
Dynamics-based centrality for directed networks

Naoki Masuda1,2 and Hiroshi Kori3,2

1Department of Mathematical Informatics, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
2PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

3Division of Advanced Sciences, Ochadai Academic Production, Ochanomizu University,
2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan

�Received 16 June 2010; revised manuscript received 12 October 2010; published 8 November 2010�

Determining the relative importance of nodes in directed networks is important in, for example, ranking
websites, publications, and sports teams, and for understanding signal flows in systems biology. A prevailing
centrality measure in this respect is the PageRank. In this work, we focus on another class of centrality derived
from the Laplacian of the network. We extend the Laplacian-based centrality, which has mainly been applied
to strongly connected networks, to the case of general directed networks such that we can quantitatively
compare arbitrary nodes. Toward this end, we adopt the idea used in the PageRank to introduce global
connectivity between all the pairs of nodes with a certain strength. Numerical simulations are carried out on
some networks. We also offer interpretations of the Laplacian-based centrality for general directed networks in
terms of various dynamical and structural properties of networks. Importantly, the Laplacian-based centrality
defined as the stationary density of the continuous-time random walk with random jumps is shown to be
equivalent to the absorption probability of the random walk with sinks at each node but without random jumps.
Similarly, the proposed centrality represents the importance of nodes in dynamics on the original network
supplied with sinks but not with random jumps.
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I. INTRODUCTION

A network is a set of nodes and a set of links that connect
pairs of nodes �see �1–3� for reviews�. In applications includ-
ing information science, sociology, and biology, it is often
necessary to determine important nodes in a network. Vari-
ous definitions of the importance of nodes, or centrality mea-
sures, have been proposed since the first classical studies on
social network analysis in the 1950s �2–5�.

It is often more suitable to consider links to be directed,
where the direction of link represents relationships such as
the control of one node over another, unidirectional flow, and
citation. Many centrality measures including degree central-
ity, betweenness centrality, and eigenvector centrality can be
adopted to the case of directed networks. Nevertheless, the
most popular centrality for directed networks appears to be
PageRank, which takes nontrivial values only in directed net-
works. It was originally developed for ranking websites �6�.
In other words, the PageRank of a node is large when the
node receives many links from important nodes that do not
have too many outgoing links.

In the present study, we focus on another important class
of centrality for directed networks, i.e., those derived from
the Laplacian of the network. This class of centrality has a
long history �7–12� and is mathematically close to the
PageRank �see Sec. V�. Furthermore, for strongly connected
networks, i.e., networks in which there exists a path of di-
rected links between an arbitrary ordered pair of nodes, the
Laplacian-based centrality value of a node, which we also
call the influence of a node, represents its importance in vari-
ous dynamics on networks �13–15�.

The Laplacian-based centrality measure has mostly been
analyzed for strongly connected networks �7–9,13–15�.
However, real directed networks may not be strongly con-

nected. This is typically the case when the network is sparse
�i.e., number of links is relatively small� or of small size.
Although the Laplacian-based centrality in the original form
is applicable when all the nodes are reached along directed
paths from a certain specified node, such a network is not
generic. The Laplacian-based centrality has been generalized
to the case of general directed networks �10–12�. In the gen-
eralized version, nodes in an uppermost component have
positive centrality values, whereas nodes in a downstream
component have zero centrality values �see Secs. II and III
for definitions of uppermost and downstream components�.
However, we may want to compare the importance of nodes
in downstream components. We may also wish to compare a
node 1 in an uppermost component and a node 2 in a down-
stream component that is not under the control of node 1.

In this paper, we extend the Laplacian-based centrality
measure �i.e., influence� to the case of general directed net-
works. Networks do not have to be strongly connected and
can be composed of disconnected components. The extended
centrality measure, called as the influence or extended influ-
ence without ambiguity, is a one-parameter family of the
centrality measure with parameter q such that the previous
definition �10–12� is recovered in the limit q→0. The ex-
tended influence is a relative of the PageRank; the influence
and the PageRank correspond to continuous-time and
discrete-time simple random walks, respectively. The present
paper is organized as follows. In Secs. II and III, we review
previous works on the influence for strongly connected and
general directed networks, respectively. In Sec. IV, we
present new interpretations of the centrality measure intro-
duced in Sec. III. In Sec. V, we extend the concept of the
influence by borrowing the idea used in the PageRank to
introduce some global connectivity to the original network.
We also show that the proposed influence can be interpreted
as the dynamical properties of nodes on the original network
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without additional global connectivity. In Secs. VI and VII,
we apply the influence to toy examples and relatively large
networks, respectively. In Sec. VIII, we summarize and dis-
cuss our results, with an emphasis on the comparison of the
influence and the PageRank.

II. INFLUENCE FOR NETWORKS WITH SINGLE ZERO
LAPLACIAN EIGENVALUE

Consider a directed and weighted network having N
nodes. The weight of the link from node i to node j is de-
noted by wij and assumed to be nonnegative. wij �0 repre-
sents the strength with which node i governs node j. wij and
wji are generally different from each other.

The Laplacian-based centrality measure, called the influ-
ence of node i and denoted as vi, is defined as the solution of
the following set of N linear equations:

vi =

�
j=1

N

wijv j

�
j�=1

N

wj�i

, �1 � i � N� . �1�

The normalization is given by �i=1
N vi=1. We can rewrite Eq.

�1� as

�v1 ¯ vN�L = 0, �2�

where L= �Lij� is the asymmetric Laplacian defined by

Lij = �ij �
j��i

wj�i − �1 − �ij�wji. �3�

vi represents the importance of nodes in various dynamics on
networks, such as the voter model, a random walk, De-
Groot’s model of consensus formation, and the response of
synchronized networks �13�.

