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Experiments and supporting theoretical analysis are presented to describe the synchronization
patterns that can be observed with a population of globally coupled electrochemical oscillators
close to a homoclinic, saddle-loop bifurcation, where the coupling is repulsive in the electrode
potential. While attractive coupling generates phase clusters and desynchronized states, repulsive
coupling results in synchronized oscillations. The experiments are interpreted with a phenomeno-
logical model that captures the waveform of the oscillations (exponential increase) followed by
a refractory period. The globally coupled autocatalytic integrate-and-fire model predicts the devel-
opment of partially synchronized states that occur through attracting heteroclinic cycles between
out-of-phase two-cluster states. Similar behavior can be expected in many other systems where the
oscillations occur close to a saddle-loop bifurcation, e.g., with Morris-Lecar neurons. Published by
AIP Publishing. https://doi.org/10.1063/1.5022497

Many oscillatory processes underlie the functioning of
important biological and engineered systems. The wave-
form of the oscillation of a variable (e.g., concentration of
substances) has strong impact on the overall behavior,
e.g., on how the oscillations synchronize together. The
waveform can be smooth, nearly sinusoidal, or relaxation
type, where slow variations are followed by a quick spike.
In this paper, we performed experiments with a chemical
oscillatory system, where the waveform had strong relax-
ation character, and show that such a system, in contrast
with the previously studied smooth oscillation, can pro-
duce synchronization with repulsive coupling among the
variables. The experiments are interpreted with a simple
mathematical model, where the relaxation character of
the waveform can be tuned to generate complex synchro-
nization patterns.

I. INTRODUCTION

The widespread occurrence of different types of syn-
chronization patterns of nonlinear dynamical systems calls
for theoretical description using simplified, generic mod-
els.1–3 The development of such models depends on local
nonlinear features of the oscillating units and the type of
interactions. When the interactions are global and weak, the
oscillations can often be described with phase models

d/i

dt
¼ xi þ

XN

j¼1

Cð/i $ /jÞ; (1)

where /i ði ¼ 1;…;NÞ and xi are the phase and the natural
frequency of the i-th oscillator, respectively, and N is the
number of oscillators.2 The central component in such a

phase model is the functional form of Cð/Þ. For example,
close to a Hopf bifurcation with coupling that occurs through
an additive term of variable differences, C is a sinusoidal
function, possibly shifted with a constant term, as in the
Kuramoto-Sakaguchi model.2 Further away from the Hopf
bifurcation, higher harmonics can occur in Z, as theoretically
shown,4 and observed in many chemical and biological oscil-
lators.5–10 Correspondingly, higher harmonics appear also in
H giving rise to phase cluster dynamics.4 Because of the rel-
ative simplicity of the mathematical structure of phase mod-
els, very often analytical solutions exist for synchronization
patterns.

Many oscillations in nature, for example, in chemistry
and neurophysiology, have more complex shapes. The slow,
exponential decaying waveform, corresponding to the charg-
ing of the membrane potential in biology, motivated the
development of integrate-and-fire (IF) types of models. In IF
models, after the process is complete, there is a quick, often
instantaneous discharge that allows the process to restart.
Such models, which typically describe the behavior close to
bifurcation [e.g., homoclinic saddle loop (SL) bifurcation or
saddle-node bifurcation of infinity period (SNIPER)],11 can
generate rich dynamics in networks that include synchroniza-
tion,12 asynchronous dynamics,13 clustering,14 or chimera
states.15 Systems close to a SNIPER or SL bifurcation can gen-
erate a refractory period: the discharging process is not instan-
taneous but occurs over a relatively short interval during which
the system is insensitive to external perturbations.16

In this paper, we design an integrate-and-fire type of
model for the description of synchronization patterns of
an electrochemical oscillator close to SL bifurcation. The
experiment performed with a repulsive coupling of a popula-
tion of electrochemical oscillators exhibited a synchronized
state. The extent of the synchronization is investigated as a
function of distance from the SL bifurcation. Thea)Deceased.
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experiments are interpreted with an autocatalytic integrate-
and-fire (AIF) model, adjusted for the exponentially increas-
ing waveform for the experiments. The AIF model is ana-
lyzed using a phase model description. The model analysis
reveals the type of synchronized oscillations, clusters, and
partially synchronized states.

