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Clustering in globally coupled oscillators near a Hopf bifurcation: Theory and experiments
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A theoretical analysis is presented to show the general occurrence of phase clusters in weakly, globally coupled
oscillators close to a Hopf bifurcation. Through a reductive perturbation method, we derive the amplitude equation
with a higher-order correction term valid near a Hopf bifurcation point. This amplitude equation allows us to
calculate analytically the phase coupling function from given limit-cycle oscillator models. Moreover, using
the phase coupling function, the stability of phase clusters can be analyzed. We demonstrate our theory with
the Brusselator model. Experiments are carried out to confirm the presence of phase clusters close to Hopf
bifurcations with electrochemical oscillators.
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I. INTRODUCTION

The dynamics of weakly interacting oscillating units can be
described with phase models [1]. For example, for N identical
oscillators with global (i.e., mean field) coupling, we have

dφi

dt
= ω + κ

N

N∑
j=1

�(φi − φj ), (1)

where φi (i = 1, . . . ,N) and ω are the phase and the frequency
of oscillator i, respectively, κ is the coupling strength, and �

is the phase coupling function. Phase models have been for-
mulated from ordinary differential equations describing, e.g.,
chemical reactions [1]. Recently they have been formulated
from direct experiments as well [2–4]. A prominent feature
of such phase models is the presence of higher harmonics in
the phase coupling function. As a result of higher harmonics,
complex dynamics including chaos and multiphase clusters
can be observed [5–9]. Here we refer to phase clusters as
clustering behavior purely attributed to phase dynamics. Clus-
tering dynamics that cannot be described by phase models are
referred to amplitude clusters [10]. Phase clusters have been
experimentally observed in a wide range of systems including
electrochemical systems, light-sensitive BZ reactions, and
carbon monoxide oxidation on platinum [2,3,11–17]. The
number of clusters and their appearance with positive or
negative coupling or feedback is puzzling. Multiphase clusters
are usually explained by the presence of higher harmonics in
the coupling functions in the phase model [5]; however, the
mechanism through which higher harmonics can develop is
unclear.

In this paper we give a theoretical explanation for clusters
close to oscillations that develop through Hopf bifurcations.
With analytical derivation, we show how the higher harmonics
occur in the phase coupling function through two-step reduc-
tions: an amplitude equation is derived from coupled limit-
cycle oscillators through a reductive perturbation method, and
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then the phase coupling function is derived from the amplitude
equation through the phase reduction method. Experiments are
carried out to confirm the presence of multiphase clusters close
to Hopf bifurcations with electrochemical oscillators.

II. THEORY

A. Overview

The Stuart-Landau (SL) oscillator, which is a local element
of the complex Ginzburg-Landau model [18,19], is considered
as a general skeleton model for the description of oscillators
close to Hopf bifurcations. It can be derived as a lowest-
order amplitude equation through a reductive perturbation
method [1], as summarized in Sec. II B. However, a population
of SL oscillators coupled globally and linearly cannot describe
multiphase clusters because its corresponding phase coupling
function � in Eq. (1) does not contain second or higher
harmonics; i.e., �(�φ) ∝ sin(�φ + θ ) + a0, where a0 and
θ are constant [1,10]. As shown in Table I(a), the stability
analysis of such a phase model predicts that the only stable
behavior is the one-cluster state (in-phase synchrony).

However, it should be noticed that infinitesimally small
perturbations given to the SL system may alter a neutral state
to a stable or unstable one; i.e., the SL system is structurally
unstable. Indeed, we will show that when we take into account
higher-order correction to the amplitude equation, multicluster
states may become asymptotically stable. The number of
clusters and whether they occur with negative or positive
coupling depends on the types of nonlinearity in the ordinary
differential equations. The stability of the cluster state is weak;
nonetheless it is expected that they can be observed in globally
coupled oscillators even very close to a Hopf bifurcation point.

B. Lowest-order amplitude equation

Consider a network of identical limit-cycle oscillators with
linear coupling

ẋi = f (xi ; μ) + μκ

N∑
j=1

Aij D̂(xj − xi), (2)
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TABLE I. General properties of phase clusters in theoretical
models close to a Hopf bifurcation with weak, global coupling.
(a) Properties in the lowest-order amplitude equation [Eq. (9)].
(b) Properties in the higher-order amplitude equation [Eq. (21)].
“Desync” refers to the desynchronized state, which is the state of
uniform phase distribution. This state is also called the splay state.
Here we assumed that the one cluster state is asymptotically stable
for κ > 0. When one cluster state is stable for κ < 0, the stability of
the desynchronized state is exchanged between κ > 0 and κ < 0.

(a) One cluster Desync Multiclusters

κ > 0 Stable Unstable Unstable
κ < 0 Unstable Neutral or neutral

(b) One cluster Desync Multiclusters
κ > 0 Stable Unstable Unstable,
κ < 0 Unstable Unstable or neutral neutral, or stable

where xi ∈ RM is the state variable of the ith oscillator
(i = 1, . . . ,N ), D̂ is a M × M matrix, and μκ is the cou-
pling strength. We assume f (x = 0; μ) = 0 without loss of
generality. We also assume that, in the absence of coupling
(κ = 0), the trivial solution xi = 0 is stable for μ < 0 and
undergoes a supercritical Hopf bifurcation at μ = 0, such that
each unit becomes a limit-cycle oscillator with the amplitude
|xi | = O(