If a network is strongly connected, that is, if any node j
can be reached from an arbitrary node i along directed links,
the Perron-Frobenius theorem guarantees that �v1¯vN� is
unique and vi�0 �1� i�N�. In particular, for undirected
networks, which are strongly connected as long as they are
connected, we have vi=1 /N. Therefore, the influence is a
centrality measure that is relevant only in directed networks.

To discuss the uniqueness of the zero eigenvector
�v1¯vN� of L, we use the concept of the root node �10�.
Consider the set Gr of m nodes in a given network
�1�m�N�. We define Gr to be a set of root nodes if an
arbitrary node can be reached along directed links from a
node included in Gr and Gr is minimal. In the example
shown in Fig. 1, �1, 2� qualifies as Gr. �1, 3� is another
example of Gr. �1, 4, 5� does not qualify because it is not
minimal. The minimality indicates that some nodes cannot
be reached from Gr�, where Gr� is the set of nodes with
m−1 nodes defined by removing an arbitrary node from Gr.
For strongly connected networks �m=1�, Gr can be a set of
any single node. As this exercise suggests, Gr for a given
network is generally not unique. However, m is uniquely
determined from a network �10�. The directed chain shown

in Fig. 2 is a network that is not strongly connected with
m=1. In Fig. 2, we obtain v1=1 for the unique root node 1
and vi=0 �2� i�N�.

The multiplicity of the zero eigenvalue of L, also called
the geometric multiplicity of the eigenvalue �16,17�, is equal
to m �10,18,19�. Therefore, the influence given by Eq. �2� is
well defined only for networks with m=1, and most previous
papers that treat Eq. �2� concentrate on strongly connected
networks �7–9,13–15,20�. In this case, �v1¯vN� can be
readily calculated by the power iteration or the enumeration
of the directed spanning tree �13,14�.

III. CASE OF MULTIPLE ZERO LAPLACIAN
EIGENVALUES

In this section, we treat networks with multiple zero La-
placian eigenvalues. Such a network is not strongly con-
nected. The influence explained in Sec. II was extended to
accommodate this case by Agaev–Chebotarev �10,11� and
Borm et al. �12�. We develop a new centrality measure in
Sec. V by generalizing their definitions. In this section, we
explain their centrality measure and examine its properties.

Consider a continuous-time simple random walk on the
network generated by reversing the direction of all the links
of the original network. We select each node i �1� i�N� as
the initial location of the random walker with probability
1 /N. For directed networks that are not necessarily strongly
connected, Agaev–Chebotarev �10,11� and Borm et al. �12�
defined a centrality measure, which we call the influence and
denote by vi without ambiguity, as the long-term probability
that the walker visits node i. For a strongly connected net-
work, vi is equal to the stationary density of the random walk
and coincides with vi defined by Eq. �2� �13,20�. For a net-
work with a single root node i0, node i0 is the unique absorb-
ing boundary, and any random walker is eventually trapped
at node i0. Therefore, vi0

=1 and vi=0 �i� i0�, which is again
consistent with Eq. �2� �13�.

Because the generator of the continuous-time random
walk is equal to −L, we obtain

�v1 ¯ vN� = lim
t→�

1

N
�1 ¯ 1�exp�− Lt� . �4�

The spectral decomposition of L yields

1 2

3

45

6 7

FIG. 1. A network with two root nodes.

2 31
1

N
11 1

FIG. 2. Directed chain with N nodes.
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e−Lt = �
m�=1

m

um�
�0�vm�

�0� + �u1
��2�v1

��2� + ¯�e−�2t + ¯ , �5�

where vm�
�0� and um�

�0� �1�m��m� are the zero left and right
eigenvectors of L, respectively. Without loss of generality,
we assume that vm�

�0� and um�
�0� are normalized and orthogonal-

ized such that

�
j=1

N

vm�,j
�0� = 1, �1 � m� � m� , �6�

and

vm1

�0�um2

�0� = �m1m2
. �7�

�2 is the spectral gap �i.e., smallest positive eigenvalue� of L.
u1

��2� and v1
��2� are a pair of left and right eigenvalues of L

corresponding to �2, where v1
��2�u1

��2��0. Other modes that
decay at least as fast as e−�2t with t are omitted in Eq. �5�.
Note that Eq. �5� is also valid when L is not diagonalizable
and has a nondiagonal Jordan normal form. The combination
of Eqs. �4� and �5� leads to

�v1 ¯ vN� =
1

N
�1 ¯ 1� �

m�=1

m

um�
�0�vm�

�0�. �8�

When m=1, by substituting u1
�0�= �1¯1�T �T denotes the

transpose� into Eq. �8�, we obtain �v1¯vN�=v1
�0�. Therefore,

Eq. �8� extends Eq. �2�. We note that Eq. �8� is also appli-
cable to disconnected networks for which m�2.

To gain insights into Eq. �8�, we consider the decomposi-
tion of directed networks into strongly connected compo-
nents �SCCs�. We define the uppermost SCC as an SCC that
is not downstream to any other SCC along directed links.
The number of uppermost SCCs in a given network is equal
to m �10�. The choice of Gr, the set of root nodes, is unique
up to the arbitrariness of the choice of a node in each upper-
most SCC. This is consistent with the fact that the set of any
single node is qualified as Gr in a strongly connected net-
work.

In general, we can permute the indices of the nodes such
that L is the irreducible normal form �8,17� given by

L =�
L11 0 0 ¯ 0

L21 L22 0 ¯ 0

L31 L32 L33 ¯ ]

] ] ] � 0

Lb1 Lb2 Lb3 ¯ Lbb

	 . �9�

The diagonal block Lb�b� �1�b��b� corresponds to the b�th
SCC. We denote the number of nodes in the b�th SCC by
Nb�. Then, Lb�b� is an Nb��Nb� matrix and �b�=1

b Nb�=N. The
lower triangular nature of Eq. �9� implies that the SCCs are
ordered in Eq. �9� such that links may exist from a node in
the b�th SCC to the b�th SCC only when b��b�.

