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ABSTRACT

We provide a theoretical framework for quantifying the expected level of synchronization in a network of noisy oscillators. Through lin-
earization around the synchronized state, we derive the following quantities as functions of the eigenvalues and eigenfunctions of the network
Laplacian using a standard technique for dealing with multivariate Ornstein-Uhlenbeck processes: the magnitude of the fluctuations around
a synchronized state and the disturbance coefficients «; that represent how strongly node i disturbs the synchronization. With this approach,
we can quantify the effect of individual nodes and links on synchronization. Our theory can thus be utilized to find the optimal network
structure for accomplishing the best synchronization. Furthermore, when the noise levels of the oscillators are heterogeneous, we can also
find optimal oscillator configurations, i.e., where to place oscillators in a given network depending on their noise levels. We apply our theory
to several example networks to elucidate optimal network structures and oscillator configurations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5121341

Synchronization of rhythmic elements is essential in many sys-
tems. To function properly and well, rhythmic elements are
required to maintain an appropriate synchronization pattern
precisely. What is the best network structure for accomplishing
the best synchronization? In other words, which elements should
each element have a look at? Here, we develop a measure to quan-
tify the precision of synchronization for a given network. Using
this measure, we can quantitatively compare the stability of dif-
ferent networks and find the optimal network structure. We can
also determine where reliable or unreliable elements should be
placed in a given network.

I. INTRODUCTION

Synchronization of rhythmic elements, or oscillators, is ubiq-
uitous and underlies various important functions.'” For exam-
ple, biological rhythms, including circadian rhythms and heart-
beats, are generated by a population of cells acting period-
ically and synchronously.”" Synchronization also plays a vital
role in locomotion.”” For each gait, the limbs perform rhyth-
mic movements and maintain a certain synchronization pattern.

Synchronization is also essential in various artistic performances,
including those by orchestras, choruses, and dancers.”"

In any example, to function properly and well, a population of
oscillators is required to maintain an appropriate synchronization
pattern, such as perfect synchrony, wave-like patterns, or more com-
plex patterns. However, oscillators are inevitably exposed to noise.
For example, the activity of a cell involves fluctuations due to various
types of intrinsic and extrinsic noises.'"'* Limbs experience per-
turbations from the ground or the surrounding fluid. Humans are
unable to generate perfectly rhythmic actions, even in the absence
of external disturbances. Such randomness disturbs synchroniza-
tion and may hamper performance. Synchronization patterns must,
therefore, be highly stable against the noise affecting individual
oscillators. Since synchronization occurs because of the interactions
between the oscillators, the structure of the interaction network is
expected to strongly influence the synchronization stability.

The local stability problem of synchronous states is gener-
ally reduced to an eigenvalue problem of a particular class of
stability matrices, which is often referred to as a network Lapla-
cian L or a Kirchhoff matrix."” This class of matrices appears in
a variety of dynamical processes on networks and lattices, such
as random walks,'* consensus problems,"” and reaction-diffusion
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on networks.'® Consequently, there is a long history of studies of
network Laplacians. In particular, the properties of the eigenval-
ues, or the spectrum of the network Laplacians, have been studied
intensively.'”'* The smallest non-zero eigenvalue of L, termed A, in
this paper, often attracts attention because its inverse provides a typ-
ical time scale that facilitates relaxation to a synchronized state.”
It also provides a condition for the change of stability caused by
variations in the system parameters, including changes in the net-
work structure.”” For the synchronization of chaotic oscillators, the
ratio of the smallest to the largest eigenvalues, A,/Ay, also plays an
important role in determining the stability of the network,”” and
the optimal network structure that minimizes this ratio has been
investigated.”

However, when we are concerned with the extent to which
the synchronization pattern is precisely maintained in a network of
noisy oscillators, knowledge of just a few dynamical modes is not
sufficient because every dynamical mode is excited at every time
by noise. Therefore, we provide a theoretical framework here for
quantifying the magnitude of the fluctuations around a synchronous
state. Our framework is based on phase models, which describe
oscillator networks to a good approximation when the coupling and
noise are sufficiently weak. We are particularly interested in the case
in which oscillators have different noise strengths because individ-
ual cells and humans experience different noise levels. We derive
an expression for the magnitude of the fluctuations in an entire
network as the weighted sum of the noise intensities of individual
oscillators. This weight, termed the “disturbance coefficient” of a
node, describes the extent to which an oscillator placed at that node
disturbs the synchronization of the network. The disturbance coef-
ficients of a network depend on the network structure, which may
differ significantly among the nodes. Our theory can thus be utilized
to find an optimal network structure that minimizes the fluctuation
level and to find an optimal oscillator configuration, i.e., to deter-
mine at which nodes oscillators with higher or lower noise strengths
should be placed in a given network.