√
μ) for μ > 0. Hereafter we consider only μ � 0

and put μ = ε2 for convenience.
To derive the amplitude equation for Eq. (2) near a Hopf bi-

furcation, it is sufficient to focus on the subsystem in which an
oscillator is coupled to another. Let x and x′ be the state vectors
of the oscillators. The dynamical equation for x is given as

ẋ = f (x; ε2) + ε2κD̂x′. (3)

We expand f (x; ε2) around x = 0 as

f (x; ε2) = n1(x; ε2) + n2(x,x; ε2) + n3(x,x,x; ε2)

+O(|x|4), (4)

where nk (k = 1,2,3) is the kth-order term in the expansion
(the precise definitions of n2 and n3 are given in Appendix A).
We further expand nk with respect to ε2 to obtain

f (x; ε2) = L̂0x + ε2L̂1x + n2(x,x) + n3(x,x,x) + O(|x|4),

(5)

where nk(·) (k = 1,2) denotes nk(·; ε2 = 0). Note that O(ε2)
terms in n2 and n3 are irrelevant to the calculations below and
thus omitted in Eq. (5). Because of the assumption of Hopf
bifurcation, L̂0 has a pair of purely imaginary eigenvalues
±iω0. The right and left eigenvectors of L̂0 corresponding to
the eigenvalue iω0 are denoted by u (column vector) and v

(raw vector), respectively; i.e., L̂0u = iω0u and vL̂0 = iω0v.
They are normalized as vu = 1. The solution to the linearized
unperturbed system, ẋ = L0x, is given by

x0(t) = weiθ(t)u + w̄e−iθ(t)ū, (6)

where w is an arbitrary complex number, which we refer
to as the complex amplitude; ū and w̄ denote the complex
conjugate of u and w, respectively; and θ (t) = ω0t .

In Eq. (2), x(t) generally deviates from x0(t). By inter-
preting w as a time-dependent variable w(t), it is possible to

describe the time-asymptotic behavior of x(t) in the following
form:

x = x0(w,w̄,θ ) + ρ(w,w̄,w′,w̄′,θ ), (7)

ẇ = g(w,w̄) + ε2κh(w,w̄,w′,w̄′), (8)

where ρ,g, and h are the functions to be determined pertur-
batively. Note that g and h are free from θ (t). Equation (8)
is called the amplitude equation. In Ref. [1] the amplitude
equation to the lowest-order is derived as

ẇ = ε2αw − β|w|2w + ε2κγw′, (9)

where α,β, and γ are the complex constants with the following
expressions:

α = vL̂1u, (10)

β = −3vn3(u,u,ū) + 4vn2
(
u,L̂−1

0 n2(u,ū)
)

+ 2vn2(ū,(L̂0 − 2iω0)−1n2(u,u)), (11)

γ = vD̂u. (12)

C. Phase reduction for the lowest-order amplitude equation

Following the method in Ref. [1], we may further reduce
the amplitude equation to a phase model. For κ = 0, Eq. (9)
has the stable limit-cycle solution given by

w0(t) = reiφ(t), (13)

where r = ε
√

αR/βR (the subscripts R and I denote the
real and imaginary parts, respectively), φ(t) = ωt + φ0, ω =
ε2αR(c0 − c2),c0 = αI/αR, c2 = βI/βR, and φ0 is an arbitrary
initial phase. For sufficiently small κ , the trajectory of w(t)
deviates only slightly from that of the unperturbed limit cycle.
In this case, w(t) is well approximated by reiφ(t) with the phase
φ(t) obeying the following phase model:

φ̇ = ω + ε2κ�(φ − φ′). (14)

The phase coupling function � is obtained through

�(φ − φ′) = 〈z(φ) · h(w0,w
′
0)〉, (15)

where z(φ) is the phase sensitivity function, a · b = (āb +
ab̄)/2 denotes the inner product in a complex form, and
〈f (φ,φ′)〉 = 1

2π

∫ 2π

0 f (φ + μ,φ′ + μ) dμ denotes averaging.
The phase sensitivity function is determined by the nature of
limit-cycle oscillation. In the case of Eq. (9), we have [1]

z(φ) = −c2 + i

r
eiφ. (16)

For convenience, we expand the phase coupling function �

as

�(ψ) = a0 +
∞∑

�=1

(a� cos �ψ + b� sin �ψ). (17)

Substituting Eq. (16) and h(w0,w
′
0) = γw′

0 = γ reiφ′
into

Eq. (15), we find

a1 = γR(c1 − c2), (18)

b1 = −γR(1 + c1c2), (19)

where c1 ≡ γI/γR. Importantly, all other coefficients vanish.
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Note that, if the coupling term in Eq. (3) is diffusive
[i.e., ε2κD̂(x′ − x) instead of ε2κD̂x′], we have h(w0,w

′
0) =

γ (w′
0 − w0). In this case we obtain a0 = −a1 in addition to

Eqs. (18) and (19).
We have seen that, for the lowest-order amplitude equation

given by Eq. (9), the corresponding phase coupling function
does not contain the second and higher harmonics. Therefore,
as briefly mentioned in Sec. II A, this amplitude equation does
not admit multiphase clusters. Note that strong coupling may
result in amplitude clusters [10].

D. Higher-order correction

Next, we derive higher-order correction terms to the
amplitude equation and the corresponding phase coupling
function �. We here consider only weak coupling; i.e. the
corrections of O(κ2) are neglected. We also consider only
linear coupling, as given in Eq. (2). Our result would change
if we consider nonlinear coupling.