II. EXPERIMENTAL RESULTS AND ANALYSIS

We carried out experiments to explore the synchroniza-
tion behavior with N¼ 64 electrochemical relaxation oscilla-
tors close to a homoclinic bifurcation. The system consists of
64 metal wires; the rate of metal dissolution (currents of the
electrodes) at constant circuit potential (U) is measured. The
currents of the electrodes become oscillatory through a
supercritical Hopf bifurcation point at U¼ 1.0 V; the oscilla-
tions are smooth near the Hopf bifurcation point. As the
potential is increased further, relaxation oscillations are seen
that disappear into a steady state through a homoclinic bifur-
cation at about U¼ 1.31 V.9 The electrodes are coupled with
a combination of resistors coupled in series (Rs) and in paral-
lel (Rp); the imposed coupling strength is K¼NRs/Rp.9

Negative coupling was induced with the application of nega-
tive series resistance (built in a Princeton Applied Research
273A potentiostat).4

In a previous publication,4 we showed that close to the
Hopf bifurcation with strong negative coupling the weak
nonlinearities can generate cluster states. Further away from
the Hopf bifurcation, the system showed desynchronized
behavior.

Here, we focus on behavior at even larger circuit poten-
tials, where relaxation oscillations occur that cease through a
homoclinic bifurcation. Figure 1 shows that under these con-
ditions, the system exhibits nearly synchronized behavior.
While the oscillators do not spike completely together [see
Figs. 1(a) and 1(c) for time series in current vs time and
grayscale plots, respectively], they form a tightly synchro-
nized cluster. This synchronization can be also seen in the

phase snapshot in Fig. 1(b), where the phases of the oscilla-
tors, /jðtÞ, were calculated with the Hilbert transform
approach.3,17 The extent of synchronization can be quantita-
tively characterized using the average Kuramoto order
parameter hRi,2 which is obtained by averaging the order
parameter RðtÞ ¼ 1

N j
PN

j¼1 ei/jðtÞj after a transient. We have
R(t)¼ 1 when all the phases take the same value (in-phase
synchrony) and R(t)¼ 0 for a uniform phase distribution
including the balanced cluster states. As shown in Fig. 1(d),
the synchronized oscillations generate large order parameter
close to 1.

We carried out a series of experiments in which the
circuit potential was increased and the averaged Kuramoto
order was calculated (see Fig. 2). As the circuit potential of
the oscillators was increased, an increase in the Kuramoto
order parameter was observed. Interestingly, the increase in
the order is not very sharp, as, for example, could be
expected from a bifurcation that leads to a stable one-cluster
state. In the inset, it is shown that at U¼ 1.25 V, in the state
space an enhanced synchronization is present.

A. Phase model analysis with experimentally obtained
phase interaction function

For better experimental characterization of the synchro-
nization transition with increasing the circuit potential, we
performed a phase model analysis, where the phase interac-
tion function was constructed from Refs. 9 and 18. Using the
phase model, the stability of the different cluster states can
be calculated for a population of globally coupled oscillators.
For a large interval in the moderately relaxational oscillation
region (1.25 V<U< 1.28 V), the experimentally measured
interaction function predicted desynchrony; however, a one
cluster state with elevated value of order parameter was
experimentally observed (see Fig. 2).