Il. THEORY

We first present our theoretical framework; we outline our
theory before going into detail about it. In Sec. IT A, we begin by con-
sidering a particular class of phase models that describe the networks
of N interacting oscillators admitting perfect synchrony (i.e., an in-
phase state) in the absence of noise. The level of synchronization can
be characterized by the Kuramoto order parameter r(¢) (0 < r < 1),
which assumes r = 1 in the absence of noise and typically decreases
as the strength of the noise increases. We are concerned with the
expectation (i.e., the ensemble average) of r for a given network and
noise strength. In Sec. II B, we derive an expression for this quan-
tity, denoted by (r), by assuming weak noise and linearizing the
system around the in-phase state. The problem with which we are
concerned is then reduced to a general class of linear dynamical sys-
tems, which are described by a network Laplacian L. We derive (r) as
a function of the eigenvalues and eigenvectors of L and of the indi-
vidual noise strengths 7; (1 < i < N). In the derivation, we assume L
is diagonalizable; however, we also propose a method to treat a non-
diagonalizable Laplacian L (Sec. II C). In Sec. I D, we show that our
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theory can also be applied to a more general class of phase models
and synchronized states.

Examples and numerical verification follow in Secs. IIT and IV,
respectively.

A. Synchronization of oscillator networks

We consider a network of self-sustained oscillators that are
subjected to independent noise. When the coupling and noise
are weak, the system is described by a phase model to a good
approximation.>”' By further assuming that all the oscillators are
identical, it is appropriate to consider the system

N
Gi(t) =0+ Y Afidy — d) + &), 1

j=1

where ¢; (1 < i < N) is the phase of the ith oscillator,  is the natural
frequency, A; > 0 is the weight of a directed edge that describes the
strength of the coupling from the jth oscillator to the ith oscillator,
and fis a 27 -periodic function. The term &; represents independent
Gaussian white noise with

Ei(®)) =0,  (5:(1§(9)) = nib;(t — s), 2

where (-) represents the expectation value and 7; > 0 is the strength
of the noise to which the ith oscillator is subjected. We assume
f(0) =0 and f(0) > 0. The former implies that the coupling van-
ishes when all the oscillators are in phase; i.e., ¢; = ¢; for all i and
j. The latter implies that the in-phase state of two mutually coupled
oscillators is linearly stable in the absence of noise. This type of cou-
pling typically arises in chemical and biological oscillators coupled
electrically or diffusively.”** We set f (0) = 1 without loss of gener-
ality. Our theory may be generalized to more general phase models,
as described in Sec. 11 D.

In this setting, our oscillator network has an in-phase state (i.e.,
the completely synchronized state), which is given by

¢,‘ = wt + C, (3)

where C is an arbitrary constant. We assume that this state is sta-
ble, which holds true under mild conditions, as detailed in Sec. IT B.
We also assume that the noise is sufficiently weak so that the system
fluctuates weakly around the in-phase state. We are concerned with
the magnitude of the fluctuations of this system.

To quantify the level of synchronization, we introduce the
Kuramoto order parameter r (0 < r < 1), defined as

N
. 1 .
re? = — E e, (4)
N j=1

where 6 can be interpreted as the mean phase of the oscilla-
tors. When the system is nearly in phase, ¢; — 6 is small. By

rewriting Eq. (4) as r = Z,Iil "%~ and dropping the terms of
O[(¢ — 6)’], we obtain

1 ¢ @ =67 .
r:NZ(l—’2+z(¢j—9)>. (5)
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By equating the imaginary parts of both sides, we find

1 N
=< o (6)
Nj; !

By equating the real parts of both sides and introducing

X; = ¢; — wt, we obtain
S (o — x)
Z[ } o)

j=1

Z\H

where

2 \

N
Z (8)

The expectation value of r is thus given by

m=1-%, (©)

where

1 N
- NZ((xj — %%, (10)
j=1

The quantity Q can be interpreted as the variance of the phases ¢;
when the system is nearly in phase. The smaller the value of Q, the
better the system is synchronized. Below, based on linearization and
diagonalization of our model, we derive an expression for Q.

