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Synchronization and its slow decay in noisy oscillators with simplicial interactions
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Previous studies on oscillator populations with two-simplex interaction have reported novel phenomena
such as discontinuous desynchronization transitions and multistability of synchronized states. However, the
noise effect is not well understood. Here, we study a higher-order network of noisy oscillators with generic
interactions consisting of one-simplex and two types of two-simplex interactions. We observe that when a type
of two-simplex interaction is dominant, synchrony is eroded and eventually disappears even for infinitesimally
weak noise. Nevertheless, synchronized states may persist for extended periods, with the lifetime increasing
approximately exponentially with the strength of the two-simplex interaction. When one-simplex or another
type of two-simplex interaction is sufficiently strong, noise erosion is prevented, and synchronized states become
persistent. A weakly nonlinear analysis reveals that as one-simplex coupling increases, the synchronized state
appears supercritically or subscritically, depending on the interaction strength. Furthermore, assuming weak
noise and using Kramers’ rate theory, we derive a closed dynamical equation for the Kuramoto order parameter,
from which the time scale of the erosion process is derived. Our study elucidates the synchronization and
desynchronization of oscillator assemblies in higher-order networks and is expected to provide insights into
such systems’ design and control principles.
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I. INTRODUCTION

Synchronization is a major field of study in not only
physics but also chemistry, biology, engineering, and soci-
ology [1–5]. Examples include pacemaker cells in the heart
[6], laser arrays [7], applauding audiences [8,9], power grids
consisting of alternating current (ac) generators [10], and
Josephson junctions [11,12]. In addition to synchronization,
understanding desynchronization in oscillator assemblies is
crucial. For example, while synchronization of circadian pace-
maker cells in the brain is essential for mammals to maintain
24-h activity rhythm, their transient desynchronization, trig-
gered by a phase shift of light-dark cycles, is a putative cause
of jet lag symptoms [13,14]. Desynchronization is also signifi-
cant in neurological disorders such as Parkinson’s disease [15]
and epilepsy [16]. Methods for promoting desynchronization
in this context have been actively studied both theoretically
and experimentally [17].

Phase oscillator models, including Kuramoto’s model [18],
are widely recognized for their utility, not only in understand-
ing synchronization [2,19] but also in controlling real-world
systems [20,21]. While the classical Kuramoto model consid-
ers pairwise interactions between oscillators, recent studies
have extended the model to allow for nonpairwise interac-
tions [22–25]. Such structures are often called simplexes,
where n-simplex describes an interaction between n + 1 os-
cillators [26]. Research on brain dynamics [27,28] or social
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phenomena [29] has suggested that simplicial structures play
an important role in such systems.

In noiseless phase oscillators with two-simplex interac-
tions, Tanaka and Aoyagi [22] noted that multiple stable
synchronized states appear as two clusters with different pop-
ulation ratios. Moreover, Skardal and Arenas showed that
abrupt desynchronization transitions occur as the interaction
strength decreases [23]. Skardal and Arenas reported that two-
and three-simplicial couplings promote abrupt synchroniza-
tion transitions in the presence of one-simplex interactions
[24]. In addition, numerous relevant studies on the synchro-
nization of noiseless oscillators in higher-order networks have
been conducted recently [30–34] In contrast, for noisy phase
oscillators, Komarov and Pikovsky [35] studied a system
with a particular type of two-simplicial coupling alone and
reported that no stable synchronized states exist in the limit
of an infinite number of oscillators. They mainly focused on
the synchronized states that exist only in small populations.
Desynchronization is expected in a large population, and as
mentioned above, clarifying its process is essential.

In the present study, we consider a large population of
noisy phase oscillators with one-simplex and two types of
two-simplex couplings. Although steady synchronized states
do not exist when a type of two-simplex interaction, denoted
as type-a coupling, is dominant, we demonstrate that the
population is transiently synchronized for an extended period
and then abruptly desynchronized. Assuming weak noise and
exploiting Kramers’ rate theory, we derive a closed dynam-
ical equation for the Kuramoto order parameter by which
the desynchronization process is reproduced and the expo-
nential dependence of the lifetime of the synchronized states
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on the type-a coupling strength is derived. Further, we show
that synchronized states become persistent when one-simplex
coupling or another type of two-simplex coupling, denoted
as type-b coupling, is sufficiently strong. Our bifurcation
analysis reveals that the desynchronization-synchronization
transition changes from continuous to discontinuous at a crit-
ical strength of type-a coupling.