Because m out of b SCCs do not receive links from other
SCCs, the uppermost SCCs occupy the first m rows of blocks
in Eq. �9�, and we obtain

Lm1m2
= 0, �m1 � m2,1 � m1 � m� . �10�

Equation �9� constrained by Eq. �10� is called the Frobenius
normal form �21�. In addition, Lm�m� �1�m��m� is the La-
placian matrix of the m�th SCC, which has a single zero
eigenvalue. The eigenequations for this submatrix are repre-
sented by

Lm�m��1

]

1
	 = 0, �vm�,1 ¯ vm�,Nm�

�Lm�m� = 0. �11�

It is easy �10� to verify that the m left zero eigenvectors of
L are given by

vm�
�0� = � 0 ¯ 0 vm�,1vm�,2 ¯ vm�,Nm�

0 ¯ 0
N1+. . .+Nm�−1

zeros
Nm�+1+. . .+Nb

zeros

�,

�
j=1

Nm�

vm�,j = 1, �1 � m� � m� .
�12�

To satisfy the normalization condition vm1

�0�um2

�0�=�m1,m2
and

the first �m�=1
m Nm� rows of Lum�

�0�=0, we should take

�13�

where ūm�
b� �m+1�b��b� is the Nb�-dimensional column

vector determined by

�Lm+1,m�

]

Lb,m�
	�1

]

1 	 +�
Lm+1,m+1 0 ¯ 0

Lm+2,m+1 Lm+2,m+2 ¯ 0

] ] � 0

Lb,m+1 Lb,m+2 ¯ Lbb

	�ūm�
m+1

]

ūm�
b 	

= 0. �14�

To show that Eq. �14� has a unique nonnegative solution,
we decompose the diagonal block Lm�m� �m+1�m��N� as

Lm�m� = L̃m�m� + Dm�, �15�

where L̃m�m� is the Laplacian of the m�th SCC and Dm� is the
diagonal matrix whose ith element is equal to the total num-
ber of incoming links from SCCs 1, . . . ,m�−1 to the ith node
in the m�th SCC. Equation �15� implies that Lm�m� is diago-
nally dominant. Therefore, by applying the Jacobi or Gauss-
Seidel iteration to the first Nm+1 rows of Eq. �14�, we can
uniquely calculate ūm�

m+1 �16�. Furthermore, Lm�m� is an
M-matrix �22�. Because all the elements of Lm+1,m��1¯1�T

that appear in the first Nm+1 rows of Eq. �14� are not positive,
all the elements of ūm�

m+1 are guaranteed to be nonnegative
�22�. By substituting the obtained ūm�

m+1 in Eq. �14� and ap-
plying the Jacobi or Gauss-Seidel iteration to the next Nm+2

rows, we can uniquely determine ūm�
m+2. By repeating the

same procedure, we can successively determine ūm�
�0�, whose

elements are unique and nonnegative.
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The projection of L onto the eigenspaces yields

I = 
 �
m�=1

m

um�
�0�vm�

�0�� + u1
��2�v1

��2� + ¯ , �16�

where I is the N�N unit matrix. Note that Eq. �16� is valid
even if L is not diagonalizable. By multiplying the
N-dimensional column vector �1¯1�T, a zero right eigen-
vector of L, from the right to both sides of Eq. �16� and using
Eqs. �6� and �7�, we obtain

�1

]

1
	 = �

m�=1

m

um�
�0�. �17�

Equation �17� implies �m�=1
m um�,j

�0� =1 �1� j�N�, where um�,j
�0�

is the jth element of um�
�0� and represents the probability that

the random walk starting from node j is trapped by the m�th
uppermost SCC. um�,j

�0� can be interpreted as the magnitude of
the influence that the m�th SCC exerts on node j. Note that
um�,j

�0� =0 if node j cannot be reached from the m�th uppermost
SCC along directed links in the original network.

By substituting Eq. �12� in Eq. �8�, we obtain

vi = vm�,i

�
j=1

N

um�,j
�0�

N
�18�

for node i that belongs to the m�th uppermost SCC. For these
nodes, vi�0 is satisfied. For nodes that do not belong to an
uppermost SCC, we obtain vi=0. Equation �17� guarantees
that �i=1

N vi=1. Equation �18� generalizes the definition for
strongly connected networks given by Eq. �1�. We interpret
the right-hand side of Eq. �18� to be the multiplication of the
influence of node i within the m�th SCC �i.e., vm�,i� and the
relative influence of the m�th SCC in the entire network �i.e.,
� j=1

N um�,j
�0� /N�.

For pedagogical purposes, the calculations of vi for two
toy networks with N=4 and m=2 are presented in the Ap-
pendix.

IV. INTERPRETATION OF INFLUENCE FOR NETWORKS
WITH MULTIPLE ROOT NODES

Borm and colleagues defined the Laplacian centrality
measure on the basis of the continuous-time simple random
walk on networks. In this section, we further motivate this
definition by showing that vi given by Eq. �18� have other
interpretations, as is the case for vi formulated for strongly
connected networks �13�.

A. Collective responses in the DeGroot model of consensus
formation

The DeGroot model represents dynamical opinion forma-
tion in a population of interacting individuals �23�. The dy-
namics of the continuous-time version of the DeGroot model
�24�, also known as Abelson’s model �18�, are defined by

ẋ�t� = − Lx�t� , �19�

where x�t���x1�t�¯xN�t��T�RN represents the time-
dependent opinion vector. For networks with m=1, including
strongly connected networks, the consensus, i.e., synchrony,
is asymptotically reached. In this case, the final synchronized
opinion is given by vx�0�. Therefore, vi is equal to the frac-
tion of the initial opinion at node i reflected in the final
opinion of the entire network �13,23–25�.

