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a b s t r a c t

Biological rhythms are generated by pacemaker organs, such as the heart pacemaker organ (the sinoatrial

node) and the master clock of the circadian rhythms (the suprachiasmatic nucleus), which are composed of

a network of autonomously oscillatory cells. Such biological rhythms have notable periodicity despite the

internal and external noise present in each cell. Previous experimental studies indicate that the regularity of

oscillatory dynamics is enhanced when noisy oscillators interact and become synchronized. This effect,

called the collective enhancement of temporal precision, has been studied theoretically using particular

assumptions. In this study, we propose a general theoretical framework that enables us to understand the

dependence of temporal precision on network parameters including size, connectivity, and coupling

intensity; this effect has been poorly understood to date. Our framework is based on a phase oscillator

model that is applicable to general oscillator networks with any coupling mechanism if coupling and noise

are sufficiently weak. In particular, we can manage general directed and weighted networks. We quantify

the precision of the activity of a single cell and the mean activity of an arbitrary subset of cells. We find that,

in general undirected networks, the standard deviation of cycle-to-cycle periods scales with the system size

N as 1=
ffiffiffiffi
N
p

, but only up to a certain system size Nn that depends on network parameters. Enhancement of

temporal precision is ineffective when N4Nn. We provide an example in which temporal precision

considerably improves with increasing N while the level of synchrony remains almost constant; temporal

precision and synchrony are independent dynamical properties. We also reveal the advantage of long-range

interactions among cells to temporal precision.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Biological rhythms such as heartbeats and sleep-waking cycles
are essential in living organisms. Many biological rhythms are
generated by pacemaker organs composed of autonomously
rhythmic cells. For example, the heart pacemaker (i.e., the
sinoatrial node) is the source of electric waves propagating from
within the heart, which cause the contraction of cardiac cells
(Glass, 2001). The suprachiasmatic nucleus (SCN), which is a
network of clock cells located in the brain, orchestrates the
circadian (i.e., approximately 24 h) activity of the entire body.
Each clock cell has a circadian rhythm in its electric activity owing
to the gene regulatory network within the cell, and a population
of clock cells synchronizes its activity through neural interactions
(Reppert and Weaver, 2002). The medullary pacemaker nucleus in
ll rights reserved.

Sciences, Ochadai Academic

Japan. Tel.: þ81 3 5978 5067.

thematical Informatics, The

1 3 5841 6931.

),
electric fish is the pacemaker for the electric discharges emitted
by electric fish, which are used for object detection and commu-
nication with other electric fish (Heiligenberg et al., 1981).

Cell dynamics involve fluctuations resulting from various
types of internal and external noise. However, oscillations in
pacemaker organs such as the sinoatrial node in the heart, the
SCN, and the medullary pacemaker nucleus in electric fish are
highly precise. For example, the daily onset of activity in certain
mammals and birds has a standard deviation (SD) of a few
minutes even in the absence of environmental information
(Enright, 1980). In addition, the electric organ discharge pattern
in certain electric fish has a standard deviation of as little as 0.02%
of the average period (Moortgat et al., 2000b).

Experiments by Clay and DeHaan (1979) provided an impor-
tant clue for understanding the mechanisms underlying precise
oscillations. They prepared clusters of cultivated cardiac cells,
ranging in size from 1 to � 100, and observed the beatings
of individual cells. They found that the SD of inter-beat
intervals decreases with the number of component cells in the
cluster (N) roughly as SDp1=

ffiffiffiffi
N
p

. Therefore, precision in
individual cell oscillations is enhanced as the number of cells
increases. Note that this scaling, which is reminiscent of the
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central limit theorem, is not at all trivial. This is because
oscillators are synchronized and thus strongly correlated, while
the central limit theorem is applicable to an ensemble of inde-
pendent elements.