II. MODEL AND SIMULATION RESULTS

We consider a system of identical phase oscillators sub-
jected to independent noise and globally coupled with
one-simplex (i.e., two-body) and two types of two-simplex
(i.e., three-body) interactions, given as

θ̇m = ωm + K1

N

N∑
j=1

sin(θ j − θm)

+ 1

N2

N∑
j,k=1

[K2a sin(θ j + θk − 2θm)

+ K2b sin(2θ j − θk − θm)] + ξm(t ), (1)

where ωm and θm are the intrinsic frequency and the phase
of the oscillator m (1 � m � N), respectively. The term ξm(t )
represents Gaussian white noise with zero mean, δ-correlated
in time and independent for different oscillators. Specifically,
〈ξm(t )〉 = 0, 〈ξm(t )ξn(τ )〉 = 2Dδmnδ(t − τ ), where D � 0 is
the noise strength. The remaining terms describe interac-
tions, where K1 � 0, K2a � 0, and K2b � 0 are the coupling
strengths of one-simplex, type-a two-simplex, and type-b two-
simplex interactions, respectively. This model is motivated
by the fact that two types of two-simplicial interaction terms
emerge from higher-order phase reductions [36,37], which
can be considered a natural extension of the previously pro-
posed models [23,24,35].

Next, we introduce Kuramoto-Daido order parameters
[38,39], defined as

Zl (t ) = Rl (t )ei�l (t ) =:
1

N

N∑
j=1

eilθ j (t ), for l = ±1,±2, . . . ,

(2)

where Rl ∈ [0, 1] and �l ∈ (−π, π ] represent the amplitudes
and the mean phases, respectively. Note that Z−l is the com-
plex conjugate of Zl . We utilize this relationship in Sec. III B,
where we perform the stability analysis of the incoherent
state. Note that R1 assumes 1 and 0 for the in-phase state
(i.e., θ j = θ0 for 1 � j � N) and the fully desynchronized
state (i.e., θ j is uniformly distributed within (−π, π ]), re-
spectively. Similarly, R2 = 1 for the two-cluster states given
by θ j = θ0 or θ0 + π for 1 � j � N and R2 = 0 for the
fully desynchronized state. Using Rl and �l , Eq. (1) may be
rewritten as

θ̇m = ωm + K1R1 sin(�1 − θm) + K2aR2
1 sin(2�1 − 2θm)

+ K2bR1R2 sin(�2 − �1 − θm) + ξm(t ). (3)

We can observe that the type-a interaction, given as the third
term on the right-hand side, tends to make θm either �1 or

�1 + π . Therefore, one can suspect that the type-a interac-
tion is likely to promote the formation of two-cluster states,
which is indeed observed when D = 0 [23]. Based on this
observation, we numerically investigate the dynamics for the
initial condition of two-cluster states. Specifically, we set
θm(0) = 0 and π for 1 � m � ηN and otherwise, respectively,
where η � 1

2 is the initial population ratio of the two clusters.
Note that η = 1 corresponds to the one-cluster state, i.e., in-
phase synchrony.

We first consider the case of identical oscillators, i.e.,
ωm = ω0 for 1 � m � N . Without loss of generality, we set
ω0 = 0. Figure 1(a) illustrates the time evolution of the or-
der parameter R1. For K1 = 0.1, K2b = 0, and D = 0.0 (black
solid line), we observe that R1 is almost constant, indicating
that the two-cluster state is stable. However, in the presence
of noise, we observe qualitatively different behaviors. For
K1 = 0.1 and D = 0.1 (orange solid line), R1 slowly decreases
and abruptly vanishes. Thus, in the presence of noise, the
two-cluster state is actually not stable but meta-stable with
a long lifetime. We refer to this phenomenon as the noise
erosion of the synchronized state because of its slow process.
The evolution of the phase distribution during this process is
shown in Fig. 2(a). We qualitatively obtain the same results for
small or vanishing K1 values. In contrast, for K1 = 0.3, K2b =
0, and D = 0.1 (blue solid line), R1 seems to approach a par-
ticular nonvanishing value. For this parameter set, we also test
the initial condition of the fully desynchronized state (dotted
green line) and observe the evolution of the phase distributions
[Fig. 2(b)], suggesting that the system approaches a partic-
ular two-cluster state independent of the initial condition.
When the type-b interaction is present (i.e., K2b > 0) instead
of the one-simplex interaction, similar results are obtained
for the synchronized initial conditions, as shown in Fig. 1(b).
However, for the desynchronized initial condition, R1 is van-
ishingly small for all t > 0, indicating that the desynchronized
state is stable. This behavior is preserved for larger K2b values
(the result is not shown herein).