B. Linearized system

We linearize Eq. (1) for small phase differences ¢; — ¢;
(1 <14,j < N) and substitute ¢; = wt + x; to obtain

N
X = ZAij(xj—xi)-i-fi (11)
=1
or
x=—-Lx+E&, (12)
where x = (xl,...,xN)T and £ = (é}l,...,éN)T, and the network
Laplacian L = (L;) is given by

—A,] fori 7é j,
ZA,‘,‘/ fori :j. (13)
[

Equation (12) is a particular class of multivariate Ornstein-
Uhlenbeck processes. When L is diagonalizable, which we assume
below, many quantities can be derived analytically.”” We denote
the eigenvalues of L by A, (1 <n < N) and their correspond-

T
ing right and left eigenvectors by u™ = (ui"), u, . u;f,?)) and

Y = ( RO vx’)) respectively; i.e.,
Lu(") — )\nu("), (14)
VL = 2,7, (15)

Note that 4™ and v are column and row vectors, respectively.
Because L is assumed to be diagonalizable, these eigenvectors can
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be chosen to be bi-orthonormal; i.e.,
ymy® =g (16)

For a symmetric matrix L, the right and left eigenvectors are par-
allel to each other; thus, we set v = 47T and normalize the
eigenvectors as u™ - u™ = §,,

One of the eigenvalues of L is zero; it is denoted by A; = 0, and
its corresponding right eigenvector is denoted by

u = (1,1,...,D" (17)
When the in-phase state is stable, we have

0=A; <ReA, <ReA; <--- <Relyp, (18)

where ReA denotes the real part of A. When A; >0 for 1 <4,
j < N, Eq. (18) holds true under the following mild condition: all the
nodes are reachable from a single node along directed paths, where
the directed path from node j to i is assumed to be present when
Aj > 0.7 Strongly connected networks suffice this condition.

By diagonalizing Eq. (12) using the eigenvectors defined above,
we can solve Eq. (12) to derive the expression for Q given in Eq. (10).
As shown in detail in the Appendix, we obtain

N
Q=) am (192)
i=1
N —
u(m)u(”) —_ u(m) u(”)
=y "y (19b)

m,n=2 )\m + )Ln ! H
where u = L3V 4™ and umu® = L3 4™y Thus, as
given in Eq. (19), fluctuations around the synchronous state are
expressed as the summation of individual noise strengths #;, each
weighted by «;, which we call the disturbance coefficient of a node i.
Oscillators placed at the nodes with larger values of «; tend to disturb
the synchronization more strongly.

For a symmetric matrix L, Eq. (19b) reduces to (see the

Appendix)
2
. (4)

AN = Ay

(20)

P =

Furthermore, by assuming homogeneous noise strengths, i.e., n; =
1, Eq. (19a) reduces to

N 1
— — 21
A=y iy @y
n=2

Equation (21) has already been derived in Ref. 29, which focuses on
symmetric Laplacians L and homogeneous noise strengths. [When
finalizing our manuscript, we found that Ref. 30 deals with a similar
problem for symmetric L and Eq. (20) is derived there.]

C. The non-diagonalizable case

Our derivation above was based on the assumption that L is
diagonalizable. However, we may also be interested in networks that
yield non-diagonalizable matrices L, which we consider in Sec. I1I C.
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Even when L is non-diagonalizable, we may obtain values for Q and
a; in the following manner.

We assume that we have a non-diagonalizable Laplacian L.
Then, we introduce M extra parameters p = (p1, s, .- -,pm) € R
andadd py to Ly, (1 <k <M,1 <i <N,1 < ji <N). Wedenote
the resulting matrix by L(p). By construction, we have L = L(0). We
may obtain a diagonalizable matrix L(p) if M is sufficiently large,
and an appropriate set {(i,jx)} is chosen. We denote the resulting
expression for Q for L(p) by Q(p). We may expect Q(0) to describe
the Q value for the non-diagonalizable L(0).