The difference between a population generating low and
elevated hRi can be demonstrated with experimentally deter-
mined coupling functions for U¼ 1.225 V and U¼ 1.265 V.9,18

The measured Cð/Þ functions were expressed as a Fourier
series up to tenth harmonics, which are shown in Fig. 3(a). By
directly simulating the phase model with these Cð/Þ functions,
we obtained dynamics similar to experimental ones, as shown
in Figs. 3(b) and 3(c). Further using the Cð/Þ functions, we

FIG. 1. Experiments: Nearly in-phase synchronization with negative global
coupling very close to homoclinic bifurcation. (a) Times series of current
oscillations. (b) Phase snapshot. (c) Grayscale plot of currents. (d) Order
parameter vs. time. U¼ 1.3 V.

FIG. 2. Experiments: Emerging order with approaching saddle loop bifurca-
tion point by increasing the circuit potential, U. The distribution of elements,
in the Hilbert transform space, at U¼ 1.25 V is shown in the left side. The
distribution of elements in a synchronized state at U¼ 1.3 V is shown in
right side.

045111-2 Kori et al. Chaos 28, 045111 (2018)



checked the linear stability (see Appendix A) of the balanced
n-cluster states (n ¼ 1; …; 10),19 indicating that the states with
n¼ 7, 8, and 9 are stable for U¼ 1.225 V, whereas no state is
stable for U¼ 1.265 V. The former result explains the almost
uniform distribution of phases observed for U¼ 1.225 V.
However, the latter cannot account for the emergence of a type
of one cluster state observed for U¼ 1.265 V. In order to
explore the emergent collective synchronization approaching
the homoclinic bifurcation, we develop a phenomenological
model in Sec. III.

III. AUTOCATALYTIC INTEGRATE-AND-FIRE MODEL

A. Model

We construct a simple, one-dimensional model for oscil-
lations close to a homoclinic bifurcation. This model is moti-
vated by the waveform of many chemical and biological
oscillators composed of an “excitatory” phase with exponen-
tial increase followed by a usually sharp decrease with a
refractory period, as observed in Fig. 1(a). Therefore, a cou-
pled oscillator is described by

dv
dt
¼ vþ KpðtÞ; (2)

where v¼ v(t) is the state variable, K is the coupling strength,
and p(t) is an external input describing the influence from
other oscillators.

When v reaches 1, its value is smoothly reset to parame-
ter a (0< a< 1) by obeying

v ¼ e$bðt$tfireÞ; (3)

where tfire is the latest time at which v becomes 1. Here, we
have assumed that the oscillator is not influenced by other

oscillators (or external forces) during the resetting process,
i.e., in an absolute refractory period. A typical time series in
the absence of coupling (i.e., K¼ 0) is shown in Fig. 4(a). In
this model, parameters a and b characterize the intrinsic
dynamical property of an oscillator. It is more convenient to
characterize the relaxation character of the oscillator by
using the excitatory period se and refractory period sr, given
by

se ¼ $ln a; (4)

sr ¼ $
ln a

b
: (5)

For convenience, we denote the intrinsic period by

T ¼ se þ sr: (6)

Larger se values compared to sr indicate stronger relaxation
character and closer distance to the homoclinic bifurcation
(at which se becomes infinite).

B. Phase reduction

As a coupled oscillator system, we consider

dv
dt
¼ vþ Kðv0 $ vÞ; (7)

where v0ðtÞ describes the state of an interacting oscillator.
The coupling term Kðv0 $ vÞ describes diffusive coupling. In
the context of electrochemical and neural dynamics, v and K
describe the electric potential and the conductance, respec-
tively. Although we have included only one interacting oscil-
lator described by v0 in Eq. (7) for simplicity, we can
consider a network of interacting oscillators by replacing
v0 $ v with

P
jðvj $ vÞ, where vj are the state variables of

interacting oscillators.
The phase model corresponding to this model can be

calculated analytically. We first define the phase uðvðtÞÞ as a
function of the state v(t) such that d

dt uðvðtÞÞ ¼ 1 for K¼ 0,
i.e.,

uðvÞ ¼
ln vþ se ð0 & u < se; excitatory phaseÞ;

$ sr

se
ln vþ se ðse & u < T; refractory phaseÞ:

8
<

:

(8)

FIG. 3. Numerical results using the phase model with experimentally mea-
sured coupling function. (a) Phase interaction function measured experimen-
tally for U¼ 1.225 V and U¼ 1.265 V. (b) Time-series of the order
parameter R(t). (c) and (d) Snapshots of the phases at t¼ 40 for U¼ 1.225 V
and U¼ 1.265 V, respectively. The same random initial condition was
employed both for U¼ 1.225 V and U¼ 1.265 V.