Next, we consider the case of nonidentical oscillators.
Specifically, the natural frequencies ωm are drawn from a
Lorentzian distribution g(ω) with mean ω0 and width γ , i.e.,
g(ω) = γ

π[(ω−ω0 )2+γ 2] . As shown in Figs. 1(c) and 1(d), we
observe qualitatively similar features. Therefore, we expect
that the cases of identical oscillators capture the essential
properties of the system, and henceforth, we focus on the
simpler case ωm = ω0 for ease of analysis.

III. ANALYSIS FOR STATIONARY STATE

A. Stationary distribution

We now establish a theory for understanding the syn-
chronization and desynchronization processes. We consider a
continuum limit N → ∞ for analytical tractability. Specifi-
cally, the number of oscillators with a phase within (θ, θ +
dθ ) is described by NP(θ, t )dθ , where P(θ, t ) is a probability
density function. We start with the self-consistency approach
to identify the steady states of the system. The order parame-
ters are redefined as

Zl (t ) =
∫ π

−π

exp(ilθ )P(θ, t )dθ. (4)
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FIG. 1. Time series of the order parameter R1 for (a) K1 > 0, K2a = 3.0, K2b = 0 and (b) K1 = 0, K2a = 3.0, K2b > 0. We employ the
two-cluster state with η = 0.75 for solid curves and the desynchronized state for dashed curves as the initial condition. [(c), (d)] Time series of
the order parameter R1 for (c) K1 > 0, K2b = 0 and (d) K1 = 0, K2b > 0 in a population of nonidentical oscillators. Type-a coupling strength
is K2a = 3.0. We employ the two-cluster state with η = 0.75 for solid curves and the desynchronized state for dashed curves as the initial
condition. N = 104.

The Fokker-Planck equation equivalent to the Langevin equation (3) is

∂P

∂t
= ∂

∂θ

[
K1R1 sin(θ − �1) + K2aR2

1 sin(2θ − 2�1) + K2bR1R2 sin(θ + �1 − �2)
]
P + D

∂2P

∂θ2
. (5)

As shown in Fig. 7 in Appendix A, we numerically observe that �1 and �2 evolve slowly, suggesting that they are constant
in the limit N → ∞. Moreover, �2 = 2�1 holds true for t � 0. We thus assume �1 = �2 = 0. Substituting �1 = �2 = 0 into
Eq. (5), we obtain

∂P(θ, t )

∂t
= ∂

∂θ

[{
K1R1 sin θ + K2aR2

1 sin 2θ + K2bR1R2 sin θ
}
P
] + D

∂2P

∂θ2
. (6)

The stationary distribution Ps(θ ) is found as a solution to ∂t P = 0. The general solution is

Ps(θ ) = exp

(
2K1R1 cos θ + K2aR2

1 cos 2θ + 2K2bR1R2 sin θ

2D

)
·

×
[

c1 + c2

∫ θ

−π

exp

(
−2K1R1 cos y + K2aR2

1 cos 2y + 2K2bR1R2 sin y

2D

)
dy

]
, (7)

where c1 and c2 are constants. Because Ps(θ ) = Ps(θ + 2π ) for any θ , c2 vanishes. Thus, we obtain the stationary distribution
Ps as

Ps(θ ) = c1 exp

(
2K1R1s cos θ + K2aR2

1s cos 2θ + 2K2bR1sR2s cos θ

2D

)
, (8)
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FIG. 2. Time courses of the phase distribution P(θ, t ). (a) K1 = 0.1, K2a = 4.0, K2b = 0 and the initial condition is the two-cluster state
with η = 0.75. (b) K1 = 0.3, K2a = 4.0, K2b = 0 and the initial condition is the desynchronized state. We obtained the results from simulations
of Eq. (3) with N = 104 oscillators.

where c1 is the normalizing constant given as

c1 = 1∫ π

−π
exp

( 2K1R1 cos y+K2aR2
1 cos 2y+2K2bR1R2 cos y

2D

)
dy

. (9)

Substituting Eq. (8) into Eq. (4), we obtain a set of self-
consistent equations for Rls (l = 1, 2), given as

