized
[6,12–16]. The question, therefore, arises as to whether the
checkpoint dependence of the period variability is attributable
to the interaction between oscillators.

In this Rapid Communication, we discuss this checkpoint
dependence for the case of coupled noisy phase oscillators.
The period variability can be quantified using the standard
deviation (SD) of the cycle-to-cycle period, and we show
that although the SD is not dependent on the checkpoint in
a single phase oscillator, it is dependent in a system of coupled
phase oscillators, i.e., the checkpoint dependence results from
the coupling effect. The SD is derived as a function of the
checkpoint phase, which clarifies the relationship between the
SD and synchronization.

In particular, we find that in the case of diffusive coupling
between oscillators, the checkpoint dependence of the SD has
the same tendency as that of the synchronization: The SD
is small when the oscillators are well synchronized. In other
cases, however, the relationship is more complex. We also
apply our theory to a realistic model of the electrical activity
in a cell to demonstrate its validity. We believe that this is
the first theoretical study to elucidate the existence of precise
timing and its relationship with synchronization.

To begin, we prove that the period variability is independent
of the checkpoint in a single phase oscillator system. When a
limit cycle oscillator is subjected to weak noise, its dynamics
are well described by the following phase oscillator model
[17,18]:

dθ

dt
= ω + Z(θ )

√
Dξ (t), (1)

where θ and ω are the phase and natural frequency, respec-
tively. The 2π -periodic function Z(θ ) is a phase sensitivity
function, which quantifies the phase response of the oscil-
lator to noise, and ξ (t) denotes independent and identically
distributed (i.i.d.) noise; each random variable ξ (t) for all t

obeys the same probability distribution and all are mutually
independent. The positive constant D denotes the noise
strength. Note that our proof below holds even if we permit
ω and the probability distribution of ξ to be 2π -periodic
functions of θ : ω(θ ) and ξ (t,θ ).

The kth oscillation time of an oscillator t
θcp

k is defined as
the time at which θ passes through 2πk + θcp (0 � θcp < 2π )
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FIG. 1. (Color online) (a) An example of the time series of an
oscillation. Periods are observed at two checkpoints, α and β. (b) The
corresponding checkpoint phases in the phase description.

for the first time [Fig. 1(b)]. We define θcp as the checkpoint

phase. The kth oscillation period �t
θcp

k is defined as �t
θcp

k =
t
θcp

k − t
θcp

k−1, and the SD is defined as

σ (θcp) =
√

E
[(

�t
θcp

k − τ
)2]

, (2)

where E[· · · ] represents the statistical average over k, and
τ is the average period given by τ = E[�t

θcp

k ]. Note that
E[· · · ] denotes both the statistical average taken over k and
the ensemble average in the present paper, which are identical
in the steady state. The system given by Eq. (1) is always in
the steady state.

To prove that the SD is independent of θcp, we introduce two
checkpoint phases denoted by α and β [Fig. 1(b)]. Since the
processes α → β and β → α for any k are independent, we
arrive at σ (α) = σ (β) for any arbitrary checkpoint phases α

and β. A detailed proof is given in the Supplemental Material
[19].

Next, we consider a pair of coupled phase oscillators
subjected to noise. When limit cycle oscillators are weakly
coupled to each other and subjected to weak noise, the
dynamics can be described by [17,18]

θ̇1 = ω + κJ (θ1,θ2) + Z(θ1)
√

Dξ1(t),
(3)

θ̇2 = ω + κJ (θ2,θ1) + Z(θ2)
√

Dξ2(t),

where θi and κ � 0 are the phase of the oscillator i and
the coupling strength, respectively. The i.i.d. noise ξi(t)
satisfies E[ξi(t)] = 0 and E[ξi(t)ξj (t ′)] = δij δ(t − t ′). The
2π -periodic function J (x,y) describes the interaction between
oscillators, which leads to synchronization. We assume that, in
the absence of noise (D = 0), the oscillators are synchronized
in phase, i.e., θ1,2(t) → φ(t)(t → ∞), where φ(t) is a solution
of

φ̇(t) = ω + κJ (φ,φ). (4)

The necessary condition for the stability of in-phase synchrony
for D = 0 is provided below [see Eq. (11)]. We also assume
that ω + κJ (φ,φ) > 0 for any φ for the coupled system to be
oscillatory.