At first, we discuss higher-order terms in g(w) in Eq. (8).
We know that g(w) consists only of |w|nw (n = 0,1,2, . . .),
called the resonant terms [20]. The dynamical equation
ẇ = g(w) is invariant under the transformation w → weiφ ;
i.e., the system has the rotational symmetry. This implies
that w0(φ) and z(φ) have the following forms: w0(φ) =
w0(0)eiφ and z(φ) = z(0)eiφ . Then, obviously, �(φ − φ′) =
〈z(φ) · γw′

0(φ′)〉 contains only the first harmonics. Note that,
however, the term |w|nw provides the corrections of O(ε3)
and O(ε1) to w0(φ) and z(φ), respectively. These corrections
give rise to the corrections of O(ε2) in a1 and b1.

Therefore, for � to possess higher harmonics, we need
to consider a higher-order correction to h(w,w′). In gen-
eral, h(w,w′) is described as a polynomial of w,w̄,w′,w̄′.
Let us suppose that h(w,w′) = w�1w̄�2w′�3w̄′�4 with integers
�1,�2,�3,�4 � 0. Because w0 = O(ε) and z = O(ε−1) [see
Eqs. (13) and (16)], we have z · h = O(ε�1+�2+�3+�4−1). We
also have z · h(w,w′) ∝ ei(�1−�2−1)φei(�3−�4)φ′

. This term con-
tributes to a� and b� (� > 0) when this term is a function of
only ±�(φ − φ′); i.e., �1 − �2 − 1 = ±� and �3 − �4 = ∓�.
Obviously w̄�−1w′� = O(ε2�−1) gives a leading contribution
to a� and b�. We thus find

a�,b� = O(ε2(�−1)). (20)

Other terms in h(w,w′) together with higher-order terms in
g(w) provide minor corrections to the coefficients a� and b�.

Let us focus on the resonant terms of O(ε3) in h(w,w′).
There are five resonant terms: w̄w′2, |w|2w′, w2w̄′, |w′|2w′,
and w|w′|2. As already discussed, the first term yields the
second harmonic of O(ε2), thus providing leading terms of
O(ε2) to a2 and b2. The other resonant terms yield minor
corrections. Namely, the next three resonant terms yield the
first harmonic of O(ε2), and the final resonant term yields
the zeroth harmonic of O(ε2). Therefore, only the term w̄w′2
gives a major effect on phase dynamics. Thus, as a second-
order amplitude equation for weakly coupled oscillators near
a supercritical Hopf bifurcation point, it is appropriate to
consider the following equation:

ẇ = ε2αw − β|w|2w + ε2κ(γw′ + δw̄w′2), (21)

where δ is a complex constant. One of the main results in the
present paper is, as shown in Appendix A, the derivation of
the expression for δ, which has the following concise form:

δ = 2vn2(ū,(L̂0 − 2iω0)−1D̂(L̂0 − 2iω0)−1n2(u,u)). (22)

Moreover, calculation of 〈z(φ) · δw̄0(φ)w′2
0(φ′)〉 yields the

Fourier coefficients of �, given as

a2 = r2δR(c3 − c2), (23)

b2 = −r2δR(1 + c2c3), (24)

where c3 = δI/δR. As discussed in Sec. III A, the stability of
phase clusters crucially depends on these Fourier coefficients.

III. DEMONSTRATION

Our theory is applied to the prediction of cluster states in
globally coupled oscillators. First, we briefly summarize the
existence and stability of cluster states in the phase model with
global coupling. We then numerically confirm our prediction
about clustering behavior in the Brusselator model.

A. Existence and stability of balanced cluster states

A globally coupled system with N oscillators is obtained
by replacing x′ in Eq. (3) with X ≡ 1

N

∑N
j=1 xj . The corre-

sponding phase models given in Eq. (1) with κ being replaced
by ε2κ . By assuming κ > 0 and rescaling time scale, we drop
this κε2. For κ < 0, all the eigenvalues given below will have
the opposite sign.

The balanced n-cluster state (n � 2) is the state in which the
whole population splits into equally populated n groups (here
we assume that N is a multiple of n), oscillators in group m

(m = 0,1, . . . ,n) have an identical phase ψm, and the phases of
groups are equally separated (ψm = �t + 2mπ/n). In Eq. (1)
this solution always exists for any n.

The stability of the balanced cluster states was studied
by Okuda [5]. The n-cluster state with n � 2 possesses two
types of eigenvalues, which are associated with intracluster
and intercluster perturbations. The eigenvalue associated
with intracluster perturbations is given by λintra

n = ∑∞
k=1 bkn.

Therefore, in the absence of the �th harmonics with � � n in �,
the n-cluster state has a zero eigenvalue; that is, the n-cluster
state may not be asymptotically stable. This is the reason
why any multiphase clusters do not appear in the lowest-order
amplitude equation given by Eq. (9).