Rls =
∫ π

−π

Ps(θ ) cos lθ dθ =: Sl (R1s, R2s). (10)
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FIG. 3. Phase diagrams in (a) the (K1, K2a ) plane for K2b = 0 and (b) the (K2b, K2a ) plane for K1 = 0. The color scale describes the R1

value of the stable synchronized state. The hatched region denotes the region where the desynchronized state is stable. In (a), the vertical line
at K2a = 0.2 denotes the critical coupling strength above which the desynchronized state is unstable. The solid and dashed lines denote the
supercritical and subcritical bifurcation curves, respectively. The hatched colored region denotes the bistable region where both synchronized
and desynchronized states are stable, and the dot denotes the bifurcation type switch at K1 = 2D, as described by Eq. (48). [(c), (d)] Bifurcation
diagrams for (c) K2a = 0.15 and (d) K2a = 1.0, where we fix K2b = 0. In all the panels, we fix D = 0.1.
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We observe that the right-hand side of Eq. (10) for l = 1
vanishes for K1 = 0 and K2b = 0 because then Ps(θ ) is π -
periodic. This implies that for K1 = 0 and K2b = 0, there is no
stationary distribution except that corresponding to R1s = 0,
which is the uniform distribution Ps(θ ) = 1

2π
[35]. In this case,

R2 also vanishes. Nontrivial steady distributions may only
arise when K1 > 0 or K2b > 0.

B. Bifurcation analysis

We investigate the bifurcation of the system by numerically
solving Eq. (10). First, we analyze the case of K2b = 0. Here,
we only need to consider Eq. (10) for l = 1 and numeri-
cally identifying R1s is straightforward (see Appendix B).
In Fig. 3(a), the phase diagram in the (K1, K2a ) plane with
K2b = 0 is displayed, suggesting that a bifurcation occurs at
K1 = Kc = 0.2 for all K2a. In Figs. 3(c) and 3(d), we plot R1s

as a function of K1 for K2a = 0.15 and K2a = 3.0, respectively.
We observe that supercritical and subcritical pitchfork bifur-
cations occur in Figs. 3(c) and 3(d), respectively. Moreover,
the bifurcation type appears to change from supercritical to
subcritical at K1 = Kc, yielding the bistable region where
both desynchronized and synchronized states are stable for
K1 > Kc. Note that Kc = 0.2 is equal to 2D. Next, we consider
K2b > 0. By numerically solving Eq. (10) for l = 1, 2 (see
Appendix B), we obtain the R1s value of the synchronized
state for given K2a and K2b values, which is depicted in
Fig. 3(b).

To elucidate the bifurcation structure, we perform a weakly
nonlinear analysis by applying a previously proposed method-
ology [40] to our model. This analysis is carried out around
the incoherent solution Zl = Rl = 0 and is valid near the bi-
furcation point at which the solution becomes unstable. We
will introduce a bifurcation parameter, which is treated as
the sole small parameter in our analysis. Although the value
of ω may arbitrarily be chosen and was set to 0 because of
the translational symmetry in our model, we here assume
ω = O(1) to apply the methodology proposed in Ref. [40].
This methodology can even apply to models where coupling
terms break the translational symmetry, an advantage for fu-
ture extensions.

Specifically, we expand the distribution P(θ, t ) in series
with respect to the order parameter Zl as

P(θ, t ) = 1

2π

⎛
⎝1 +

∑
l �=0

Z−l (t )eilθ

⎞
⎠, (11)

where Z−l = Z̄l . This expansion is analogous to a Fourier
series expansion where Zl corresponds to the Fourier coeffi-
cients. Using the complex order parameters for l = ±1,±2,
the Fokker-Plank equation (6) can be rewritten as

∂P

∂t
= 1

2i

∂

∂θ

({ − 2iω + K1[Z−1 exp(iθ ) − Z1 exp(−iθ )]

+ K2a
[
Z2

−1 exp(2iθ ) − Z2
1 exp(−2iθ )

]
+ K2b[Z−2Z1 exp(iθ ) − Z−1Z2 exp(−iθ )]

}
P
)

+ D
∂2P

∂θ2
. (12)

As mentioned, the term involving ω remains in Eq. (12). By
further substituting Eq. (11) into Eq. (12), we obtain

dZ1

dt
= (−iω − D)Z1 − K1

2
(Z2Z−1 − Z1)

− K2a

2

(
Z3Z2

−1 − Z−1Z2
1

) − K2b

2
(Z1Z−2Z2 − Z−1Z2),

= K1 − 2D − 2iω

2
Z1 − K1Z2Z−1

2

− K2a

2

(
Z3Z2

−1 − Z−1Z2
1

) − K2b

2
(Z1Z−2Z2 − Z−1Z2)

(13)
dZ2

dt
= (−2iω − 4D)Z2 − K1

(
Z3Z−1 − Z2

1

)
− K2a

(
Z4Z2

−1 − Z2
1

) − K2b(Z1Z−2Z3 − Z−1Z2Z1),

(14)

dZl

dt
= (−ilω − l2D)Zl − lK1

2
(Zl+1Z−1 − Zl−1Z1)

− lK2a

2

(
Zl+2Z2

−1 − Zl−2Z2
1

)
− lK2b

2
(Z1Z−2Zl+1 − Z−1Z2Zl−1) for l �= ±1,±2.