The decrease in SD as N increases, the so-called collective
enhancement of temporal precision, has attracted considerable
attention (Enright, 1980; Winfree, 2001; Clay and DeHaan, 1979;
Moortgat et al., 2000a,b; Herzog et al., 2004; Kojima et al., 2006;
Sherman et al., 1988; Garcia-Ojalvo et al., 2004; Vasalou et al.,
2009; Rappel and Karma, 1996; Needleman et al., 2001; Ly and
Ermentrout, 2010; Tabareau et al., 2010). There is a large body of
experimental (Clay and DeHaan, 1979; Moortgat et al., 2000b;
Herzog et al., 2004; Kojima et al., 2006), numerical (Sherman
et al., 1988; Moortgat et al., 2000a; Garcia-Ojalvo et al., 2004;
Vasalou et al., 2009), and analytical (Rappel and Karma, 1996;
Needleman et al., 2001; Ly and Ermentrout, 2010; Tabareau et al.,
2010) studies. Theoretically, it has been shown that the average
activity of all oscillators on the all-to-all network (i.e., the
complete graph) obeys SDp1=

ffiffiffiffi
N
p

(Rappel and Karma, 1996;
Needleman et al., 2001). However, most analytical studies are
based on rather strong assumptions about coupling topology (e.g.,
all-to-all) or coupling mechanism (e.g., gap-junction type). More-
over, little is known about temporal precision in single cell
activity or ensemble activity for a subset of cells in an entire
network. Note that in the experiments by Clay and DeHaan
(1979), the behavior SDp1=

ffiffiffiffi
N
p

was found for single cells and
not for the entire network.

In this paper, we theoretically study the effect of cell-to-cell
communication on temporal precision. By using a phase oscillator
model and assuming full synchrony (i.e., all oscillators are
synchronized in frequency) and weak noise, we analytically
derive the dependence of temporal precision on various network
parameters, including size, connectivity, and coupling intensity.
Our framework allows us to handle directed and weighted net-
works as well as temporal precision in the activity of arbitrary
subsets of cells. Note that temporal precision is related to but
different from the stability of synchronization, which has been
extensively studied (Pecora and Carroll, 1998; Arenas et al., 2008).
Temporal precision is much less understood than the stability of
synchronization.

We treated a similar issue in our previous paper (Masuda et al.,
2010), where we analyzed long-time phase diffusion in coupled
oscillators. We show that temporal precision, which is based on
cycle-to-cycle periods, is associated with short-time phase diffu-
sion. Therefore, we here extend our previous analysis to the case
of an arbitrary time scale. This extension turns out to be crucial
for the understanding of the collective enhancement of temporal
precision particularly in the case of large system sizes or small
coupling strengths.

We begin by describing the numerical results for two biologi-
cal pacemaker models: network of the FitzHugh–Nagumo
oscillators and that of circadian oscillators. These models have
distinct oscillation and coupling mechanisms. For different
networks including all-to-all coupling, lattices with nearest-
neighbor coupling, and the random graph, we observe that
there is a common dependence of temporal precision on
network size N. The SD of cycle-to-cycle periods decreases as
1=

ffiffiffiffi
N
p

in small networks, but approaches an asymptotic value
as N increases. That is, there is a crossover. Then, we develop a
theory for obtaining an explicit expression for the SD of the
cycle-to-cycle period. In particular, we find the condition
for the behavior SDp1=

ffiffiffiffi
N
p

and the dependence of the
crossover point Nn on network parameters. We also
demonstrate the advantage of long-range interactions among
cells to temporal precision. Finally, we discuss the implications
of our theory.
2. Numerical results

First, we present the numerical results for two mathematical
models describing biological oscillations (see Appendix A for the
details of the models). We used FHN oscillators with gap-junction
coupling as a model of oscillatory cardiac or neural cells. We also
employed a previously proposed model for the SCN (i.e., a
population of circadian clock cells) (Locke et al., 2008), which is
referred to as the SCN model.
2.1. Regularization of oscillation