When m�2, synchrony is neutrally but not asymptoti-
cally stable. Therefore, the consensus of the entire network is
not generally reached from a general initial condition. The
final opinion vector is given by

lim
t→�

x�t� = lim
t→�

e−Ltx�0� = 
 �
m�=1

m

um�
�0�vm�

�0��x�0� . �20�

If we set xj�0�=�ij �1� j�N� to introduce a different opin-
ion of unit strength at node i to the initial all-0 consensus
state, the average response of the nodes induced by a differ-
ent opinion at node i is equal to

lim
t→�

1

N�
j=1

N

xj�t� =
1

N
�1 ¯ 1� �

m�=1

m

um�
�0�vm�

�0�ei, �21�

where ei is the N-dimensional unit column vector such that
the ith element is equal to 1 and the other elements are equal
to 0. Because Eq. �21� coincides with Eq. �18�, the amount of
the initial opinion of node i reflected in the final opinion of
the entire network is given by Eq. �18�.

B. Stationary density of voter model

The so-called link dynamics is a stochastic interacting
particle system on networks in which each node takes one of
the two opinions A and B �26�. In each time step, one link is
randomly selected from the network with a probability pro-
portional to the weight of the link. Then, the state of the
source node of the link replaces that of the target node of the
link if their states are different. Note that opinions A and B
are equally strong in the dynamics. The dynamics halt when
A or B takes over the entire network. The fixation probability
of node i is defined as the probability that B takes over the
network when the initial configuration is such that node i
takes B and the other N−1 nodes take A. When m=1, vi is
equal to the fixation probability of node i �13,20�.

When m�2, the fixation of B introduced at node i never
occurs. If node i is located in a downstream SCC, B eventu-
ally vanishes because A in the uppermost SCCs is permanent
and replaces B in the downstream SCCs. If node i is located
in an uppermost SCC, this SCC ends up with being entirely
occupied by B with a positive probability. However, other
uppermost SCCs are permanently occupied by A, such that
the consensus is never reached.

In this situation, consider the expected fraction of B in the
network in the stationary state when we start from the initial
configuration with a single B at node i. The probability that B
takes over the m�th uppermost SCC to which node i belongs
is equal to vm�,i. Under the condition that the m�th uppermost
SCC is entirely occupied by B and the other m−1 uppermost
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SCCs are entirely occupied by A, the master equation for the
probability pj

LD that node j in a downstream SCC is occupied
by B is given by

dpj
LD

dt
= �1 − pj

LD� �
j�=1

N

wj�jpj�
LD − pj

LD �
j�=1

N

wj�j�1 − pj�
LD� ,

= �
j�=1

N

wj�jpj�
LD − pj

LD �
j�=1

N

wj�j , �22�

where we set pj�
LD=1 when node j� belongs to the m�th up-

permost SCC and pj�
LD=0 when node j� belongs to one of the

other uppermost SCCs.
Equation �22� implies that in the equilibrium,

�p1
LD

¯pN
LD�T is a right zero eigenvector of L and identical to

um�
�0� given by Eq. �13�. Therefore, the stationary fraction of

opinion B in the network is given by Eq. �18�.

C. Enumeration of spanning trees

When m=1, the matrix-tree theorem implies that vi is
proportional to the sum of the weights of all the possible
directed spanning trees rooted at node i �9,10,13�. The
weight of a spanning tree is defined as the multiplication of
all the weights of the N−1 links included in the spanning
tree.

The Markov chain tree theorem extends this result to the
case m�2 �27�. According to this theorem, vm�,ium�,j

�0� for
general directed networks is proportional to the sum of the
weights of all the arborescences such that node i is a root
node of the arborescence and the arborescence passes node j.
An arborescence is a subgraph of the original networks with
N nodes such that the indegree of each node restricted to the
arborescence is at most one, it has no cycles, and it contains
the maximal number of links. The nodes whose indegrees are
zero within the arborescence are called the root nodes of the
arborescence. They form Gr such that the concept of the root
node for the arborescence and that for the network Laplacian
�10� are identical. Therefore, the number of links in an ar-
borescence is equal to N−m, and the arborescence is com-
posed of m disconnected directed trees each of which ema-
nates from a root node. Intuitively, vm�,ium�,j

�0� represents the
number of different ways in which node i influences node j.

The influence of node i defined by Eq. �18� is proportional
to the summation of all the arborescences with the modified
weight. The modified weight of an arborescence is defined
by the multiplication of all the weights of the N−m links
included in the arborescence and the number of nodes in-
cluded in the directed tree rooted at node i in the arbores-
cence. If node i is not the root of the arborescence, we set the
weight of this arborescence to zero.

V. INFLUENCE OF NODES IN DOWNSTREAM
COMPONENTS

A. Definition of the extended influence

With the definition given by Eq. �18�, nodes that do not
belong to any uppermost SCC have vi=0. In practice, how-

ever, we often need to assess the relative importance of dif-
ferent nodes in downstream SCCs and that of nodes in dif-
ferent downstream SCCs. There also arise occasions when
we want to compare uninfluential nodes in an uppermost
SCC and influential nodes in a downstream SCC.

An extreme situation in which this is the case is realized
by the network shown in Fig. 3�a�. Whenever ��0 and
	�0, we obtain v1=v2=0 and v3=1. However, when � and
	 are small, node 1 may be regarded to be more central than
node 3 because node 1 is much more central than node 2 and
node 3 only weakly influences noncentral node 2. To cope
with such a situation, we extend the influence to a one-
parameter family of centrality measure by adopting the con-
cept behind the definition of the PageRank.