(15)

Note that Z−1 and Z−2 obey the complex conjugate of the
right-hand side of Eqs. (13) and (14), respectively.

Equation (13) implies that the state Z1 = 0 bifurcates at
K1 = 2D; thus, we set

K1 = 2D(1 + μ), (16)

where μ is the bifurcation parameter. We introduce ε = √|μ|
and the scaled time τ = ε2t . The time derivative then trans-
formed as

d

dt
→ ∂

∂t
+ ε2 ∂

∂τ
. (17)

We expand the order parameter Zl (t ) into Zl,ν (t, τ ) as

Zl (t, τ ) = εZl,1(t, τ ) + ε2Zl,2(t, τ ) + · · · . (18)

Substituting Eqs. (16)–(18) into the series (14)–(15), we
obtain (

∂

∂t
+ ilω + l2D

)
Zl,ν = Bl,ν , (l �= ±1) (19)(

∂

∂t
± iω

)
Z±1,ν = B±1,ν , (20)

where

B1,1 = 0, (21)

B1,2 =
(

−D + K2b

2

)
Z2,1Z−1,1, (22)

B1,3 =
(

− ∂

∂τ
± D

)
Z1,1 − D(Z2,2Z−1,1 + Z2,1Z−1,2)

− K2a

2

(
Z3,1Z2

−1,1 − Z−1,1Z2
1,1

)
− K2b

2
(Z−2,1Z1,1Z2,1 − Z2,2Z−1,1 − Z2,1Z−1,2), (23)
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B2,2 = 2D
(
Z2

1,1 − Z3,1Z−1,1
) + K2aZ2

1,1, (24)

and, for l �= ±1,±2,

Bl,1 = 0, (25)

Bl,2 = lD(Zl−1,1Z1,1 − Zl+1,1Z−1,1), (26)

Bl,3 = − ∂

∂τ
Zl,1 + lD(Zl−1,1Z1,2 + Zl−1,2Z1,1 − Zl+1,1Z−1,2

− Zl+1,2Z−1,1) − lK2a

2

(
Zl+2,1Z2

−1,1 − Zl−2,1Z2
1,1

)
− lK2b

2
(Z−2,1Z1,1Zl+1,1 − Z2,1Z−1,1Zl−1,1). (27)

Note that the plus-minus sign in Eq. (23) corresponds to the
sign of μ.

Since exp(∓iωt ) is an eigenfunction of the operator
(∂/∂t ± iω) on the left-hand side of Eq. (20) with an eigen-
value 0, the right-hand side has no corresponding component.
We obtain the solvability condition from this fact as∫ 2π/ω

0
B1,ν (t, τ ) exp(iωt )dt

=
∫ 2π/ω

0
B−1,ν (t, τ ) exp(−iωt )dt = 0. (28)

If B1,ν are expanded into Fourier series as

B±1,ν =
∞∑

m=−∞
B(m)

±1,ν exp(imωt ), (29)

the solvability condition then reduces to

B(−1)
1,ν = B(1)

−1,ν = 0. (30)

We solve the system of Eqs. (19) and (20). Because of
Eqs. (20) and (21),

Z1,1 = Z−1,1 = W (τ ) exp(−iωt ), (31)

where W (τ ) has not yet been specified. Next, we obtain

Z3,1 = 0 (32)

because of Eqs. (19) and (25) for l = 3. By substituting
Eq. (32) into Eq. (24), B2,2 reduces to

B2,2 = (2D + K2a )Z2
1,1 (33)

= (2D + K2a )W (τ )2 exp(−2iωt ). (34)

From Eq. (19), we have the equation for Z2,2 as(
∂

∂t
+ 4D

)
Z2,2 = (2D + K2a )W (τ )2 exp(−2iωt ), (35)

and

Z2,2 = (2D + K2a )W (τ )2 exp(−2iωt )

4D
(36)

is a long-time solution to Eq. (35). In the same way as Z3,1,
we obtain

Z2,1 = 0, (37)

which leads to B1,2 = 0. Thus, Z1,2(t, τ ) is not dependent on
t . Substituting Eqs. (32), (35), and (37) into Eq. (23) yields

B1,3 =
[(

− ∂

∂τ
± D

)
W (τ )−2D(2D − K2b)−K2a(2D + K2b)