FIG. 4. Typical waveform of the AIF oscillator. se ¼ 1:5; sr ¼ 0:5.
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By solving reversely, we obtain

vðtÞ ¼ ~v uðtÞð Þ; (9)

where

~vðuÞ ¼
eu$se ð0 & u < seÞ;
e$

se
sr
ðu$seÞ ðse & u < TÞ:

(

(10)

We now derive the dynamical equation of uðtÞ. For the
excitatory phase, using du

dt ¼
du
dv

dv
dt with Eqs. (2) and (9), we

obtain

du
dt
¼ 1þ K ~ZðuÞ ~vðu0Þ $ ~vðuÞ

! "
; (11)

where ~ZðuÞ ¼ ese$u and u0ðtÞ is the phase of the state v0ðtÞ.
For the refractory phase, we have _u ¼ 1. Altogether, we
obtain Eq. (11) with ~Z redefined as

~ZðuÞ ¼
ese$u ð0 & u < seÞ;
0 ðse & u < TÞ:

(

(12)

For K ' 1, we may further reduce Eq. (11) to a more
tractable equation, given as

_u ¼ 1þ K~Cðu$ u0Þ; (13)

where the coupling function ~C is obtained by averaging the
right hand side of Eq. (11) over the period T,2 i.e.,

~CðuÞ ¼ 1

T

ðT

0

~Zðuþ hÞ ~vðhÞ $ ~vðuþ hÞ
! "

dh: (14)

For se > sr, which we assume henceforth, we obtain

~CðuÞ ¼
~C1ðuÞ $ se

$ %
=T for 0 & u < sr;

~C2ðuÞ $ se

$ %
=T for sr & u < se;

~C3ðuÞ $ se

$ %
=T for se & u & T;

8
>><

>>:
(15)

where

~C1ðuÞ ¼
sr

T
e

se
sr
u þ $uþ se $

sr

T

& '
e$u; (16)

~C2ðuÞ ¼ u$ sr þ
sr

T

& '
eT$u þ $uþ se $

sr

T

& '
e$u; (17)

~C3ðuÞ ¼ u$ sr þ
sr

T

& '
eT$u $ sr

T
e$

se
sr
ðT$uÞ: (18)

Alternatively, by introducing the phase / (0 & / < 2p) as

/ ¼ xu; (19)

where x ¼ 2p
T , we obtain

_/ ¼ xþ KCð/$ /0Þ; (20)

where

Cð/Þ ¼ x~C
/
x

& '
: (21)

For both Eqs. (13) and (20), jKj values only determine the
time scale, thus we may set K¼ 1 or K¼$1 for positive and
negative coupling, respectively, without loss of generality. In
Fig. 5, we show typical ZðuÞ and Cð/Þ functions. There is a
notable similarity between Cð/Þ functions obtained experi-
mentally and theoretically [Figs. 3(a) and 5(c)]. In particular,
there is a rapid growth in a region of small /, and the slope
is steeper for a more relaxation oscillator, i.e., higher U and
se values.