However, as discussed in Sec. II D, the amplitude equation
that appropriately takes into account higher-order corrections
yields higher harmonics in the corresponding phase coupling
function �. The order of higher harmonics is given by
Eq. (20), implying λintra

n = ∑∞
k=1 bkn = O(ε2(n−1)). Therefore,

multiphase clusters can be asymptotically stable.
From here we focus on one- and two-cluster states. By

neglecting third and higher harmonics in �, eigenvalues for
the one-cluster (λintra

1 ) and the balanced two-cluster states
(λintra

2 ,λinter
2 ) are given by

λintra
1 = �′(0) = b1 + 2b2, (25)

λintra
2 = 1

2 (�′(0) + �′(π )) = 2b2, (26)

λinter
2 = �′(π ) = −b1 + 2b2. (27)
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By substituting Eqs. (19) and (24), we can obtain the
expressions for these eigenvalues. At this point, we should
recall that these expressions for b1 and b2 involve the errors of
O(ε2) and O(ε4), respectively. We should thus keep in mind
the following estimation when we substitute the expressions
given by Eqs. (19) and (24) into Eqs. (25)–(27):

λintra
1 = b1 + O(ε2), (28)

λintra
2 = 2b2 + O(ε4), (29)

λinter
2 = −b1 + O(ε2). (30)

Equations (28)–(30) imply that the parameter region in
which the balanced two-cluster state is asymptotically stable
coincides well with the region with b1 > 0 and b2 < 0.

There is another type of two-cluster states, in which the
phase difference between the clusters is different from π . This
type of two-cluster states is usually unstable. However, a pair
of two-cluster states may form attracting heteroclinic cycles.
In such a case, an interesting dynamical behavior called slow
switching appears [6–8]. Although the clusters are generally
not equally populated in this type of two-cluster states, we
consider only two equally populated clusters for simplicity in
the present paper. For convenience, we refer to the two-cluster
states with the phase difference π and other phase differences
as antiphase and out-of-phase cluster states, respectively.

For out-of-phase cluster states, one may show that the
phase difference �φ between the clusters is given by �φ =
arccos(−b1/2b2). The solution to �φ exists only when b1 is
comparable to or even smaller than b2. As b1 is generally much
smaller than b2, this situation typically occurs near the stability
boundary of the one-cluster state at which b1 changes its sign.

There are three types of eigenvalues for out-of-phase cluster
state, given as

λ(i)
ss = 1

2
(�′(0) + �′(�φ)) = −a1

2
sin �φ + O(ε2), (31)

λ(ii)
ss = 1

2
(�′(0) + �′(−�φ)) = a1

2
sin �φ + O(ε2), (32)

λ(iii)
ss = 1

2
(�′(�φ) + �′(−�φ))

= (b1 + 2b2)(b1 − 2b2)

2b2
= −λ1(1 + cos �φ). (33)

Local stability conditions necessary for the slow switching
dynamics are [6,7] λ(i)

ss λ
(ii)
ss < 0, λ(iii)

ss < 0, and

λ(i)
ss + λ(ii)

ss = b1(b1 + 2b2)

2b2
= λ1 cos �φ < 0. (34)

As a1 is generally of O(1), the first condition always holds
true. This means that any out-of-phase cluster state is saddle.
The second condition holds only when λ1 > 0 (i.e., the one
cluster state is unstable). Then the last condition is satisfied
only when cos �φ < 0, i.e., b1 and b2 have the same sign. Then
λ1 = b1 + 2b2 > 0 implies b1 > 0 and b2 > 0. Therefore, the
slow switching dynamics may arise only when b1 > 0, b2 > 0
and b1 is comparable to b2.

We summarize general properties of the cluster states. Here
we consider both positive and negative coupling strength κ:

(1) κb1 < 0: one-cluster state is stable, antiphase cluster
state is unstable.

(2) κb1 > 0,κb2 < 0: one-cluster state is unstable, an-
tiphase cluster state is stable.

(3) κb1 > 0,κb2 > 0: one-cluster state is unstable, bal-
anced two-cluster state is unstable, slow switching may arise
near the stability boundary for one-cluster state.

B. Numerical verification with limit-cycle oscillators

To verify our theory, we consider a population of Brus-
selator oscillators with global coupling, whose dynamical
equations are given by

dxi

dt
= A − (B + 1)xi + x2

i yi + κ

N

N∑
j=1

(xj − xi), (35a)

dyi

dt
= Bxi − x2

i yi + κd

N

N∑
j=1

(yj − yi). (35b)

We treat B as a control parameter and fix other parameters A

and d. In the absence of coupling (i.e., κ = 0), the Hopf bifur-
cation occurs at B = Bc ≡ 1 + A2. The bifurcation parameter
is defined as ε2 = B−Bc

Bc
for B > Bc. As shown in Appendix B,

using the expressions given in Sec. II, we obtained Fourier
coefficients a1,a2,b1, and b2 of � as functions of A,B,d, and
ε. Figure 1 displays the phase diagram in the parameter space
(A,d), where the lines show the predicted stability boundaries
given by b1 = 0 and b2 = 0. Slow switching dynamics is
predicted to occur in the narrow region left of the line b1 = 0
for κ < 0.

We carried out direct numerical simulations of Eqs. (35a)
and (35b). Starting from random initial conditions, the system
typically converged to balanced cluster states. Two snapshots
are displayed in Fig. 2. The symbols in Fig. 1 display the
parameter sets at which the indicated cluster state is obtained.
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 1  1.5  2  2.5  3

A
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 1

 1  1.5  2  2.5  3

(a) (b) 

b1=0
b2=0

one cluster state
anti-phase cluster state

slow switching

A

d

FIG. 1. (Color online) Phase diagram of cluster states in the
Brusselator system for (a) positive (κ = 0.001) and (b) negative
coupling (κ = −0.001). On the solid and dashed lines, b1 and b2

change their signs, respectively. The regions b1 > 0 and b2 < 0 are
right of the lines. Numerical data are obtained by direct numerical
simulations of Eqs. (35a) and (35b) with N = 4, B = (1 + ε2)Bc, ε =
r

√
2+A2

A2(1+A2)
, r = 0.1.
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FIG. 2. (Color online) Snapshots of cluster states in the Brusse-
lator system. For a better presentation, displayed snapshots are those
before complete convergence. (a) The one-cluster state is obtained.
(b) The balanced two-cluster state is obtained. Parameter values: N =
12, κ = −0.001,d = 0.4,B = (1 + ε2)Bc, ε = r

√
2+A2

A2(1+A2 , r = 0.1,

(a) A = 2.8, (b) A = 1.1.