8D

× |W (τ )|2W (τ )

]
exp(−iωt ) (38)

= B(−1)
1,3 exp(−iωt ). (39)

From the solvability condition (30) for ν = 3, we obtain
the normalized equation in the lowest order:

∂W (τ )

∂τ
= ±DW (τ ) − 2D(2D − K2b) − K2a(2D + K2b)

8D

× |W (τ )|2W (τ ). (40)

Finally, we obtain the equation with respect to t in the lowest
order, which is the normal form for the Hopf bifurcation as
below:

dZ1

dt
= ∂Z1

∂t
+ ε2 ∂Z1

∂τ
(41)

= ε
∂Z1,1

∂t
+ ε2 ∂Z1,2

∂t
+ ε3 ∂Z1,3

∂t
+ +ε3 ∂Z1,1

∂τ
+ O(ε4)

(42)

= εB1,1 + ε2B1,2 + ε3B1,3 + ε3 ∂Z1,1

∂τ
+ O(ε4) (43)

= ε3 ∂Z1,1

∂τ
+ O(ε4) (44)

= ε3 ∂W (τ )

∂τ
exp(−iωt ) + O(ε4) (45)

= K1 − 2D

2
Z1 − g|Z1|2Z1 + O(ε4), (46)

where

g = 2D(2D − K2b) − K2a(2D + K2b)

8D
. (47)

Note that g is real in this particular system. The sign of g
determines the bifurcation type; supercritical and subcritical
bifurcations occur for g > 0 (or K2a < K∗

2a) and g < 0 (or
K2a > K∗

2a), respectively, where

K∗
2a = 2D(2D − K2b)

2D + K2b
, (48)

which assumes 2D for K2b = 0 and decreases with increasing
K2b. This theoretical analysis clarifies the parameter region of
the stable desynchronized state and the change in the bifurca-
tion nature at K2a = K∗

2a, which are in perfect agreement with
the phase diagrams shown in Figs. 3 and 10 in Appendix C.

IV. TRANSIENT DYNAMICS: TIME EVOLUTION OF R1

We shift our focus to transient phenomena. As we ob-
served in Fig. 1, the synchronized state slowly decays to
the asynchroous state. To elucidate the mechanism of this
slow process, Eq. (41) is not adequate because it is valid
only around R1 = 0. We will demonstrate that under some
assumptions including K2b = 0, a dynamical equation for R1,
which is approximately valid for large R1, may be obtained in
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FIG. 4. Graphical reprensentation of the potential U (θ, R1).
R1 = 0.6, K1 = 0.50.

a closed form, whereby we may determine the lifetime of the
synchronized state in cases where the system transitions to the
desynchronized state.

We rewrite Eq. (3) as the following graident system:

θ̇m = − ∂

∂θm
U (θm, R1) + ξm, (49)

where

U (θ, R1) = − 1
2

(
K2aR2

1 cos 2θ + 2K1R1 cos θ
)
. (50)

We show typical U shapes as a function of θ in Fig. 4. We
focus on the case in which this function has two minima, i.e.,
U is double-well. Because

∂

∂θ
U (θ, R1) = K2aR2

1 sin 2θ + K1R1 sin θ

= R1 sin θ (2K2aR1 cos θ + K1), (51)

the necessary and sufficient condition for the potential to be
double-well is

K1

2K2aR1
< 1. (52)

100

102

104

106

0 1 2 3 4 5

τ

K2a

η(0) = 0.8
η(0) = 0.75
η(0) = 0.7

theory

FIG. 6. Lifetime of the synchronized states vs K2a. Simulation
results of Eq. (1) with N = 103 oscillators and the theoretical predic-
tion, given by Eq. (70), are shown by colored plots and solid lines,
respectively. We fix K1 = 0, K2b = 0, and D = 0.1.

Below, we assume Eq. (52). The following quantities will
be needed later. The minima of the potential U (θ, R1) are
denoted as

Umin 1 := U (0, R1) = − 1
2

(
K2aR2

1 + 2K1R1
)
, (53)

Umin 2 := U (π, R1) = − 1
2

(
K2aR2

1 − 2K1R1
)
. (54)

The maximum value Umax is

Umax := U (θmax, R1)

= −1

2

(
K2aR2

1 cos 2θmax + 2K1R1 cos θmax
)

= 1

2

(
K2aR2

1 + K2
1

2K2a

)
, (55)

where θmax is defined as one of two maximum points of the
potential U (θ ) within the range 0 < θ < π . The potential
barriers are