The PageRank of node i, denoted by Ri, is defined as the
stationary density of the discrete-time simple random walk
as follows �6�:

Ri = �1 − q��
j=1

N
wji

�
�=1

N

wj�

Rj + ��
�=1
N wi�,0�1 − q�Ri +

q

N
,

�1 � i � N� , �23�

where �i,j =1 if i= j and �i,j =0 if i� j. The so-called telepor-
tation probability q represents the probability that the ran-
dom walker jumps from any node to an arbitrary node in one
step. The same concept underlies the definition of the cen-
trality based on the adjacency matrix �3,4�. According to the
second term on the right-hand side in Eq. �23�, the random
walker stays at the node without outgoing links with prob-
ability 1−q. The introduction of q is necessary for treating
networks that are not strongly connected.

The PageRank is originally designed for web graphs.
Therefore, receiving links increases Ri, which is opposite to
the contention of the influence. To relate the PageRank to the
influence, we consider the PageRank in the network gener-
ated by reversing all the links of the original network �13�.
We denote this quantity for node i by Ri

rev, which is deter-
mined by

Ri
rev = �1 − q��

j=1

N
wij

�
�=1

N

w�j

Rj
rev + ��

�=1
N w�i,0

�1 − q�Ri
rev +

q

N
,

�1 � i � N� . �24�

FIG. 3. �a� Example of directed network with N=3. �b� Network
with 2N=6 nodes obtained by adding source nodes to the network
shown in �a�.
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As explained in Sec. III, the influence corresponds to the
continuous-time random walk on the link-reversed network.
In a strongly connected network, the influence of each node
is equal to the stationary density of the continuous-time ran-
dom walk on the link-reversed network �13,20�. As in the
definition of the PageRank, let us introduce random global
jumps to the continuous-time random walk on the link-
reversed network. We do so by assuming that the walker
jumps from any node to an arbitrary node with rate q. Note
that q represents a probability in the PageRank, whereas it is
a rate in the influence. In the following, we allow q to exceed
unity unless otherwise stated. The destination of the random
jump is chosen from all the nodes with equal probability
1 /N. We denote by v̂i the stationary density of the modified
random walk at node i. The normalization is given by
�i=1

N v̂i=1. The stationary density is obtained from

dv̂i

dt
= �

j=1;j�i

N

v̂ jwij − v̂i �
j=1;j�i

N

wji +
q

N
− qv̂i = 0. �25�

We define the extended influence by the solution of Eq. �25�.
We note that the link-reversed version of Eq. �25�, with a
different structure of the global jump, was proposed as an
alternative of the PageRank to be applied to web graphs �28�.

In the vector notation, Eq. �25� is represented by

�v̂1 ¯ v̂N��L + qI� =
q

N
�1 ¯ 1� , �26�

or equivalently,

�v̂1 ¯ v̂N�
L + qI −
q

N
J� = 0, �27�

where J is the N by N matrix whose all the elements are
equal to unity. If q�0, L+qI is strictly diagonally dominant,
and Eq. �26� can be solved by the Jacobi or Gauss-Seidel
iteration. A large q guarantees exponentially fast conver-
gence of the iteration �16�.

We note that

L + qI = �
m�=1

m

qum�
�0�vm�

�0� + ��2 + q�u1
��2�v1

��2� + ¯ , �28�

which leads to

�L + qI�−1 = �
m�=1

m
1

q
um�

�0�vm�
�0� +

1

�2 + q
u1

��2�v1
��2� + ¯ .

�29�

In the limit q→0, Eq. �29� implies that v̂i
vi, where vi is
defined by Eq. �8�. For the first term on the right-hand side of
Eq. �8� to be comparable with the remaining terms, q must be
at least approximately Re �2. If this is the case, v̂i can quan-
titatively differentiate various nodes including those in
downstream components.

In the limit q→�, Eq. �26� gives v̂i=1 /N �1� i�N�.
When q is a large finite value, Eq. �26� is expanded as

�v̂1 ¯ v̂N� =
1

N
�1 ¯ 1��

�=0

�

�− 1��
L

q
��

=
1

N
�1 ¯ 1� +

1

Nq
�k1

out − k1
in
¯ kN

out − kN
in� + O
 1

q2� ,

�30�

where ki
out and ki

in are the outdegree and the indegree of node
i, respectively. The Taylor expansion is justified when
q�Re �N, where �N is the eigenvalue of L with the largest
modulus. If q is large relative to Re �N, the influence is de-
termined by the outdegree and the indegree and is indepen-
dent of the global structure of networks. Therefore, in prac-
tice, q should not be too large as compared to Re �N. This is
surprising because a large q implies a strong global
connectivity. As a rule of thumb, we recommend setting
Re �2
q
Re �N. A suitable range of the teleportation prob-
ability q for the PageRank can be also obtained by applying
the criterion Re �2
q
Re �N to the PageRank matrix im-
plied in Eq. �23�.

B. Interpreting the extended influence
without regard to global jumps

We have extended the influence by introducing global
jumps to the continuous-time random walk on the link-
reversed network. However, the meaning of the teleportation
term in terms of the dynamical and structural properties of
the nodes in the network and its rationale are somewhat
vague. We show that the extended influence defined by Eq.
�26� allows another interpretation: absorption probability of
the random walk on the link-reversed network with a sink
attached to each node but without global jumps. A similar
interpretation was made for the PageRank in Ref. �29�.

We assume N additional source nodes indexed by
1� , . . . ,N� and directed links with weight q�0 from node i�
to node i �1� i�N� in the original network. The extension
of the network shown in Fig. 3�a� is depicted in Fig. 3�b�.
The extended network has 2N nodes. Nodes 1� , . . . ,N� are
the unique root nodes of the extended network. Node i�
forms the ith uppermost SCC in the extended network. The
multiplicity of the zero Laplacian eigenvalue of the extended
network is equal to m=N.