We also found the slow switching dynamics at the filled
triangle in Fig. 1(b), as theoretically expected. We expect that
the slow switching dynamics would appear anywhere in the
narrow region left to the line b1 if the parameter A and d

were more finely varied. All together, we have an excellent
agreement between the analytical and numerical results.

We next observed clustering behavior for various B values
far from the bifurcation point Bc with N = 24 oscillators.
We fixed A = 1.0, so that Bc = 2.0. At each B value, we
employed 100 different random initial conditions. For each
initial condition, we checked the number of phase clusters after
transient time. Figure 3 shows the frequency of appearance of
the n-cluster state for each B value. As the system is farther
from the bifurcation point, n-cluster states with larger n values
were more likely to appear. In this particular case, the number
of clusters tends to increase as the system is farther from the
bifurcation point. This result indicates that higher harmonics
in phase coupling function are developed as the bifurcation
parameter increases, which is consistent with our estimation
given by Eq. (20).

 0
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B

FIG. 3. (Color online) Clustering behavior in the Brusselator
system farther from the Hopf bifurcation point. Each line indicates
how many times the n cluster state (not necessarily perfectly balanced)
was obtained out of 100 different initial conditions. N = 24, A = 1.0,
d = 0.7, κ = −0.01. Initial values of xi and yi are random numbers
taken from the uniform distribution in the range [−0.05,0.05].

IV. EXPERIMENTS

Experiments were conducted with a population of nearly
identical N = 64 electrochemical oscillators. Each oscillator
is represented by a 1 mm diameter Ni wire embedded in epoxy
and immersed in 3 mol/L sulfuric acid. The oscillators exhibit
smooth or relaxation waveforms for the current (the rate of
dissolution), depending on the applied potential (V) versus a
Hg/Hg2SO4/saturated K2SO4 reference electrode. The current
of the electrodes became oscillatory through a supercritical
Hopf bifurcation point at V = 1.0 V; the oscillations are
smooth near the Hopf bifurcation point. As the potential is
increased, relaxation oscillations are seen that disappear into
a steady state through a homoclinic bifurcation at about V =
1.31 V [21]. The parameters (applied potential) were chosen
such that the the oscillators exhibit smooth oscillations near the
Hopf bifurcation without any coupling. The electrodes were
then coupled with a combination of series (Rs) and parallel
(Rp) resistors such that the total resistance Rtot = Rp + 64Rs

is kept constant at 652 ohms. The imposed coupling strength
can be computed as K = NRs/Rp (more experimental details
are given in Ref. [22]). Negative coupling was induced with
the application of negative series resistance supplied by a PAR
273A potentiostat in the form of IR compensation. The cluster
states are obtained from nearly uniform initial conditions that
correspond to zero current (no metal dissolution).

Three-cluster states were observed near the Hopf bifurca-
tion (V = 1.05 V) with negative coupling. Figure 4(a) shows
the current from one oscillator of each of the three clusters.
The nearly balanced three-cluster state with configuration
(25:20:19) is shown on a grid of 8 × 8 circles [Fig. 4(b)]. Each
shade represents one cluster. In the previous work on the same
system it had been shown that with positive coupling close to
the Hopf bifurcation only one-cluster state is present [2]. Phase
response curves [Fig. 4(c)] and coupling functions [Fig. 4(d)]
for these oscillators were determined experimentally by
introducing slight perturbations to the oscillations [2]. The
stability of these cluster states was determined by computing
the eigenvalues of the phase model [5]. The maxima of real
parts of these eigenvalues, for the same potential as in Fig. 4(a),
are shown in Fig. 4(e). It is clear that with negative coupling
multicluster states should be observed, and the three-cluster
state is the most stable state.

As the potential was varied the number of cluster states
changed. Four- and five-cluster states were observed at
higher potentials. Examples of the oscillation waveforms
and configurations for the four- and five-cluster states are
shown in Figs. 5(a)–5(d). Further increase in the potential
resulted in complete desynchronization of the 64 oscillators. At
higher potentials, for moderately relaxational oscillators, only
a one-cluster state was observed. Figure 5(e) summarizes the
effect of changing the parameter (potential) on the existence of
different cluster states. The presence of these clusters can be
explained by the most stable clusters from the experimentally
determined phase model [Fig. 5(f)]. (We were not able to derive
a phase model for the two-cluster state because the amplitude
of the oscillations was too small for response functions to be
measured in experiments.)