We show that this method indeed works for the network
considered in Sec. 11T C, which we verify numerically in Sec. IV.

D. Generalization

In Sec. IT A, we considered a particular class of phase mod-
els, represented by Eq. (12), in order to consider a stable in-phase
state. Our theory can also be extended to a more general class of
phase models in which a stable phase-locked state exists. Impor-
tant examples include phase waves and spirals in spatially extended
systems.”**’

We consider

N
$i(H) = i+ Y Bify(¢y — ¢) + (D), (22)

j=1

where w; is the natural frequency of the oscillator i, B = (Bj) is the
adjacency matrix, and f; is a 27 -periodic function that describes the
coupling from the oscillator j to oscillator i. We assume that in the
absence of noise, Eq. (1) has a phase-locked state,

$i(t) = Qt+ vy (23)

for 1 <i < N. Here, Q is the frequency of the synchronized state
and the ¢ are constant phase offsets, which are found as solutions
to the following set of equations: w; + ZJN:1 B,if,-j(lllj* —-YH=Q
(1 <i < N). Then, introducing x;(t) = ¢;(1) — Qt — ¥ and lin-
earizing Eq. (1) for small x; — x;, we obtain exactly the same linear
model as given by Eq. (12), where now

Ay = Byfy7 — ). @9

For such a phase-locked state, the magnitude of the fluctuations
around the synchronized state can be quantified by Eq. (10). There-
fore, the theory presented in Sec. 11 B does not require any modifica-
tion. Only the interpretation of A; is slightly changed, as indicated
in Eq. (24).

11l. EXAMPLES

Utilizing our theory, we now look for optimal network struc-
tures for several types of networks under various constraints. We
assume that each oscillator has its own inherent noise strength and
that we are allowed to place an oscillator at an arbitrary node in the
network to make Q as small as possible; i.e., we also consider the
optimal configuration of oscillators.

scitation.org/journal/cha

A. Two nodes with two weighted edges

We first consider a very simple network; i.e., two nodes with
two weighted edges (Fig. 1). The corresponding Laplacian is

b —b
(5 ) -
which has the eigenvalues A; = 0 and A, = a + b. Thus, the stability

condition holds true when a + b > 0. The corresponding right and
left eigenvectors are

b \T
ul = (1,7, u? = (——, 1) , (26)
a

W = (g 1) VO = (=1 1), 27)

Substituting these expressions into Eq. (19), we obtain

n+m

= —, 28
Q 16(a + b) (28)

Here, Q decreases with increasing a + b, in accordance with the
behavior of the eigenvalues and is independent of the ratio of a
to b; i.e., there is no network-structure dependence in this partic-
ular example. Moreover, the disturbance coefficients «; and o, are
identical, so Q is independent of the oscillator configuration.

B. Three nodes with three weighted edges

We next consider two networks consisting of three nodes
and three edges, as shown in Fig. 2. The network motifs shown
in Fig. 2(a) and 2(b) appear abundantly in biological networks,
and they are termed “feedback” and “feedforward” networks,
respectively.”’ By calculating the eigenvalues and eigenvectors of
the corresponding network Laplacians, we obtain the following
expressions for Q for Figs. 2(a) and 2(b):

@+bm+bG+on+c+an;
18(ab + bc + ca)
1
18 (uzb + ab? + a’c+ ac® + Zabc)

QW = , (29)

((a2 + 0+ +2ab+ bc) N

+ (b + & + ab + bc+ ca) n,

+ (a* + ab + ac) n3) » (30)
respectively. Because the disturbance coefficients «; (i.e., the coef-

ficients of n;) are different for i = 1,2,3, the Q values for these

a

b

FIG. 1. Network of two nodes and two edges, in which Q is inversely proportional
to a + b and does not depend on the ratio of a to b.
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(B)

@f\@@f@

FIG. 2. Networks of three nodes and three edges. (a) Feedback network.
(b) Feedfoward network. The optimal weight distribution under the con-
strainta+b+c=1andn=n(i=123)is(@a=b=c= % and (b)
a=c= % b = 0. The corresponding Q value is 3 for both networks; these
two optimal networks are equivalently noise-tolerant.

cases depend on the oscillator configuration. By restricting ourselves
to the case of identical noise strengths, i.e., n; =1 (i = 1,2, 3), we
look for the optimal structures under the constrainta + b+ c = 1.
By using the method of Lagrange multipliers, for example, we find
that (A)a=b=c= % and (B) a=c= %,b = 0 are optimal, and
the corresponding Q values are Q' = Q" = 1. Thus, these two
optimal networks are equivalently noise-tolerant.