Our particular interest is in the relationship between the
SD [Eq. (2)] and the synchronization of two oscillators. We
thus introduce the following order parameter that measures the
phase distance from the in-phase state:

d(θcp) =
√

E[‖θ1 − θ2‖2]θ1=θcp , (5)

where E[x(t)]θ1=θcp represents the average of xk over k [where
xk is the value of x(t) taken when θ1 passes through 2πk + θcp

for the first time], and ‖θ1 − θ2‖ is the phase difference defined
on the ring [−π,π ). The phase distance d(θcp) is zero when the
oscillators are completely synchronized in phase, and increases
with the phase difference.

As we demonstrate below, the relationship between σ (θcp)
and d(θcp) is qualitatively different for the two cases where
J (φ,φ) is (A) independent of φ and (B) dependent on φ. Cases
(A) and (B) imply that φ̇ given in Eq. (4) is independent of
φ and dependent on φ, respectively. Phase reduction theory
indicates that it is appropriate to assume the form J (x,y) =
z(x)G(x,y), where z(x) is the phase sensitivity function for
the interaction G(x,y) [17,18]. It is known that diffusive
coupling between chemical oscillators and gap-junction cou-
pling between cells yields J (x,y) = z(x) [h(x) − h(y)], where
h represents a chemical concentration [20,21] or membrane
potential, which corresponds to case (A). Case (A) also allows
the form J (x,y) = j (x − y), which has been employed in
many models such as the Kuramoto model [18]; however, we
do not employ this form in the demonstration, since the term
j (x − y) is derived as a result of averaging the interaction
z(x)G(x,y) over one oscillation period [18], and, by this
approximation, the information about the θcp dependence is
lost. Many other types of coupling, such as J (x,y) = z(x)h(y)
employed below, correspond to case (B) [22].

As an example of case (A), we consider z(θ ) = sin θ for
0 � θ < π , z(θ ) = 0 for π � θ < 2π , and h(θ ) = cos θ , and
the following as an example of case (B): z(θ ) = − sin θ and
h(θ ) = 1 + cos θ [22]. We set Z(θ ) = 1, ω = 2π ,

√
D =

0.03 × 2π , and θ1(0) = θ2(0) = 0, and assume ξ1,2(t) to be
white Gaussian noise. We integrate Eq. (3) using the Euler
scheme with a time step of 5 × 10−4 for t = 0–10 100 and
discard the t = 0–100 data as transient.

Using these examples, numerically obtained σ values for
θ1 are plotted as a function of θcp in Figs. 2(a) and 2(b).
The results indicate clearly the existence of θcp dependence
in both cases, which was absent in the single phase oscillator
system. This dependence becomes stronger for larger κ values.
In contrast, for κ � ω, the dependence vanishes because
J (x,y) is well approximated by j (x − y) [18], and thus, the
system effectively has rotational symmetry. The θcp value at
which σ (θcp) assumes its minimum represents the most precise
timing.

The θcp dependence of d(θcp) for the two cases is shown
in Figs. 2(c) and 2(d). A comparison with σ (θcp) shows
that the checkpoint phase maxima and minima of each κ

value coincide in the case of (A). Thus, the most precise
timing is obtained when the oscillators are synchronized. By
contrast, the θcp dependence is considerably different in the
case of (B). Therefore, we expect that nontrivial factors, apart
from synchronization, influence the SD. We also examined
several other functions, z(θ ), h(θ ), and Z(θ ), and found
a similar relationship between σ (θcp) and d(θcp) (data not
shown).

We now derive an expression for the SD. The derivation
consists of two steps: (i) calculation of the phase diffusion
η(θcp) [defined by Eq. (7)] with a linear approximation, and
(ii) transformation from η(θcp) to σ (θcp). Here, we employ
the solution φ(t) of Eq. (4) with φ(0) = 0 and the time tcp

030901-2



RAPID COMMUNICATIONS

PERIOD VARIABILITY OF COUPLED NOISY OSCILLATORS PHYSICAL REVIEW E 87, 030901(R) (2013)

4.0

3.5

3.0

2.5

3.0

2.5

2.0

0

0.1

0.2

0.3

0

0.2

0.4

σ(
cp
)/

d(
cp
)

(%
)

(r
ad
)

0 2

cp

0 2

cp

0 20 2

=1.0
=12.0

= 0.4

=1.0
=12.0

= 0.4

= 0.1

=1.0
= 0.2

= 0.1

=1.0
= 0.2

(a) (b)

(c) (d)

FIG. 2. (Color online) The quantity σ (θcp)/τ for cases (A) and
(B) is shown in (a) and (b), respectively, where the vertical scale
is expressed as a percentage. The distance d(θcp) from in-phase
synchronization for cases (A) and (B) is shown in (c) and (d),
respectively. The points and lines are the numerical results of the
simulation and analytical predictions given by Eqs. (16) and (13),
respectively.

is defined by φ(tcp) = θcp. The oscillation period for D = 0
is denoted by τ ; i.e., φ(tcp + τ ) = θcp + 2π . After a transient
time, our system approaches the steady state, which is defined
by the following equation for all �:

P (‖θ1 − θ2‖; θ1 = �) = P (‖θ1 − θ2‖; θ1 = � + 2π ), (6)

where P (‖θ1 − θ2‖; θ1 = �) is the probability density func-
tion of the distance ‖θ1 − θ2‖ at θ1 = �.