We then reverse all the links and consider the probability
that the random walker starting from an arbitrary node with
equal probability 1 /2N is absorbed at node i�. This probabil-
ity is given by vi�. Because it is obvious and uninformative
that the random walker starting from the auxiliary node i� is
necessarily absorbed to node i�, we would like to exclude
this factor. Therefore, we examine the quantity given by

2
vi� −
1

2N
� = 2vi� −

1

N
. �31�

The subtraction of 1 / �2N� in Eq. �31� accounts for the ex-
clusion of the random walker starting from and absorbed to
node i�. The multiplicative factor 2 accounts for the fact that
we effectively start the random walk from nodes 1 , . . . ,N
with equal probability 1 /N.
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Equation �18� implies that the calculation of vi� involves
vi,1, that is, the first element of the left zero eigenvector of L
corresponding to the ith uppermost SCC. Because the upper-
most SCC consists of single node i�, vi,1 is equal to unity.
The calculation of vi� also involves ui

�0���ei ūi�T, that is, the
zero eigenvector of the 2N-dimensional Laplacian. ūi

T is an
N-dimensional column vector. By substituting these expres-
sions and Eq. �18� in Eq. �31�, the quantity given by Eq. �31�
is equal to

2�vi,1

�
j=1

2N

ui,j
�0�

2N
−

1

2N
	 =

�
j=1

N

ūi,j

N
. �32�

We calculate ūi
T from


 O O

− qI L + qI
�
ei

ūi
� = 0, �33�

where O is the N�N zero matrix and L is the Laplacian of
the original network. Equation �33� is equivalent to

�L + qI�ūi = qei. �34�

By combining Eqs. �32� and �34�, we obtain Eq. �26�.
With this interpretation, we gain an intuitive understand-

ing of the fact that the extended influence v̂i is a local quan-
tity when q is large. In this situation, the tendency that a
random walk exits from each node is strong, and a random
walk would not travel a long distance before being absorbed.
Therefore, it is natural that v̂i at large q is efficiently approxi-
mated by local quantities of nodes such as the outdegree and
the indegree, as discussed using Eq. �30�.

VI. TOY EXAMPLES

In this and the next section, we apply the extended influ-
ence to various networks.

A. Network with N=3

Consider the network shown in Fig. 3�a�. We are con-
cerned with the situation in which 0
��1 such that node 1
is apparently much more central than node 2. If node 3 is
absent, v1 /v2=1 /�; node 1 is actually much more influential
than node 2 �14,25�. However, regardless of the value of
	�0, node 3 takes all the share of the influence if we use vi.

The extended influence v̂i �1� i�3� is equal to vi for the
network shown in Fig. 3�b�. We obtain

v̂1 =
1

3�
�q2 + �2 + 	�q� , �35�

v̂2 =
1

3�
�q2 + 2�q� , �36�

v̂3 =
1

3�
�q2 + �1 + � + 2	�q + 3�	� , �37�

where

� = q2 + �1 + � + 	�q + �	 . �38�

Therefore, v̂1� v̂3 when �1−�−	�q�3�	. When � or 	 is
small and �+	
1, we have an intuitive result that node 1 is
more influential than node 3.

B. Directed chain

Consider a directed chain having N nodes defined by
wi,i+1=1 �1� i�N−1� and wi,j =0 �j� i+1�. The network is
schematically shown in Fig. 2. We obtain v1=1 and vi=0
�2� i�N� �14�. However, nodes with small i are located
relatively upstream in the chain and intuitively appear influ-
ential as compared to nodes with large i. We can calculate
the influence either by solving Eq. �34� or by analyzing ran-
dom walks with N traps on the network obtained by revers-
ing all the links shown in Fig. 2. When the random walker on
the link-reversed network starts from node j �2� j�N�, the
probability that the walker exits from node i to the absorbing
node i� is equal to

uij
�0� =�

1

�1 + q� j−1 , �i = 1� ,

q

�1 + q� j−i+1 , �2 � i � j� ,

0, �j + 1 � i � N� .
� �39�

Therefore, we obtain

v̂i =
1

N
�
j=1

N

uij
�0� = �

1

N

1 + q

q
−

1

q�1 + q�N−1� , �i = 1� ,

1

N

1 −

1

�1 + q�N−i+1� , �2 � i � N� .�
�40�

We note that limq→0v̂1=1, limq→0v̂i=0 �2� i�N�, and v̂i
monotonically decreases with i for any q�0.

VII. NUMERICAL RESULTS

In this section, we examine the influence in three directed
networks: a random graph, a neural network, and an online
social network.

A. Descriptions of networks

We generate a directed random network with N=100 and
expected degree �k�=3.5 by connecting each ordered pair of
nodes independently with probability �k� / �N−1�. Because
�k� is relatively small, the generated network is not strongly
connected, whereas it is weakly connected, i.e., not divided
into disconnected components. The generated network has
three root nodes, each of which forms an SCC. The largest
SCC contains 94 nodes and is downstream to the three root
nodes. The extremal Laplacian eigenvalues are �2=0.046
and �N=8.255.

We generate a C. elegans neural network with N=279 on
the basis of published data �30�. In this network, there exist
two types of links: undirected gap junctions and directed
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chemical synapses. A pair of neurons can be connected by
multiple synapses. We regard this network as a weighted
directed network, where the weight of the link from neuron i
to neuron j is defined as the summation of the number of gap
junctions between i and j and the number of chemical syn-
apses from i to j. The network has 2993 links. The largest
SCC has 274 nodes �13�. Four of the five remaining nodes
are located upstream to the largest SCC and form individual
SCCs. The other node is located downstream to the largest
SCC. The extremal Laplacian eigenvalues are �2=0.050 and
�N=354.105.

The third network that we use is an online social network
among students at University of California, Irvine �31�. This
network has N=1899 nodes and 20 296 directed and
weighted links. We focus on the largest weakly connected
component of this network that contains 1893 nodes and
13 835 links. There exist 103 root nodes, each of which
forms an SCC. The largest SCC has 1023 nodes and is down-
stream to these root nodes. The extremal Laplacian eigenval-
ues are �2=0.146 and �N=92.996.