C. Analysis

Now, we analyze a system of globally coupled oscilla-
tors. The system is given as

_vi ¼ vi þ
K

N

XN

j¼1

ðvj $ viÞ; (22)

and its corresponding phase model is obtained as

_/i ¼ xþ K

N

XN

j¼1

Cð/i $ /jÞ; (23)

where vi and /i ði ¼ 1;…;NÞ are the state and phase of oscil-
lator i, respectively. As described in Appendix A, the local
stability of the balanced n-cluster states is determined by the
nontrivial maximum eigenvalue.19 Figure 6 shows a stability
diagram. Here, we only consider n & 10 for simplicity. With
positive coupling (K> 0), at low values of se only the 1-
cluster state is stable. As the relaxation character increases,
2, 3, 4-cluster states become progressively stable. With nega-
tive coupling, stable cluster states exist for small se values.
However, all cluster states are predicted to be unstable for
large se values. Numerical simulations with the AIF model
indicate that the average Kuramoto order parameter hRi is
vanishingly small for small se values. There, in accordance
with the stability analysis, balanced cluster states were
observed. However, hRi begins to increase at se (2.0 and
takes a large value (close to unity) as se increases.

To understand the emergence of synchrony, we first
focus on its onset at se(2.0. As shown in Fig. 6(b), only the
balanced 7-cluster state is stable just below se ¼ 2.0 and the
state loses stability at se(2.0. As also indicated in Fig. 6(b),

FIG. 5. Functions in the AIF model. (a) Waveform ~vðuÞ. (b) Phase sensitiv-
ity function ZðuÞ. (c) Phase interaction functions Cð/Þ. se ¼ 2:0 in (a) and
(b), and sr ¼ 0:3.
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the maximum nontrivial eigenvalue is imaginary and its
mode is associated with inter-cluster fluctuations (see
Appendix A). This implies that the balanced 7-cluster state
loses its stability through a Hopf bifurcation and the distribu-
tion of relative phases /i $ /1 starts to oscillate after that.
Figure 8 shows the time series of relative phases for different
se values. At se ¼ 1.8 [Fig. 8(a)], the system converged to
the balanced 7-cluster state from a random initial condition,
as predicted. At se ¼ 2.0 [Fig. 8(b)], where no balanced clus-
ter states are predicted to be stable, the system converged to
a slightly scattered balanced cluster state, in which relative
phases between clusters oscillate with time. This state can be
interpreted as a similar state to those that bifurcate from the bal-
anced n-cluster states via Hopf bifurcations.

For larger se values, no well-defined clusters are
observed. Instead, the oscillators form a noisy cloud similar
to Fig. 3(d) in spite of the instability of the one-cluster state.
Figure 8(c) shows a typical time series of relative phases,
where the center of the cloud travels with time like a wave,
i.e., each oscillator enters and exits from a cloud repeatedly.
When se is further increased, hRi suddenly jumps at se(2.8,
as shown in Fig. 7. Figure 8(d) shows typical time series of
relative phases for se > 2.8. The oscillators split into two
groups, and each group repeats aggregation and breakup.
Such a phenomenon is referred to as “slow switching,” as the
system slowly switches back and forth between a pair of two
cluster states.14,20,21 This phenomenon occurs, because there

are attracting heteroclinic cycles between pairs of unstable
out-of-phase two-cluster states. The condition for the exis-
tence of attracting heteroclinic cycles is obtained through the
stability analysis of the two-cluster states that are different
from the balanced two-cluster states (see Appendix B). As a
result, we find that the attracting heteroclinic cycles exist in
our AIF system for large se values. If the system converges
to such a cycle, hRi is well approximated by

hRi(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos D/

2

r
; (24)

where D/ is the phase difference between two clusters. D/
is obtained as the solution to CðD/Þ ¼ Cð$D/Þ (see
Appendix B), which is typically small, e.g., D/(0:3 rad at
se ¼ 0.3, thus high hRi values are predicted. In Fig. 7, pre-
dicted hRi values are plotted as the solid curve, which is in a
good agreement with numerical hRi values for se > 2:8. This
result indicates that the heteroclinic cycles become attracting
at se (2.8. When heteroclinic cycles are nonattracting, it

FIG. 6. Stability diagram for the AIF system with global coupling. (a)
Positive coupling. (b) Negative coupling. Each circle indicates that the n-
cluster state is stable at the se value. Open and filled circles indicate that the
largest nontrivial eigenvalue is a real and imaginary value, respectively.