In network (A), even if any of a, b, or ¢ vanish, the synchronized
state remains linearly stable. However, we find that stability against
noise is improved if all the connections are present. In contrast, the
feedfoward loop in network (B) does not efficiently stabilize the sys-
tem. Instead, the optimal structure is a star network, in which b
vanishes.

C. Three oscillators with four unweighted edges

We next consider networks with three nodes and four edges.
Among such networks, we focus only on strongly connected net-
works, as shown in Fig. 3. Instead of finding the optimal weight

1 1
(A)
1 1
1+p
B 1
(B) -
1

FIG. 3. Networks with three nodes and four edges. Only strongly connected
networks are considered. For p = 0, the disturbance coefficients (cq, ap, a3)
are (a) (5,2,5)/54 and (b) (8,7,11)/144. In both networks, the noisiest oscil-
lator should be placed at node 2. For homogeneous noise strengths and
p =0, we have Q® : Q¥ = 16 : 13; thus, network (b) is more noise-tolerant
than network (a).

ARTICLE scitation.org/journal/cha

distribution for each network, we compare the Q values between
these two networks, with homogeneous weights fixed at unity. We
also discuss the optimal oscillator configuration.

For the network shown in Fig. 3(a), we obtain

5ny + 212 + 513
54 '

For the network shown in Fig. 3(b), however, L is not diagonaliz-
able. We, therefore, set A;; = 1 + p and calculate Eq. (19) under the
assumption p # 0. As a result, we obtain

QW = (31)

(84 5p 4 pP)m + (7 4 6p 4 p*)m, 4 (11 4 3p)ns

(B) —
Q) = 9(16 + 16p + 3p%)

(32)
This expression is obviously continuous at p = 0 where it reduces to

8m + 7ny + 1113
144 ’

The validity of this result is checked numerically in Sec. IV. Note that
although we have chosen Aj; to put an extra weight in this particu-
lar network, an extra weight to any link renders the corresponding
Laplacian diagonalizable.

When the noise strengths are homogeneous, we have Q™ :
Q® = 16 : 13; thus, network (B) is significantly more noise-tolerant
than network (A).

When the noise strengths are inhomogeneous, the oscillator
with the largest noise strength should be placed at node 2 in both
networks. One might find it reasonable because only node 2 has
two incoming connections, whereas the other nodes each have only
one. In contrast, the difference between nodes 1 and 3 in network
(B) is more difficult to predict. One might suppose that node 1
would disturb the network more strongly than node 3 because nodes
1 and 3 have two and one outgoing connections, respectively, so
node 1 might have a larger o value. However, we actually have
a; : a3 = 8: 11; thus, node 3 disturbs the synchronization more
strongly.

Q¥ = (33)

D. A ring with one directed shortcut

We consider the effect of a shortcut connection added to a
network with a large path length. As depicted in Fig. 4(a), we
consider a ring network of ten nodes, where A;;;; = A;;_; =1
(1 < i < N)>A1,N = AN,] = I,As)l = a,A6)4 = b, andAiJ = 0 other-
wise. We compare three cases: (i) (a,b) = (0,0), (ii) (a,b) = (1,0),
and (iii) (a,b) = (0,1). Figure 4(b) shows the disturbance coeffi-
cients «; for the three cases. When n; = n (1 < i < 10), the cor-
responding Q values are Q¥ ~ 0.4131, Q% ~ 0.3541, and Q) ~
0.3881. We thus find that the addition of a shortcut connection sig-
nificantly improves the noise stability in both cases (ii) and (iii), with
better improvement being obtained in case (ii) than in case (iii). We
attribute the reason for this difference to the path length. When the
path length between a pair of nodes is large, the phase difference
between those nodes tends to be large. The shortcut connection in
network (ii) decreases the average path length more than that of
network (iii), resulting in better synchronization.