Fig. 1(a,c,e) and (b,d,f) presents the waveforms obtained
from the FHN and SCN models of different network sizes,
respectively. The average cycle-to-cycle periods are depicted by
dotted lines in each panel to illuminate the variations in cycle-to-
cycle periods. The properties of each constituent cell were
kept constant, while the connectivity between the cells is differ-
ent. Typical waveforms of uncoupled cells (N¼2) are shown in
Fig. 1(a,b). When the cells are coupled sufficiently strongly,
the system synchronizes stably (Fig. 1(c,d)). Fig. 1(c,d) indicates
that waveforms in the presence of coupling are regularized as
compared to the waveforms of isolated cells [Fig. 1(a,b)]. In
particular, the variation in the cycle-to-cycle period decreases.
When 100 oscillators are coupled [Fig. 1(e,f)], the variation
appears to be even smaller. When cells are coupled, individual
cell oscillations are not only synchronized but also regularized,
and the oscillation appears to be more regular for a larger
system size.
2.2. Limit to the enhancement of temporal precision

To quantify the dependence of temporal precision on network
parameters, we measured the coefficient of variation (CV), which
is the SD of the cycle-to-cycle period divided by the mean period.
A cycle-to-cycle period is defined by an interval Dt between two
successive passages of an observed variable (xi) across a specified
threshold value xth (Fig. 2). We set xth ¼ 0:4 and 2.0 for the FHN
and SCN models, respectively. We discard DtoTmin, where Tmin is
sufficiently smaller than a typical oscillation period, to exclude
noise-driven rapid threshold crossing. Specifically, we set
Tmin ¼ 50 and 15 in the FHN and SCN models, respectively. We
confirmed that our numerical results are insensitive to the choice
of Tmin values. The CV is defined as

CV¼
SD

t , ð1Þ

where t and SD are the mean and the SD of a series of Dt,
respectively.

Here we investigate the FHN model on networks of
different types and different sizes. We assume that the system
is composed of identical cells subjected to weak noise.
Fig. 3(a) shows the CV of individual cell oscillations in the
FHN model on the all-to-all network of size N. The results for
different coupling strength values, k, are plotted using different
symbols. We find that
(i)
 CV is proportional to 1=
ffiffiffiffi
N
p

for small N values for each k.

(ii)
 CV approaches a constant value for large N values for each k;

i.e., there is a crossover.

(iii)
 the crossover point Nn increases with k.
We observe similar behavior for the square lattice and the
random graph, as shown in Fig. 3(b) and (c), respectively.
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Fig. 2. Schematic illustration of the concept of cycle-to-cycle period.

FHN model SCN model

Fig. 1. Waveforms obtained from biological oscillator models. We present the time series of xi(t) of (a,b) two isolated cells (k¼ 0,N¼ 2Þ, (c,d) two coupled cells

(k40,N¼ 2Þ, and (e,f) two cells in 100 coupled cells (k40,N ¼ 100) in (a,c,e) the FHN model and (b,d,f) the SCN model. In (e), we employ the one-dimensional lattice with

an open boundary condition and show the waveforms of two neighboring cells. In (f), we employ the all-to-all network (Aij ¼ 1=N for 1r i,jrNÞ. We set r¼ 0:1 in all

panels and (a,b) k¼ 0, (c,e) k¼ 2, and (d,f) k¼ 1.
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2.3. Relationship between temporal precision and synchronization level

A natural question is whether the enhanced synchronization
induces the collective enhancement of temporal precision. To
examine this possibility, we measured the distance d between the
actual state and the in-phase state (see Appendix A for the
definition of d) for the all-to-all network. As shown in Fig. 3(d),
the level of synchrony is independent of N for each k value. We
also confirmed that, in the FHN model on a square lattice, d even
increases with N although the CV decreases (results not shown).
Thus, the enhancement of temporal precision by an increase in N

is not attributed to the improvement in synchronization.