FIG. 7. Average order parameter hRi versus se in the AIF system (N¼ 64)
with negative coupling for noiseless ðr ¼ 0:00Þ and noisy (r ¼ 0:03) sys-
tems. The solid curve shows predicted hRi values, given by Eq. (24).

FIG. 8. Time series of phase differences /i $ /1 of the AIF system. (a)
se ¼ 1:90. (b) se ¼ 2:00. (c) se ¼ 2:20. (d) se ¼ 3:30. N¼ 64 except (d),
where N¼ 10 for better visibility.
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can be generally expected that attracting limit-cycles exist
close to the heteroclinic cycles. Actually, the phenomenon
shown in Fig. 8(d) is rather similar to that in Fig. 8(c), in par-
ticular, before the system gets very close to two cluster states
(e.g., t(50). Thus, our interpretation of noisy one-cluster
state is a noisy dynamics along heteroclinic cycles between
unstable, saddle type cluster states.

We also investigate the effect of noise. We consider

_/i ¼ xþ K

N

XN

j¼1

Cð/i $ /jÞ þ rni; (25)

where r is noise intensity and niðtÞ is white Gaussian noise
with zero mean and unit variance. The green triangles in Fig. 7
show hRi values obtained by numerical simulation of Eq. (25).
As seen, hRi values are similar to those in the noiseless system
for se < 2.8. Effect of noise is significant se )2:8 because
noise inhibits the system to get very close to unstable two-
cluster states.14,20,21 Thus, with noise, the noisy one-cluster
state persists even for se )2:8. By a numerical simulation, we
confirmed qualitatively that the same result is obtained for
nonidentical oscillators [i.e., x in Eq. (25) is i-dependent].
These results indicate that the noisy one-cluster state is robust
against noise. Therefore, we interpret that the noisy one-cluster
state observed in the experiment is generated by an itinerant
synchronization involving unstable, saddle type cluster states.

IV. CONCLUSION

In summary, we have shown that a noisy synchronized
state can occur in a negatively coupled electrochemical oscilla-
tor system; this synchronized state was explained theoretically
as an itinerant motion among unstable cluster states. This itin-
erant synchronization could further contribute to the wide
range of emergent collective behavior of physical, chemical,
and biological oscillators. We expect that similar phenomena
can be reproduced in other oscillators when they are close
to homoclinic bifurcation. For example, the Belousov-
Zhabotinsky oscillatory reaction also exhibits phase response
curve similar to the predictions of AIF model.22 Neural models
are good candidates as well, because many of them, such as
the Morris-Lecar model,11 exhibit homoclinic bifurcation.

Many integrate-and-fire models proposed previously
assume instantaneous resetting, which yields discontinuous
v(t).12,15,21,23,24 In contrast, in the AIF model, we have intro-
duced the resting process with finite period sr, which enables
us to consider continuous v(t). This feature is not only natu-
ral but also a great advantage in mathematical and numerical
treatments because then our model has continuous flow at
any time. Thereby, delicate problems due to discontinuity
can be avoided. For example, it is important that the interac-
tion function Cð/Þ has continuous derivative at /¼ 0, i.e.,
C01ð0Þ ¼ C01ð2pÞ ¼ $se for nonvanishing sr, because C0ð0Þ
plays a vital role in determining many synchronous states.
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APPENDIX A: STABILITY OF THE BALANCED
CLUSTER STATES

We briefly summarize the stability analysis of the bal-
anced cluster states.19 In the phase model given by Eq. (23),
the balanced n-cluster state always exists for any C. In the
balanced n-cluster state, N/n oscillators make a point cluster
and these oscillators take the same phase Uk (k ¼ 0; 1;…;
n$ 1), given by

Uk ¼ Xtþ 2pk

n
; (A1)

where X is the actual frequency. By substituting Eq. (A1)
into Eq. (23), we obtain