B. Analysis of influence in the three networks

The rank plots of the influence for various values of q for
the random graph, neural network, and online social network
are shown in Figs. 4�a�–4�c�, respectively. In the figure, the
values of v̂i are shown in the ascending order for each q for
clarity.

When q=0.001 �thickest lines�, v̂i is similar to vi for the
three networks. Therefore, the root nodes have exclusively
large v̂i, whereas the other nodes have v̂i
0. Accordingly,
we find a sudden jump in the rank plot for each network.
Such a small value of q does not allow us to quantitatively
compare the centrality of nodes in downstream components.
This is also anticipated from the fact that the three networks
yield q=0.001
Re�2. In the other extreme, v̂i
1 /N is
roughly satisfied when q=1000 �thinnest lines�. This
is consistent with the fact that the three networks yield

q=1000�Re �N. In this range of q, the influence is not an
adequate centrality measure. For intermediate values of q, v̂i
is reasonably dispersed, and nodes that are not the roots are
also endowed with positive v̂i. We consider that the influence
with intermediate values of q enables us to compare the im-
portance of nodes that are in downstream SCCs and quantify
the relative importance of nodes in uppermost SCCs and
nodes in downstream SCCs.

The influence with intermediate values of q is distinct
from the interpolation of the influence when q→0
�i.e., v̂i
vi� and that when q=� �i.e., v̂i=1 /N�. The order of
the nodes in terms of the value of v̂i drastically changes as q
varies. To demonstrate this, we examine the dependence of v̂i
on q for some selected nodes.

For the random graph, we select the three root nodes, for
which v̂i is the largest at q=0.001 and the three nodes whose
v̂i is the largest at q=10. The dependence of v̂i on q for the
six nodes is shown in Fig. 5�a�. The three root nodes �solid
lines in Fig. 5�a�� and the three nodes with the largest v̂i at
q=10 �dashed lines� do not overlap each other. In particular,
the root node with the third largest v̂i for q=0.001 does not
have large v̂i when q is approximately larger than 1. Al-
though the indegree of this root node is equal to zero, the
destinations of the links from this root node are presumably
nodes with small influence values in the largest SCC. This
phenomenon is essentially the same as that shown in Fig. 3.

The neural network has four root nodes. The dependence
of v̂i on q for the root nodes and the three nodes whose v̂i is
among the four largest values at q=10 are shown in Fig.
5�b�. In the neural network, one of the four roots is among
the nodes with the four largest values of v̂i at q=10. For the
online social network, the relationships between v̂i and q for
the five root nodes with the largest v̂i at q=0.001 and the five
nodes with the largest v̂i at q=1000 are shown in Fig. 5�c�.
The results for the neural network and the online social net-
work are qualitatively the same as those for the random
graph. In particular, some root nodes �solid lines� do not
have particularly large v̂i when q is approximately larger
than unity.
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10−2

10−0

25 50 75 100

v̂i

i

(a)

10−7

10−5
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v̂i

i

(b)

10−8

10−6

10−4

10−2

0 500 1000 1500

v̂i

i

(c)

FIG. 4. Values of v̂i for �a� random graph, �b� neural network,
and �c� online social network. We set q=0.001, 0.1, 1, 10, 1000
�from steep thick lines to flat thin lines�. For each q, we have sorted
v̂i in the ascending order for demonstration.
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q
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FIG. 5. Dependence of v̂i of some nodes on q for �a� random
graph, �b� neural network, and �c� online social network. The nodes
with the largest influence values for q=0.001 and for q=10 corre-
spond to the solid and dashed lines, respectively.
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Finally, we quantify the dependence of the influence on q
by calculating the Kendall rank correlation coefficient. It is
defined as 2�P / �N�N−1� /2�−1�, where P is the number of
pairs i, j �1� i
 j�N� such that the sign of v̂i− v̂ j for
q=q1 is the same as that for q=q2. The correlation coeffi-
cient falls between −1 and 1. The correlation coefficient for
the random graph for various values of q is shown in Fig.
6�a�. As anticipated, the correlation decreases with �q1−q2�.
Figure 6�a� also indicates that the ranking on the basis of the
influence is fairly insensitive to q in two ranges of q, i.e., for
q smaller than 
1 and for q larger than 
10. The ranking is
sensitive to q between these two ranges of q. For compari-
son, the correlation coefficient for the PageRank for various
values of q is shown in Fig. 6�b�. Similar to the case of the
influence, the correlation decreases with �q1−q2�. The corre-
lation between the influence and the PageRank �Fig. 6�c�� is
generally small regardless of the two values of q. On this
basis, we claim that the influence and the PageRank are dis-
tinct centrality measures. This result generalizes that when
directed networks are strongly connected and q=0 �13�.

The rank correlation coefficient for the neural network
and the social network calculated in the same manner is
shown in Figs. 6�d�–6�f� and Figs. 6�g�–6�i�, respectively.
The results are qualitatively the same as those for the random
graph �Figs. 6�a�–6�c��.

VIII. CONCLUSIONS

We have proposed a centrality measure �influence� for
general directed networks. It is a generalization of a
Laplacian-based centrality measure that is often used for
strongly connected networks �7–9,13–15�. It also generalizes
the formulation of the same centrality measure developed for
networks that are not necessarily strongly connected
�10–12�. Unlike the previous measure �10–12�, the proposed
measure is suitable for comparing the importance of nodes
that are in downstream SCCs and comparing nodes in differ-
ent SCCs. It has a free parameter q. For networks that are not
strongly connected, we suggest using Re �2
q
Re �N
�Sec. V A�. A small value of q implies that the centrality
values concentrate on nodes in uppermost components. A
large value of q makes the influence close to a degree cen-
trality, i.e., outdegree minus indegree. The choice of q is up
to users’ preferences. We acknowledge that various math-
ematical properties of the matrix associated with the influ-
ence �i.e., L+qI� have been analyzed in �10,11�. In �11�, the
use of this matrix for the centrality measure is briefly men-
tioned.