The experiments thus confirm that varying number of
clusters (2–5) can be observed in the electrochemical system
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(a) (b)

(c) (d)

(e)

2.94

0.1

0

-0.13
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FIG. 4. (Color online) Experiments: Three-cluster state close to Hopf bifurcation with negative global coupling of 64 electrochemical
oscillators. K = −0.88. (a) Current time series and the three cluster configuration at V = 1.05 V (close to a Hopf bifurcation). Solid, dashed,
and dotted curves represent currents from the three clusters. (b) Cluster configuration. (White, black, and gray circles represent the three
clusters.) (c) Response function and waveform (inset) of electrode potential E = V − IRtot, where I is the current of the single oscillator.
(d) Phase coupling function. (e) Stability analysis of the clusters with experiment-based phase models for K = −1: the maximum of the real
parts of eigenvalues for each balanced cluster state.

close to Hopf bifurcation with negative global coupling.
Note that these clusters are different than those reported
previously that had been obtained with relaxation oscillators

with positive coupling [22]. Similar to the results obtained with
the Brusselator model, when the system is shifted farther away
from the Hopf bifurcation, the number of clusters increased
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(a) (b)

(c) (d)

(e) (f)

FIG. 5. Experiments: Multiple cluster states observed as parameters are moved away from Hopf bifurcation with negative global coupling
for 64 electrochemical oscillators. Top row: four clusters, V = 1.09 V, K = −0.88. Middle row: five clusters. V = 1.11 V, K = −0.88. (a)
Current time series of the four clusters. (b) Cluster configuration (17:14:15:18) for four-cluster state. (c) Current time series. (d) Cluster
configuration (15:13:14:7:15) of five-cluster state. (e) Experimentally observed cluster states as a function of applied potential. (f) The most
stable cluster state as a function of potential predicted by the experimentally obtained phase model.

due to the emergence of stronger higher harmonics in the
coupling function. In agreement with theory, the clusters
required relatively strong negative coupling (K ≈ −0.88) in
contrast with the one-cluster state with positive coupling that
required very weak coupling (K < 0.05) [23]. Therefore, we
see that weak higher harmonics can play important role in
determining the dynamical features of cluster formation when

the contribution of dominant harmonics does not induce a
stable structure.

V. CONCLUDING REMARKS

In summary, we have shown theoretically and confirmed
numerically and experimentally the development of higher
harmonics in the phase coupling function and the appearance
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of phase clusters in globally coupled oscillatory systems. We
found that the only relevant higher-order terms that should
be included in the amplitude equation for weakly coupled
oscillators are w̄�−1w′� with � � 2. In particular, we derived
the expression for the coefficient of the term w̄w′2, which
has a very concise form. The relevance of higher harmonics
in the phase coupling function has been well recognized. Our
study uncovered how higher harmonics are developed in limit-
cycle oscillators near a Hopf bifurcation point. The derived
amplitude equation will serve as an analytically tractable limit-
cycle oscillator model that produces higher harmonics in the
phase coupling function.
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APPENDIX A: DERIVATION OF THE
AMPLITUDE EQUATION

Our aim is to reduce Eq. (3) to the amplitude equation
given by Eq. (21). Because the expressions for α,β, and γ are
obtained in Ref. [1], we focus on δ.

For convenience, we rewrite Eqs. (3) and (8) as

ẋ = L̂0x + ε2L̂1x + n2(x,x) + n3(x,x,x) + ε2κD̂x′,
(A1)

ẇ = G(w,w̄,w′,w̄′), (A2)

respectively. Here n2 and n3 are defined as

n2(u,v) =
M∑

i,j=1

1

2!

(
∂2 f

∂xi∂xj

)
x=0

uivj , (A3)

n3(u,v,w) =
M∑

i,j,k=1

1

3!

(
∂3 f

∂xi∂xj ∂xk

)
x=0

uivjwk, (A4)

where x = (x1,x2, . . . ,xM )T and similar definitions are
applied to u,v, and w. Note that we consider only linear
coupling in Eq. (A1). In the presence of nonlinear coupling,
the expression for δ will be different from Eq. (22) while α, β,
and γ are unchanged.

By substituting Eq. (7) into Eq. (A1) and using Eq. (A2),
we obtain

L0ρ = G exp(iθ )u + Ḡ exp(−iθ )ū + b(w,w̄,w′,w̄′,θ ),
(A5)

where

L0 = L̂0 − ω0
∂

∂θ
, (A6)

b = −ε2L̂1x − n2(x,x) − n3(x,x,x) − ε2κD̂x′

+G
∂ρ

∂w
+ Ḡ

∂ρ

∂w̄
+ G′ ∂ρ

∂w′ + Ḡ′ ∂ρ

∂w̄′ . (A7)

Regard Eq. (A5) formally as an inhomogeneous linear differ-
ential equation for ρ(θ ), where the right-hand side as a whole
represents the inhomogeneous term. To solve Eq. (A5), ρ(θ )

and b(θ ) are expanded as

ρ(θ ) =
∞∑

�=−∞
ρ(�) exp(i�θ ), (A8)

b(θ ) =
∞∑

�=−∞
b(�) exp(i�θ ). (A9)

Note that the terms exp(iθ )u and its complex conjugate in
Eq. (A5) are the zero eigenvectors of L0; i.e., L0(eiθ u) =
L0(e−iθ ū) = 0. Because the left-hand side in Eq. (A5) is free
of the zero-eigenvector components due to the operation of
L0, these components must be canceled in the right-hand side
as well. This condition is called the solvability condition.
By substituting Eqs. (A8) and (A9) into Eq. (A5), and
comparing the component of exp(iθ ) in both sides, we obtain
the solvability condition

G = −vb(1). (A10)

Further, by comparing other components, we obtain

ρ(�) = (L̂0 − i�ω0)−1b(�), (� 
= ±1), (A11)