�U1 : = Umax − Umin 1 = K2aR2
1 + K1R1 + K2

1

4K2a
, (56)
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FIG. 5. Comparison between the time evolutions of R1 and the simulations of N = 103 oscillators. The black lines represent the numerical
simulations of R1 following Eq. (68), while the orange lines show the dynamics of R1, which are averaged over 103 oscillators governed by
Eq. (1).
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�U2 : = Umax − Umin 2

= K2aR2
1 − K1R1 + K2

1

4K2a
. (57)

The second derivatives of the potential at three extremal
points are

∂2
θ U (θmax, R1) = K2

1

2K2a
− 2K2aR2

1, (58)

∂2
θ U (θmin 1, R1) = ∂2

θ U (0) = 2K2aR2
1 + K1R1, (59)

∂2
θ U (θmin 2, R1) = ∂2

θ U (π, R1) = 2K2aR2
1 − K1R1. (60)

We assume that the noise is sufficiently weak compared
to �U , i.e., D � �U . We also assume that R1 evolves suffi-
ciently slowly. Then, we can expect that the phase distribution
is well approximated to

P(θ, t ) = η(t )δ(θ ) + [1 − η(t )]δ(θ − π ). (61)

In this approximation, each oscillator takes the phase either
0 or π . By defining H and H∗ as the states in which the
phase of an oscillator has the phases 0 and π , respectively,
the transition process is schematically described as

H
k+�
k−

H∗, (62)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
1(

R
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)

R1s

K1 = 0.1
K1 = 0.15
K1 = 0.3

FIG. 8. Typical behavior of the self-consistency equation (10) for
K2a = 1.0 and K2b = 0 with varying K1.

where k± are the transition rates given by

k+(R1) = 2

√∣∣∂2
θ U (θmin 1, R1)∂2

θ U (θmax, R1)
∣∣

2π
exp

(
−�U1

D

)
,

(63)

k−(R1) = 2

√∣∣∂2
θ U (θmin 2, R1)∂2

θ U (θmax, R1)
∣∣

2π
exp

(
−�U2

D

)
.

(64)

Substituting the obtained expressions into Eqs. (63) and (64),
we obtain

k+(R1) = 1

π

√(
2K2aR2

1 + K1R1
)∣∣∣∣2K2aR2

1 − K2
1

2K2a

∣∣∣∣
× exp

[
− 1

D

(
K2aR2

1 + K1R1 + K2
1

4K2a

)]
, (65)

k−(R1) = 1

π

√(
2K2aR2

1 − K1R1
)∣∣∣∣2K2aR2

1 − K2
1

2K2a

∣∣∣∣
× exp

[
− 1

D

(
K2aR2

1 − K1R1 + K2
1

4K2a

)]
. (66)

We find that the time evolution of R1 is

Ṙ1 = −k+(1 + R1) + k−(1 − R1) (67)

= − 1

π

√(
2K2aR2

1 + K1R1
)(

2K2aR2
1 − K2

1

2K2a

)

× exp

[
− 1

D

(
K2aR2

1 + K1R1 + K2
1

4K2a

)]
(1 + R1)

+ 1

π

√(
2K2aR2

1 − K1R1
)(

2K2aR2
1 − K2

1

2K2a

)

× exp

[
− 1

D

(
K2aR2

1 − K1R1 + K2
1

4K2a

)]
(1 − R1). (68)

Figure 5 compares the dynamics of R1 given by (68) to those
of the simulations of N = 103 oscillators governed by Eq. (1).
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This comparison is made in a regime where the synchronized
states are stable, showing excellent agreement.

To specifically focus on the lifetime of the synchronized
state, we now consider the simplified case of K1 = 0, where
Eq. (68) reduces to the following form:

Ṙ1(t ) = −4K2aR3
1

π
exp

(
−K2aR2

1

D

)
. (69)

Because Ṙ1 < 0 for R1 > 0 and Ṙ1 = 0 for R1 = 0, R1 = 0 is
the global attractor. However, as the term exp(−K2aR2

1/D) is

vanishingly small for R1 �
√

D
K2a

≡ R∗, the relaxation to R1 =
0 is extremely slow if R1(0) ≡ R̂ � R∗. We define the lifetime
τ of the synchronized state as the time for which R1 varies
from R̂ to R∗. Because τ = ∫ τ

0 dt = ∫ R∗

R̂
dt

dR1
dR1, we obtain

τ =
∫ R̂

R∗

π exp
(K2aR2

1
D

)
4K2aR3

1

dR1. (70)

This integral can only be computed numerically. Because the
evolution of R1(t ) is very slow until R1 reaches R∗, a rough
estimate of τ can be given by setting R1(t ) = R̂ in Eq. (70),

0 0.1 0.2 0.3
K1

0

0.5

1

1.5

K2a

0

0.25

0.5

0.75

1

FIG. 10. Phase diagram in the (K1, K2a ) plane for K2b = 0.05
and D = 0.1. The color scale describes the R1 value of the stable
synchronized state. The hatched region denotes the region in which
the desynchronized state is stable.

giving rise to

τ ∼ exp

(
K2aR̂2

D

)
, (71)

where the coefficient, including the factor R̂−R∗
R̂3 , is omitted.