Arguably, the most frequently used centrality measure for
directed networks appears to be the PageRank �6�. Beyond
the World Wide Web, for which the PageRank was originally
designed, the PageRank has been applied to rank, for ex-
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FIG. 6. Kendall rank correla-
tion coefficient for the influence
and the PageRank. �a�–�c� Ran-
dom graph, �d�–�f� neural net-
work, and �g�–�i� online social
network. �a, d, g� Correlation be-
tween the influence for different
values of q. �b, e, h� Correlation
between the PageRank for differ-
ent values of q. �c, f, i� Correla-
tion between the influence and the
PageRank for various values of q.
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ample, academic papers and journals �e.g., �32��. The
PageRank is interpreted as the stationary density of the
discrete-time simple random walk with global jumps on the
network.

We have defined the influence as a continuous-time coun-
terpart of the PageRank. Furthermore, we have provided the
interpretation of the influence as the absorption probability
of the continuous-time random walk to the sink attached to
each node but not with global random jumps. As a corollary,
the PageRank can be interpreted as the absorption probabil-
ity of the random walk without teleportation to a sink. In
addition, a suitable range of the teleportation probability in
the PageRank can be estimated by adapting the criterion
Re �2
q
Re �N to the discrete-time random walk.

For the case of strongly connected networks, we refer to
our previous work �13,20� for a discussion of continuous-
time versus discrete-time random walk. We have shown that
q controls the relative importance of nodes in upstream SCCs
and nodes in downstream SCCs. The same role is shared by
the teleportation probability in the PageRank. Then, why do
we feel the need to introduce a new centrality?

First, the extended influence inherits the definition of the
influence for strongly connected networks and one-root net-
works �i.e., influence when q=0�, and therefore, it represents
the importance of nodes in various dynamics and in the enu-
meration of spanning trees �Sec. IV�. Actually, for each dy-
namics considered in Sec. IV, we can consider a discrete-
time version and relate the importance of nodes in the
dynamics to the PageRank. We have explained this corre-
spondence for the random walk �Sec. V�. In addition, the
DeGroot model of opinion formation was originally pro-
posed in discrete time �23�. We should choose one among the
two centrality measures depending on whether the
continuous-time or discrete-time dynamics are assumed to
occur on the network in question.

In the discrete-time interpretation, the indegree is essen-
tially normalized to be unity. Therefore, if the weight of the
link represents a value that should not be normalized, such as
the rate of interaction, nominal connection strength, amount
of signal or monetary fluxes, and the number of wins and
losses between a pair of sports teams, the continuous-time
interpretation, that is, the influence, appears to be more ap-
propriate. On the other hand, the PageRank is more appro-
priate in the case of scientometry; if a paper cites many pa-
pers, the value of each citation should be considered to be
small, and being cited from this paper should not be of great
importance. This distinction may underlie the current situa-
tion that the PageRank and the Laplacian-based centrality
have been used in somewhat different research communities
and for different types of data. In this light, we have ex-
tended the Laplacian-based centrality so that it is applicable
to general directed networks, as is the PageRank.

Second, the PageRank has a subtle arbitrariness in deter-
mining the behavior of the random walk that has reached a
dangling node. Depending on the implementation, the walker
at a dangling node hops to a randomly chosen node even
with probability 1−q �0
q�1� �6� or stays at the same
node with probability 1−q �33�. The theoretical justification
for either assumption is not clear. In the influence, we have
the sole control parameter q, and the influence unambigu-

ously corresponds to the discrete-time case in which the
walker stays at the dangling node with probability 1−q.
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APPENDIX: INFLUENCE FOR TWO TOY NETWORKS
WITH MULTIPLE ROOT NODES

For the network with four nodes and two root nodes
shown in Fig. 7�a�, we obtain m=2, b=3, N1=1, N2=2,
N3=1,

L =�
0 0 0 0

0 1 − 1 0

0 − 1 1 0

− 1 − 1 0 2
	 , �A1�

v1
�0� = �1 0 0 0�, u1

�0� =�
1

0

0

1

2
	 , �A2�

v2
�0� = 
0

1

2

1

2
0�, u2

�0� =�
0

1

1

1

2
	 . �A3�

Therefore, the influence is given by

v1 =
3

8
, v2 = v3 =

5

16
, v4 = 0. �A4�

Nodes 2 and 3 have the same influence because they are as
strong as each other within their SCC. Although the two
upstream SCCs are upstream to node 4 in the same manner,
v1 is smaller than v2+v3 because v1 controls two nodes and
the SCC of nodes 2 and 3 controls three nodes.

FIG. 7. Two directed networks with two root nodes.
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For the network with four nodes and two root nodes
shown in Fig. 7�b�, we obtain m=2, b=3, N1=1, N2=1,
N3=2,

L =�
0 0 0 0

0 0 0 0

− 1 0 1 + � − �

0 − 1 − 1 2
	 , �A5�

v1
�0� = �1 0 0 0�, u1

�0� =�
1

0

2

2 + �

1

2 + �

	 , �A6�

v2
�0� = �0 1 0 0�, u2

�0� =�
0

1

�

2 + �

1 + �

2 + �

	 . �A7�

The influence is given by

v1 =
5 + �

4�2 + ��
, v2 =

3�1 + ��
4�2 + ��

, v3 = v4 = 0. �A8�

v1�v2 because node 1 is connected to the more influential
node of the downstream SCC �i.e., v3� unlike node 2, which
links to the less influential node of the downstream SCC �i.e.,
v4�. Note that when �
0, the effect of node 1 on node 4 is
similar to that of node 2 on node 4, despite the fact that node
1 does not directly link to node 4, whereas node 2 does. The
reverse is not the case; when �
0, node 1 can affect node 3,
but node 2 can hardly do so.
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