ρ(1) = (L̂0 − iω0)−1(b(1) + Gu), (A12)

ρ(−1) = (L̂0 + iω0)−1(b(−1) + Ḡū). (A13)

Let b(�) and ρ(�) be further expanded in the powers of ε:

b(�) =
∞∑

ν=2

εν b̃(�)
ν =

∞∑
ν=2

b(�)
ν , (A14)

ρ(�) =
∞∑

ν=2

εν ρ̃(�)
ν =

∞∑
ν=2

ρ(�)
ν . (A15)

Correspondingly, b and ρ themselves are expanded as

b =
∞∑

ν=2

εν b̃ν =
∞∑

ν=2

bν, (A16)

ρ =
∞∑

ν=2

εν ρ̃ν =
∞∑

ν=2

ρν . (A17)

Let G be also expanded as

G =
∞∑

ν=1

ε2ν+1G̃2ν+1 =
∞∑

ν=1

G2ν+1, (A18)

where we have anticipated the absence of even powers.
To derive Eq. (21), we need to calculate G3 and G5. As

G3 is already obtained in Ref. [1], our main concern is G5,
especially the higher-order coupling term in G5. To obtain G3

and G5, we need the expressions for bν (ν = 1, . . . ,5). Because
x0 = O(ε); bν,ρν = O(εν) (ν � 2); Gν = O(εν) (ν � 3), we
find

b2 = −n2(x0,x0), (A19)

b3 = −ε2L̂1x0 − 2n2(x0,ρ2) − n3(x0,x0,x0) − κε2D̂x′
0,

(A20)
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b4 = −ε2L̂1ρ2 − 2n2(x0,ρ3) − n2(ρ2,ρ2) − 3n3(x0,x0,ρ2) − κε2D̂ρ ′
2, (A21)

b5 = −ε2L̂1ρ3 − 2n2(x0,ρ4) − 2n2(ρ2,ρ3) − 3n3(x0,x0,ρ3) − 3n3(x0,ρ2,ρ2) − κε2D̂ρ ′
3

+G3
∂ρ2

∂w
+ Ḡ3

∂ρ2

∂w̄
+ G′

3
∂ρ2

∂w′ + Ḡ′
3
∂ρ2

∂w̄′ . (A22)

We first calculate G3 = −vb(1)
3 . Using

b(1)
3 = −ε2L̂1x(1)

0 − 2n2(x0,ρ2)(1) − n3(x0,x0,x0)(1) − κε2D̂x′(1)
0

= −ε2L̂1x(1)
0 − 2n2

(
x(1)

0 ,ρ
(0)
2

) − 2n2
(
x(−1)

0 ,ρ
(2)
2

) − 3n3
(
x(1)

0 ,x(1)
0 ,x(−1)

0

) − κε2D̂x′(1)
0 , (A23)

ρ
(0)
2 = L̂−1

0 b(0)
2 = −2L̂−1

0 n2
(
x(1)

0 ,x(−1)
0

)
, (A24)

ρ
(2)
2 = (L̂0 − 2iω0)−1b(2)

2 = (L̂0 − 2iω0)−1n2
(
x(1)

0 ,x(1)
0

)
, (A25)

we obtain Eq. (9) with Eqs. (10)–(12).
Now we calculate G5 = −vb(1)

5 . We have

b(1)
5 = −ε2L̂1ρ

(1)
3 − 2n2(x0,ρ4)(1) − 2n2(ρ2,ρ3)(1) − 3n3(x0,x0,ρ3)(1) − 3n3(x0,ρ2,ρ2)(1) − κε2D̂ρ

′(1)
3

+G3
∂ρ

(1)
2

∂w
+ Ḡ3

∂ρ
(1)
2

∂w̄
+ G′

3
∂ρ

(1)
2

∂w′ + Ḡ′
3
∂ρ

(1)
2

∂w̄′

= −ε2L̂1ρ
(1)
3 − 2n2

(
x(1)

0 ,ρ
(0)
4

) − 2n2
(
x(−1)

0 ,ρ
(2)
4

) − 2n2
(
ρ

(2)
2 ,ρ

(−1)
3

) − 2n2
(
ρ

(1)
2 ,ρ

(0)
3

) − 2n2
(
ρ

(0)
2 ,ρ

(1)
3

) − 2n2
(
ρ

(−1)
2 ,ρ

(2)
3

)
− 2n2

(
ρ

(−2)
2 ,ρ

(3)
3

) − 3n3
(
x(1)

0 ,x(1)
0 ,ρ

(−1)
3

) − 6n3
(
x(1)

0 ,x(−1)
0 ,ρ

(1)
3

) − 3n3
(
x(−1)

0 ,x(−1)
0 ,ρ

(3)
3

) − 6n3
(
x(1)

0 ,ρ
(2)
2 ,ρ

(−2)
2

)
− 6n3

(
x(1)

0 ,ρ
(1)
2 ,ρ

(−1)
2

) − 3n3
(
x(1)

0 ,ρ
(0)
2 ,ρ

(0)
2

) − 6n3
(
x(−1)

0 ,ρ
(2)
2 ,ρ

(0)
2

) − 3n3
(
x(−1)

0 ,ρ
(1)
2 ,ρ

(1)
2

) − κε2D̂ρ
′(1)
3

+G3
∂ρ

(1)
2

∂w
+ Ḡ3

∂ρ
(1)
2

∂w̄
+ G′

3
∂ρ

(1)
2

∂w′ + Ḡ′
3
∂ρ

(1)
2

∂w̄′ . (A26)

Out of the above terms, we select those which produce
κε2D̂w′2w̄. Checking term by term, we find that the following
terms may safely be excluded:

(1) Those which include ρ2

(2) Those which include x(1)
0

(3) Those which include x(−1)
0 twice.