This estimation indicates that τ approximately exponentially
increases with K2a. To verify our theory, in Fig. 6, we compare
our theoretical estimations, given by Eqs. (70) and (71), to the
lifetime obtained from the direct simulations of Eq. (1). The
lifetime is given as the time at which R1 passes R∗ for the first
time. Note that R̂ = |2η(0) − 1|, where η(0) is the parameter
for the initial distribution. We observe that Eq. (70) is in rea-
sonable agreement with the simulation data. We also observe
that the lifetime indeed increases approximately exponentially
with K2a, as predicted by Eq. (71), supporting the robustness
of this phenomenon (see Appendix D).

V. CONCLUSION

In this study, we explored a large population of noisy
oscillators with one- and two-simplicial interactions. We
demonstrated that dynamical noise, regardless of its strength,
erodes the synchronized states when the one-simplex and
type-b two-simplex interactions are absent or sufficiently
weak. However, the lifetime of the synchronized state is
prolonged, increasing exponentially with the strength of the
type-a two-simplex interaction. Note that the characteristic
time scales of individual units, given by the inverse of in-
teraction and the noise strength, are small in our setting.
For example, the time scale of the diffusion process is 1√

D
,

which is approximately 3. Compared to them, the erosion
process is extremely slow. Thus, the system can be considered
synchronous or asynchronous depending on the time scale
of the observation. We also emphasize that the erosion is
robust, which is observed in the presence of different types
of interactions and frequency heterogeneity. The proposed
theory, which can handle mixed systems of one-simplex and
two types of two-simplex interactions, clarified the bifurcation
structure and transient dynamics.
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FIG. 11. Lifetime of synchronization vs K2a for (a) K1 = 0.1 and K2b = 0, and (b) K1 = 0 and K2b = 0.1. Results of simulations for
N = 103 and D = 0.1.

APPENDIX A: TIME EVOLUTION OF �1 AND �2

Figure 7, which illustrates the results of direct simulations
of Eq. (1), shows that the trajectories of 2�1 are the same
as those of �2 in synchronized states. Moreover, �1 and �2

evolve more slowly as the number of oscillators increases.
Therefore, we expect that �̇l → 0 as N → ∞.

APPENDIX B: NUMERICAL ANALYSIS
OF SELF-CONSISTENCY EQUATION

In this Appendix, we briefly illustrate a numerical analy-
sis of the self-consistency equation, given by Eq. (10). For
K2b = 0, we need to solve Eq. (10) only for l = 1 because R2

is not involved. Figure 8 shows S1(R1s) vs R1s and R1s vs R1s,
and its concurrent points can easily be identified using, e.g., a
bisection method.

For K2b �= 0, we use the following iterative method:

Rk+1
1 = S1

(
Rk

1, Rk
2

)
, (B1)

Rk+1
2 = S2

(
Rk

1, Rk
2

)
. (B2)

We expect that (R1s, R2s) corresponding to a stable steady state
of Eq. (6) is obtained for an appropriate initial condition. In
Fig. 9, we plot the values of Rk

l at each step of iteration in
the bistable region. We observe that either the desynchronized
or synchronized state is obtained depending on the initial
condition.

APPENDIX C: PHASE DIAGRAM IN THE (K1, K2a ) PLANE
FOR NONVANISHING K2b

Figure 10 is a phase diagram in the (K1, K2a ) plane for
K2b = 0.05. The point in Fig. 10 marks the bifurcation type
switch at K1 = 2D, as described by Eq. (48).

APPENDIX D: LIFETIME OF SYNCHRONIZATION
FOR K1 > 0 OR K2b > 0

In Fig. 11, we plot the lifetime of synchronization when
the one-simplex or type-b interaction is present (K1 = 0.1 or
K2b = 0.1). In this case, no synchronized states are stable for
any K2a. We find that the lifetime has an exponential depen-
dence on K2a as well as when K1 = 0 and K2b = 0.
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