Moreover, in both cases (ii) and (iii), node 6 gets one more
incoming edge. As shown in Fig. 4(b), this reduces the disturbance
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FIG. 4. Ring network of ten nodes with or without a shortcut. (a) Schematic
of the network. (b) Disturbance coefficients for three cases: (i) (a, b) = (0, 0),
(ii) (a,b) = (1,0), and (iii) (a, b) = (0, 1).

coefficient of node 6 considerably. Thus, when an oscillator is very
noisy, its negative effect on synchronization can be easily suppressed
by adding one incoming link to the oscillator.

E. A ring with frequency heterogeneity

We investigate the effect of frequency heterogeneity using
the ring network consisting of ten oscillators, i.e., Fig. 4(a) with
a =b=0. We consider the case in which only one oscillator has
a frequency different from the others; i.e., w; = w for all i except
w¢ = @ + Aw, where w is arbitrary. For this case, network Lapla-
cian is calculated using Eq. (24), where (Bj) is the adjacency matrix
for the ring network. We assumed f;(-) = sin(-) and obtained ¥;*
values (1 < i < N) by simulating Eq. (22) in the absence of noise.
Figure 5 shows the disturbance coefficients calculated numerically
using Eq. (19b), indicating that the oscillators closer to node 6 more
strongly disturb synchronization.

scitation.org/journal/cha
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FIG. 5. Disturbance coefficients «; of the ring network of ten nodes with or with-
out frequency heterogeneity. The natural frequencies are w; = w for all i except
ws = w + Aw, where w is arbitrary.

F. A random directed network

As a final example, we consider a random directed network
of 100 oscillators. We employed a directed Erdds-Rényi model to
generate A; ie, Aj =1 with probability p and Aj=0 otherwise
for j # i; and A; = 0. We set p = 0.05; thus, the mean in- and
out-degrees were approximately five in our example network. We
confirmed that the generated network suffices the stability criterion
given in Eq. (18), and the corresponding Laplacian is diagonaliz-
able. Figure 6(a) shows the values of the disturbance coefficients «;
obtained numerically using Eq. (19b). To see the relation between
the values of «; and the network structure, we display two scatter-
plots: ; vs 1/d™ in Fig. 6(b) and «; vs d/d™™ in Fig. 6(c), where di®
and d™ are the in- and out-degrees of node i, respectively. We find
that 1/d™ is almost proportional to «; and is clearly more correlated
with o; than d?*/di". We discuss this result later.

IV. NUMERICAL VERIFICATION

Using the example network shown in Fig. 3(b), we have ver-
ified our theory numerically. We simulated Eq. (1) numerically
with f(-) = sin(-) using random initial conditions, and we mea-

Zjil e
time average of r(f), denoted by R, is expected to provide a good
approximation to (r). In our simulations, we measured

sured the Kuramoto order parameter r(t) = . The long-

R= ! . flr(t)dt, (34)

th—to

where f, = 1000 and #; = 10000. Furthermore, from Egs. (9)
and (19), it follows that Q = >, a;n; = 2(1 — (r)). Thus, by setting
(m>n2,n3) = (11,0,0), (0,n,0), or (0,0,n), we expect the quantity
2(1 — R)/n to coincide with &; (i = 1,2, 3), respectively. In Fig. 7(a),
we plot the values of 2(1 — R)/n for different values of 1. For small
1, the numerical data are in excellent agreement with the theoreti-
cally predicted «; values. However, for large 7, there are considerable
deviations, which are due to the nonlinear effects in our model.
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FIG. 6. A random directed network of 100 oscillators. (a) Values of the distur-
bance coefficients a;. (b) ; vs 1/d™. (c) ; vs d™'/d". Dashed lines are for the
guidance to the eye, with slopes 0.0055 and 0.001 in (b) and (c), respectively.

As mentioned earlier, the network shown in Fig. 3(b) forp = 0
yields a non-diagonalizable Laplacian L. We have measured the
values of 2(1 — R)/n numerically for different p values, as shown
in Fig. 7(b). The numerical values of 2(1 — R)/n are in excellent
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FIG. 7. Numerical verification with example networks. (a) Values of 2(1 — R) /n
for different noise strengths n for the network in Fig. 3 with p = 0. (b) Values
of 2(1 — R)/n for the network in Fig. 3 with different p values, where n = 0.01.
(c) Values of 2(1 — R) /n for the directed random network used in Sec. II| F. Here,
Ris the long-time-averaged Kuramoto order parameter, which is obtained from the
numerical simulations of Eq. (1). The numerical values are in excellent agreement
with theoretical predictions.

agreement with the theoretical values of the ;, even for p = 0, at
which point L becomes non-diagonalizable. This result supports
the validity of the method proposed for treating non-diagonalizable
matrices L in Sec. 11 C.