2.4. Temporal precision for the ensemble activity

In nature, rhythmic output from a pacemaker organ is
usually generated by an ensemble of multiple cells. For example,
rhythmic electroactivity propagating within the heart is thought to
originate from cells on the surface of the sinoatrial node. The SCN
consists of various neural populations, and each population forms a
particular pattern of efferent projections to other parts of the brain
(Abrahamson and Moore, 2001). This anatomical fact suggests that
the SCN’s output is generated by a combination of a subset of neurons
rather than by the uniform average of the entire organ.

Therefore, we investigated the CV of the ensemble activity of a
subset of cells on the all-to-all network. The ensemble activity is
defined by the average waveform of M (1rMrN) cells:

XðtÞ ¼
1

M

XM
i ¼ 1

xiðtÞ, ð2Þ

where the measured ensemble is assumed to consist of oscillators
x1, . . . ,xM . The cycle-to-cycle period and the CV for the ensemble
activity are defined similar to the case of single cell activity
(Fig. 2). In Fig. 4, we present the CV measured for the average
waveform with different values of M in the FHN model on the all-
to-all network. For M smaller than N, properties (i)–(iii) listed
above are preserved. In addition, we find that
(iv)
 the crossover point Nn increases with ensemble size M,ffiffiffiffip

(v)
 for M¼N, the CV is proportional to 1= N for any N; i.e., there

is no crossover.
We also confirmed that the same properties hold true for the FHN
model on two-dimensional lattices and for the SCN model on the
all-to-all network and the two-dimensional lattice.
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Fig. 3. CV for single cell oscillations and synchronization distance d in the FHN

model. (a,b,c) CV values for single cell oscillations on (a) the all-to-all network,

(b) the square lattice, and (c) the undirected random graph of size N. (d) Distance d
from in-phase synchrony in the all-to-all network. In (a) and (d), we set Aij ¼ 1=N

for 1r i,jrN. In (b), the CV of the oscillator at the center of the square lattice with

an open boundary condition is presented. We set Aij ¼ 1=4 with cell j adjacent to

cell i and Aij ¼ 0 otherwise. In (c), the CV value at given k and N values is defined as

/CViS�
PN

i ¼ 1 CVi=N for a single realization of the network. We set Aij ¼ Aji ¼ 1=8

with probability p¼ 8=N (1r io jrNÞ, and Aij ¼ 0 otherwise. The lines are guides

to the eyes. We considered identical cells and weak noise (r¼ 0:01Þ. The average

period t is almost constant ðt� 177Þ irrespective of N and k.
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Fig. 5. CV for biological models composed of heterogeneous cells subjected to
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square lattice. We set r¼ 0:09. (b) CV for the ensemble activity of M cells in the

SCN model on the all-to-all network. We set r¼ 0:04 and K¼12. The all-to-all

network and the square lattice are the same as those in Fig. 3(a) and (b),

respectively. The lines are guides to the eyes.
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2.5. Case of strong noise and heterogeneity

So far, we have assumed an ideal case: identical oscillators and
weak noise. To simulate more realistic situations, we now con-
sider networks composed of heterogeneous cells subjected to
relatively strong noise. As examples, we measure the CV for the
FHN model on the square lattice and for the SCN model on the all-
to-all network (Fig. 5). In the FHN model, we made one of the
parameter values heterogeneous in order to obtain the
distribution of natural periods of cells as ti � 13373
(mean7SDÞ. In the SCN model, the time scales of the cells were
made heterogeneous such that ti � 23:471:2. The latter situation
is consistent with the experimental observation by Honma et al.
(1998). In all cases, we apply sufficiently strong coupling to
ensure that the oscillators are well synchronized. Under this
condition, as seen in Fig. 5, all properties (i)–(v) hold true.