We assume that the system is in the steady state at t =
0. The ensemble we consider here is defined by the initial
condition at t = tcp, θ1(tcp) = θcp, and θ2(tcp) is distributed in
[θ1(tcp) − π,θ1(tcp) + π ] according to Eq. (6). From this point,
E[· · · ] represents the average taken over this ensemble. The
phase diffusion η(θcp) is defined by

η(θcp)2 = E{[θ1(tcp + τ ) − θ1(tcp) − 2π ]2}. (7)

We also assume that the noise intensity D is sufficiently small
and that the other parameters and functions are of O(1), so
that the phase difference ‖θ1 − θ2‖ is small in most cases in
the steady state.

To calculate the phase diffusion, we decompose θ1,2 as
θ1,2(t) = φ(t) + �1,2(t). We then consider the time duration
0 � t � O(τ ), in which �1,2(t) � 1 is expected in most cases
because D � 1. Therefore, we can linearize Eq. (3). We define
the two modes X = �1 + �2 and Y = �1 − �2, which obey

(Ẋ,Ẏ ) = κfX,Y [φ(t)] (X,Y ) + ξX,Y [t,φ(t)], (8)

where fX(φ) ≡ ∂J
∂x

|x=y=φ + ∂J
∂y

|x=y=φ = dJ (φ,φ)
dφ

, fY (φ) ≡
∂J
∂x

|x=y=φ − ∂J
∂y

|x=y=φ , and ξX,Y [t,φ(t)] ≡ √
DZ[φ(t)]

[ξ1(t) ± ξ2(t)]. Note that fX(φ) = 0 for all φ in case (A). The

solutions of Eq. (8) can be described as

(X,Y )(t) = exp {+κFX,Y [φ(t)]}
{

(X,Y )(0)

+
∫ t

0
exp {−κFX,Y [φ(t ′)]}ξX,Y [t ′,φ(t ′)]dt ′

}
, (9)

where FX,Y [φ(t)] ≡ ∫ t

0 fX,Y (φ(t ′))dt ′. Furthermore, because
fX(φ) = dJ (φ,φ)

dφ
, we obtain

FX[φ(t)] = 1

κ
ln

(
φ̇(t)

φ̇(0)

)
. (10)

For ξY = 0, we obtain FY (2π ) = (1/κ) ln[Y (τ )/Y (0)]. There-
fore, in the absence of noise, in-phase synchronization is stable
if

FY (2π ) ≡ c < 0. (11)

The correlations E[X(t)2], E[Y (t)2], and E[X(t)Y (t)] are
given in the Supplemental Material [19]. Since Eq. (6) can
be rewritten as P (|�1 − �2|; t) ∼= P (|�1 − �2|; t + τ ), then
E[Y (t)2] = E[Y (t + τ )2] holds approximately, leading to

E[Y (0)2] = 2D
exp[2κc]

1 − exp[2κc]

∫ τ

0
Z[φ(t ′)]2

× exp{−2κFY [φ(t ′)]}dt ′. (12)

In addition, because d(θcp)2 = E{[�1(tcp) − �2(tcp)]2} =
E[Y (tcp)2], we obtain

d(θcp)2 = exp[2κFY (θcp)]

(
E[Y (0)2] + 2D

∫ θcp

0
Z(φ)2

× exp[−2κFY (φ)]
ds

dφ(s)
dφ

)
, (13)

which is generally θcp dependent even if Z(φ) is constant.
Using these correlations and Eq. (10), we obtain the

following expression for the phase diffusion [19]:

η(θcp)2 = E{[�1(tcp + τ ) − �1(tcp)]2}
= C1φ̇(θcp)

2 + C2d(θcp)2, (14)

where the C1,2 are independent of θcp and are given by C1 =
D
2

∫ 2π

0
Z(θ)2

φ̇(θ)3 dθ and C2 = (1 − exp[κc])/2. The C1 term is an
effective diffusion constant for the center of the two oscillators,
which is half that of an uncoupled oscillator, and the C2 term
is associated with the stability of the synchronization.