We then performed numerical simulations of Eq. (1) for the
directed random network employed in Sec. IIT F with homoge-
neous noise strength 7; = 1. In this case, Q = >, oy =~ 12.97. As
shown in Fig. 7(c), simulation data and the predicted Q value are in
excellent agreement for small 7.
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V. DISCUSSION AND CONCLUSIONS

We have provided a theoretical framework for quantifying the
magnitude Q of the fluctuations around the synchronous state of
a given oscillator network. We have also provided several example
networks to discuss the optimal or better network structures. Given
a nonlinear dynamical system or a network Laplacian, its Q value
is readily computable. Using these Q values, we can quantitatively
compare the noise stability of the networks of different numbers
of nodes and edges with possibly heterogeneous, signed weights.
Furthermore, the disturbance coefficients «;, which appear in the
expression for Q, represent how strongly an oscillator at node i dis-
turbs synchronization. Using the values of Q and «;, we can find the
optimal network structure and the optimal oscillator configuration,
as demonstrated in Sec. I11.

In the example shown in Fig. 4, we show that shortcut con-
nections are effective for making oscillator networks noise-tolerant.
Such networks are often referred to as small-world networks,”” and
there is a large body of theoretical results, indicating that synchro-
nization is enhanced as the number of shortcuts increases. Among
them, the study by Korniss et al.”’ is very relevant to the present
study. They employed a course-grained description of the oscillator
network to show that shortcut connections added to lattice networks
prevent the divergence of the phase variance, given in Eq. (19a), as
N goes infinity.”* Such an approach is certainly powerful for under-
standing typical properties shared by certain network classes. Our
approach can be regarded as a complementary one. We can quantify
fluctuations in synchronized dynamics in particular networks of any
class in a detailed manner.

Our study is based on a general class of linear dynamical
systems with additive noise, given in Eq. (12). There are other theo-
retical studies concerning the same linear systems that treat different
quantities of interest. For example, Refs. 30, 34, and 35 investigate
the dynamics of the collective mode of an oscillator network. This
problem can concisely be formulated as a projection of the entire
dynamical system onto a one-dimensional dynamical mode along
the synchronization manifold, which is u" in the present theory.
For example, when oscillators are subjected to independent noise, as
we consider in the present paper, the diffusion coefficient of the col-
lective mode can be derived as a function of vV.* Moreover, it has
been shown that element w; of v = (wy, ws, . .., wy) describes the
strength of the influence of node i on the collective mode.”***

We emphasize that w; and «; are different measures because
they are related to the dynamics along and transverse to the synchro-
nization manifold, respectively. Therefore, they are not necessarily
correlated. For example, for symmetric L, w; is constant for all nodes,
whereas «; can be heterogeneous. Actually, as shown in Fig. 5, «; is
heterogeneous for Aw = 2.0 in spite of symmetric L. However, in
large directed random networks, they seem to be positively corre-
lated because w; is roughly proportional to d®*'/di", which is derived
using a mean-field approximation,” whereas «; is approximately
proportional to 1/d™ as is numerically found in Fig. 6(b). Namely,
a node with a small incoming degree tends to have large w; and o;
values. The property o; ~ 1/d™™ is not theoretically rationalized and
remains an important open problem. However, it makes sense that
«; tends to be larger for smaller di" because such nodes can only
weakly tune their own rhythm to others and thus more strongly
disturb the population.

ARTICLE scitation.org/journal/cha

Reference 39 treats the precision of the cycle-to-cycle peri-
ods of a synchronous state in an oscillator network. This problem
involves all the dynamical modes, as is also the case for the present
problem. However, the major contribution to the fluctuations in
cycle-to-cycle periods comes from the dynamical mode along the
synchronization manifold; in contrast, our problem is independent
of such a mode. This is the reason why the contribution of the zero
eigenmode is absent from our expression for Q; i.e., the summation
in Eq. (19a) starts from m, n = 2.