X ¼ 1

n

Xn$1

k¼0

C
2pk

n

& '
: (A2)

By solving the eigenvalue problem for the corresponding sta-
bility matrix, we obtain N eigenvalues as

~k¼ 1

n

Xn$1

k¼0

C0
2pk

n

& '
; (A3)

kp ¼
1

n

Xn$1

k¼0

C0
2pk

n

& '
1$ e$i2pkp=nð Þ; (A4)

where the former has N – n multiplicity and is associated
with intra-cluster fluctuation, and the latter has 1 multiplicity
for each p (p ¼ 0; 1;…; n$ 1) and is associated with inter-
cluster fluctuation. There is one trivial eigenvalue k0 ¼ 0,
which is associated with uniform phase shift. The balanced
n-cluster state is linearly stable if and only if all the remain-
ing eigenvalues have negative real parts.

The derivative of ~CðuÞ is

~C
0ðuÞ ¼

~C01ðuÞ=T for 0 & u & sr;

~C02ðuÞ=T for sr & u & se;

~C03ðuÞ=T for se & u & T;

8
>><

>>:
(A5)

where

~C01ðuÞ ¼
se

T
e

se
sr
u $ $uþ se $

sr

T
þ 1

& '
e$u; (A6)

~C02ðuÞ ¼ $ u$ sr þ
sr

T
$ 1

& '
eT$u

$ $uþ se $
sr

T
þ 1

& '
e$u; (A7)
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~C03ðuÞ ¼ $ u$ sr þ
sr

T
$ 1

& '
eT$u $ se

T
e$

se
sr
ðT$uÞ: (A8)

Note C0ð/Þ ¼ du
d/

d
du ½x~CðuÞ+ ¼ ~C

0 /
x

) *
.

APPENDIX B: EXISTENCE AND STABILITY
OF TWO-CLUSTER STATES

We briefly summarize the existence and stability analysis
of the two cluster states and the condition for the existence of
attracting heteroclinic cycles between a pair of two cluster
states.20,21 There is a family of two-cluster states in Eq. (23), in
which qN1 oscillators and ð1$ qÞN oscillators form point
clusters. Let /A and /B be the phase of these clusters. The
phase difference D/ ¼ /A $ /B is obtained as the solution to

ð2q$ 1ÞCð0Þ þ ð1$ qÞCðD/Þ $ qCð$D/Þ ¼ 0: (B1)

The eigenvalues of the corresponding stability matrix are

k1 ¼ KqC0ð0Þ þ ð1$ qÞC0ðD/Þ; (B2)

k2 ¼ Kð1$ qÞC0ð0Þ þ qC0ð$D/Þ; (B3)

k3 ¼ Kð1$ qÞC0ð0Þ þ qC0ðD/Þ; (B4)

with multiplicities Nq$ 1;Nð1$ qÞ $ 1; 1, respectively.
There is also one trivial eigenvalue k0 ¼ 0. Eigenvalues k1

and k2 are associated with intra-cluster fluctuation, and k3 is
associated with inter-cluster fluctuation. For generic C, many
of the two-cluster states are saddles, i.e., only a part of eigen-
values are negative. Nevertheless, such saddle states are
meaningful because pairs of the two-cluster states form
attracting heteroclinic cycles and the system may approach
one of them. From here, for simplicity, we only consider
two-cluster states with q ¼ 1

2. There are a pair of two-cluster
states with the phase differences 6D/. The heteroclinic
cycle can be formed between this pair of cluster states, if

k1 > 0; k2 < 0; k3 < 0: (B5)

Furthermore, the cycle can be attracting, if

k1

k2

++++

++++!1: (B6)

The solid line in Fig. 7 is plotted in the following manner.
For given C, Eq. (B1) is solved numerically to find D/.
Using this D/ value, we check Eqs. (B5) and (B6). If both
stability conditions are satisfied, we plot a R value given by
Eq. (24) in Fig. 7.
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