The remaining terms are

−ε2L̂1ρ
(1)
3 − 2n2

(
x(−1)

0 ,ρ
(2)
4

) − κε2D̂ρ
′(1)
3 . (A27)

The first of the above three terms is further dropped because
the coupling term included there is linear. The last term is also
dropped because the cubic term n3(x′

0,x
′
0,x

′
0) yields neither w

nor w̄. Thus, the only relevant term in b(1)
5 is the κ-dependent

term in

−2n2
(
x(−1)

0 ,ρ
(2)
4

)
. (A28)

The κ-dependent term in ρ
(2)
4 is

(L̂0 − 2iω0)−1
(−κε2D̂ρ

′(2)
2

)
. (A29)

Because

ρ
′(2)
2 = (L̂0 − 2iω0)−1(−n2

(
x′(1)

0 ,x′(1)
0

))
= −w′2(L̂0 − 2iω0)−1n2(u,u), (A30)

Eq. (A29) becomes

κε2w′2(L̂0 − 2iω0)−1D̂(L̂0 − 2iω0)−1n2(u,u). (A31)

Thus, the relevant term in Eq. (A28) is

− 2κε2w′2w̄n2(ū,(L̂0 − 2iω0)−1D̂(L̂0 − 2iω0)−1n2(u,u)),

(A32)

which yields δ shown in Eq. (22).

APPENDIX B: AMPLITUDE EQUATION FOR THE
BRUSSELATOR MODEL

We derive the expression for α,β,γ , and δ for the Brussela-
tor model given by Eq. (35). There are three parameters, A, B,
and d, in Eq. (35). We consider B as a bifurcation parameter
while A and d are fixed, so that the expression for α,β,γ , and
δ will be functions of A and d. Note that such expressions
except for δ were already derived in Ref. citekuramoto84.

The steady solution to Eq. (35) is (x0,y0) = (a,b/a).
Introducing ξ = x − x0 and η = y − y0 and substituting them
into Eq. (35), we obtain

dξi

dt
= (B − 1)ξi + A2ηi + f (ξi,ηi) + κ

N

N∑
j=1

(ξj − ξi),

(B1a)

dηi

dt
= −Bξi − A2ηi − f (ξi,ηi) + κd

N

N∑
j=1

(ηj − ηi), (B1b)

where

f (ξ,η) = B

A
ξ 2 + 2Aξη + ξ 2η. (B2)
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In the absence of coupling (i.e., κ = 0), the trivial solution
(ξi,ηi) = (0,0) undergoes a supercritical Hopf bifurcation at
B = Bc ≡ 1 + A2. We define the bifurcation parameter as
ε2 = B−Bc

Bc
. We then obtain

L̂0 =
(

A2 A2

−(1 + A2) −A2

)
, (B3)

L̂1 = (1 + A2)

(
1 0

−1 0

)
, (B4)

D̂ =
(

1 0

0 d

)
, (B5)

u =
(

1

−1 + iA−1

)
, (B6)

v = 1

2
(1 − iA − iA) , (B7)

ω0 = A, (B8)

L̂−1
0 = 1

A2

( −A2 −A2

A2 + 1 A2

)
, (B9)

(L̂0 − 2iω0)−1 = 1

3A2

(
A2 + 2iA 3A2

−A2 − 1 −A2 − 2iA

)
. (B10)

We introduce ui = (σi,μi)T (i = 1,2,3) and write

n2(u1,u2) =
{

1 + A2

A
σ1σ2 + A(σ1μ2 + μ1σ1)

}(
1

−1

)
,

(B11)

n3(u1,u2,u3) = σ1σ2μ3 + μ1σ2σ3 + σ1μ2σ3

3

(
1

−1

)
. (B12)

Substituting these expressions to Eqs. (10)–(12) and (22),
we obtain

α = 1

2
+ A2

2
, (B13)

β = 1

A2
+ 1

2
+ i

2

(
4

3A3
− 7

3A
+ 4A

3

)
, (B14)

γ = 1

2
+ d

2
+ i

2
(−A + Ad), (B15)

δ = −8

3
+ 4

9A6
+ 8

3A4
− 1

A3
+ 28

9A2
+ 1

A

+ 2A − 32d

3
+ 4d

9A6
− 68d

9A2

+ i

(
2 + 4

9A5
+ 4

A3
+ 2

A2
+ 88

9A
+ 16A

3

+ 14d

9A5
+ 6d

A3
+ 20d

9A
− 16Ad

3

)
. (B16)

We further obtain

c1 = γI

γR
= −A(1 − d)

1 + d
, (B17)

c2 = βI

βR
= 4 − 7A2 + 4A4

3A(2 + A2)
, (B18)

c3 = δI

δR
= A[4 + 5d + (2 − 11d)A2 + (d − 1)A4]

4 + d + (2 − 10d)A2 + (7d − 2)A4
, (B19)

r = ε

√
αR

βR
= ε

√
A2(1 + A2)

2 + A2
. (B20)

Using these coefficients, it is straightforward to obtain the
expression for the Fourier coefficients a1,a2,b1, and b2 of �.
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