Many studies on the stability of synchronization focus on a
few eigenmodes, such as the mode associated with A, because it
characterizes the long-time behavior of the relaxation process to a
synchronized state in the absence of noise. In contrast, when noise is
present, it excites all the eigenmodes. Noise stability is thus involved
with all the eigenmodes, as reflected in the expressions for Q and «;.
When a part of the eigenvalues have vanishingly small real parts, the
contributions of other eigenmodes can be neglected in those expres-
sions. However, such a situation is exceptional, such as when the
system is near the synchronization-desynchronization transition
point.

Synchronization is essential in various artistic performances,
including those of orchestras, choruses, and dancers. To improve
synchronization in such performances, our theory may be helpful in
indicating a better network structure, the placement of experts and
laymen, and who to have look at whom. Experimental study, such
as synchronization continuation of finger tapping,” is required to
demonstrate our theoretical study.
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APPENDIX: DERIVATION OF EQ. (19)

We decompose x as

N
x(t) =) ym(Hu™, (A1)

m=1
where y,,(f) is given by
ym(0) = v x(1). (A2)

By taking the time derivative of Eq. (A2) and using Egs. (11)
and (15), we obtain

I () = =y () + En (D), (A3)

where

N
Ent) =) v"&®. (A4)

i=1

It is straightforward to show that

En®) =0, (En(DE(S) = Hnb(t — ), (A5)
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where Now, we derive the expression for Q. For convenience, we
rewrite the definitions,

Nn = Z Vv (A6) =— Zx,, (A16)

N
— 1
um = — Z u(m), (A17)
The solution to Eq. (A3) can be formally written as

2 I

] 1
N
"u. Al8
V(1) = €'y, (0) + / “hm=E (s)ds. (A7) ; (A19)

m

Using Eq. (A1), i.e,, x; = ZN=1 u;m)ym, we obtain
For m,n > 2, using Egs. (A5) and (A7), we obtain

N
Z (x5 — %7 (A19)

Zl'—'
o
I
[

GIAG)

N (Bt )

n=1
< "yn(0) + / s SZ)Sn(Sz)dSz>> (A8)

= <€_ " ym(o)e_ " yn(0)>

t
+<e‘*mfym(0) / e-*"<’-‘2>én(sz)dsz>
0

ZI
1[M=

=

N
Z ( )y ey g u(n))

x (ym(t)yn(t)) (A20)

ZI
T Mz T

[
Mz

T _ m u(">) (ym(Dya(D) (A21)

3
I

1

¢
+<e_k"t}’n(0)‘/‘ e_)""(t_sl)ém(-?l)d51>
0

t t =
+< / e VE, (5))ds, f e‘*"“‘*@n(sz)dsz) (A9)
0 0

M=

2 _ m u(n)) (ym(Bya(D) (A22)

2

3

N

(u<m>u("> — 30m

N
—(Am+)m)t (O)yn 0) _ Z nmn ) (A23)
t N R mn=2
+ </ ds, / dszefk"’(“sl)gm(sl)ef'\”(tfsz)sn(sz)> (A10) N .
0 = 3 (umum - WW) T (A24)
(Am+>~n)t 1(0),(0) Am + Ay

2

3

N

N — —
u(m) u(n) — u(m) u(") n
Z I( )V( )n” (A25)
~ Jom =+ A

, which is Eq. (19). To pass from Eq. (A21) to Eq. (A22), we have used
+ f ds, f dsye Pmt=s0g=tnlt=0p 5o ) (Al2)  therelation
‘ ‘ umym — )y =0 form=1lorn=1, (A26)

t
_(Amﬂn)t m(0)yn(0) + '7”'"/0 dse™ rrthn (=2 (A13) which holds because u" = (1, 1,...,1)T.
For a symmetric matrix L, Eq. (19b) reduces to Eq. (20)

t
+ / ds, / dsye e (£ 5Dk, (5)) (AL

ey (0)y,(0)

"MZ

oGt 1 — e i W — ()T gy . gy — um = L
mtinty (0)yn(0) + oy ————— (A14) because vV = (u'”) , u u™ =§,, forl <m,n <N, u® = N
) A+ Ay SN o YN MU = u® .y =0, and wMu® = Lyt
M — Smn
i (t — 00). (A15) Wt =3
A+ Ay
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