To transform η(θcp) to σ (θcp), we note that when the noise
intensity is low, most of the trajectories of θ1(t) are very close to
the unperturbed trajectory φ(t) (see the Supplemental Material
[19]). In such a case, the following relation approximately
holds true:

η(θcp)

σ (θcp)
= φ̇(θcp). (15)

The same approximation (but for constant φ̇) was employed
in Ref. [16] and verified numerically.

From Eqs. (14) and (15), we finally arrive at

σ (θcp) =
√√√√C1 + C2

d(θcp)2

φ̇(θcp)
2 . (16)
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The analytical results given by Eqs. (16) and (13) are in
excellent agreement with the numerical results (Fig. 2).
Although we have only discussed paired identical phase
oscillators, our theory can easily be extended to other cases,
e.g., N globally coupled (all-to-all) identical oscillators or a
periodically driven noisy oscillator.

Equation (16) shows that the periodicity of the SD σ (θcp) is
based on the synchronization d(θcp) and phase velocity φ̇(θcp).
For case (A), since φ̇(θcp) is constant, there is one-to-one
correspondence between σ (θcp) and d(θcp); i.e., the most
precise timing, referred to as θmin

cp , is the timing at which
the best synchronization is achieved. This was observed
in Figs. 2(a) and 2(c), where θmin

cp = π/2 + O(κ−1) can be
obtained from dd(θcp)/dθcp = 0. For case (B), however, the
SD also depends on φ̇(θcp); this is in contrast to that observed
for the single phase oscillator system in which the phase
velocity ω(θ ) does not contribute to the checkpoint dependence
of the SD. Figures 2(b) and 2(d) showed that σ (θcp) and d(θcp)
are considerably different, which indicates the strong effect
of φ̇ in this particular example. Indeed, σ (θcp) assumes its
minimum around a maximum φ̇(θcp) (θmin

cp ≈ 5π/3).
To investigate whether Eq. (16) holds for a more realistic

model, we employ the FitzHugh-Nagumo model given by

V̇1 = V1(V1 − a)(1 − V1) − W1 + ξ1(t) + KV (V2 − V1),
(17)

Ẇ1 = ε(V1 − bW1) + KW (W2 − W1),

in which the second oscillator is described in a similar way.
We fixed a = −0.1, b = 0.5, and ε = 0.01. This system shows
limit-cycle oscillations with a period of τ � 126.5 when noise
and coupling are absent. The white Gaussian noise ξi(t) has
an intensity of 0.01. The interaction is diffusive, i.e., case (A),
and we consider the following two types: V coupling (KV =
0.01, KW = 0) and W coupling (KV = 0, KW = 0.01). The
phase θ was defined properly (see the Supplemental Material
[19]), and σ (θcp) and d(θcp) were obtained numerically.
Figure 3 shows that the θcp dependence of the SD is different in
the two cases, suggesting a significant effect from the coupling.
We estimated the C1 and C2 values using Eq. (16) and the
least-squares method under the condition that both cases have
the same C1 value, resulting in C1 = 5.4, C

(V )
2 = 0.20, and

C
(W )
2 = 0.48. In Fig. 3, we can see that the SD is described well

by Eq. (16) using the fitted C1 and C2 values. This demonstrates
that the theory is valid for this biological model.
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π 2π0

FIG. 3. (Color online) Validation of Eq. (16) in the FitzHugh-
Nagumo model. Open symbols are the numerically obtained σ values.
Filled symbols are the σ values evaluated from Eq. (16) with the
numerically obtained d values and fitting parameters C1 and C2. The
triangles and circles represent the V and W coupling cases. The plus
symbols are the numerically obtained σ values for an uncoupled
oscillator.

In many cases, only the SD measured at a functionally
relevant checkpoint characterizes the performance of a clock.
When designing a precise clock, we only have to reduce σ (θcp)
for a specific θcp. Equation (16) implies that σ (θcp) at a given
θcp decreases with decreasing d(θcp) and increasing φ̇(θcp).
Therefore, attractive coupling between oscillators should be
activated around the functionally relevant timing point. In
addition, in case (B), the phase velocity should be increased
through coupling.

Our theory enables us to infer the coupling timing or form
by measuring σ (θcp) at several checkpoints. Although this
is, in principle, possible with d(θcp), using σ (θcp) has the
added advantages that σ (θcp) can be measured from a single
time series and that d(θcp) is sensitive to the definition of
phase. From the observations of circadian periods in mice [10]
referred to in the introduction of the present paper, it is possible
that the SCN sends signals to the peripheral clocks around the
onset of a subjective day. An experimental observation of the
checkpoint dependence in other biological clocks would be a
new source of coupling information.
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