3. Theory

We found, numerically that properties (i)–(v) hold true in
various situations. In the following, we develop a theory for
relating temporal precision to network parameters by assuming
weak coupling and weak noise. Under this assumption, a large
class of oscillator systems including the models considered above
are reduced to the phase model (see Appendix B and Winfree,
1967; Kuramoto, 1984) given by

_fiðtÞ ¼oiþk
XN

j ¼ 1

Aijf ðfj�fiÞþ
ffiffiffiffi
D
p

xiðtÞ, ð3Þ

where fi and oi ð1r irNÞ are the phase and intrinsic frequency
of the ith oscillator, respectively; A¼ ðAijÞ is the weighted
adjacency matrix with its element Aij equal to the intensity of
the coupling from the jth to ith oscillators; k is the overall
coupling intensity; f ð�Þ is a 2p–periodic function; xiðtÞ is indepen-
dent white Gaussian noise with E½xiðtÞ� ¼ 0 and E½xiðtÞxjðt

0Þ�

¼ dijdðt�t0Þ, where E represents the expectation; and D is the
strength of the noise. The adjacency matrix A is allowed to be
asymmetric, weighted, and to possess negative components.
Extension of the following results in the case of i,j-dependent
coupling function f ijð�Þ and i-dependent noise strength Di is
straightforward. For clarity of the presentation, we focus on
Eq. (3). We assume that all the oscillators are synchronized in
frequency; i.e., all the oscillators have the actual frequency O
owing to the effect of coupling. Synchronization usually occurs
when coupling is sufficiently strong compared to noise and
heterogeneity in oi.

One oscillation cycle corresponds to an increase in the phase
by 2p. More precisely, the kth cycle-to-cycle period of the ith
oscillator is defined by DtðkÞi ¼ tðkÞi �tðk�1Þ

i , where tðkÞi is the first
passage time for fiðtÞ to exceed 2kp (Fig. 6). Because we assumed
that all the oscillators are synchronized to O, the expected value
of DtðkÞi (t) is independent of i and is given as

t� E½DtðkÞi � ¼
2p
O

, ð4Þ
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Green trajectories represent different realizations of the phase fiðtÞ of a single

oscillator in (a) uncoupled and (b) coupled cases, where we set fið0Þ ¼ 0. The red

curves on the top of each panel represent distribution function Pt(t) obtained from

the first passage time of fiðtÞ ¼ 2p in different realizations. Our concern is its

standard deviation, SDi ¼ std½Dti�. The blue curves on the right of each panel

represent distribution function PfðfiÞ obtained from different realizations of fiðtÞ,
where t is the mean period, and its standard deviation is denoted by std½Dfi�. We

approximate std½Dti� using std½Dfi�. Suppose that PtðtÞdt¼ PfðfiÞdfi. On average,

the phase crosses 2p with slope 2p=t, i.e., dfi=dt¼ 2p=t. We thus obtain Eq. (7).

For uncoupled oscillators (k¼ 0Þ, our model corresponds to the Wiener process

with a constant drift. In this case, Eq. (7) is exact, and we obtain

ð2p=tÞstd½Dti� ¼ std½Df� ¼
ffiffiffiffiffiffi
Dt
p

(Gerstner and Kistler, 2002). We also know that

Eq. (7) is asymptotically exact in the one-dimensional Ornstein–Uhlenbeck

process for weak noise (Gerstner and Kistler, 2002). For coupled oscillators

ðk40Þ, however, our model (3) is a multivariate Ornstein–Uhlenbeck process

when linearized. Even in this case, as is numerically confirmed in the examples

shown in Figs. 8–11, Eq. (7) provides a suitable approximation.
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where the statistical averages are taken over different k values.
The temporal precision of the ith oscillator is characterized by

SDi � std½Dti� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½Dti�

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðDtðkÞi �tÞ

2
�

q
: ð5Þ

The CV for the ith oscillator is equal to

CVi �
SDi

t
: ð6Þ

To obtain the dependence of SDi on network parameters, we
employ an approximation given by

2p
t

std½Dti� � std½Dfi�, ð7Þ

where Dfi �fiðtþtÞ�fiðtÞ�2p (Fig. 7). For an isolated oscillator
obeying _f i ¼oiþ

ffiffiffiffi
D
p

xiðtÞ, one immediately finds that
var½Dfi� ¼Dti, where ti ¼ 2p=oi. When oscillators are coupled
and synchronized with frequency O, we write

var½Dfi� ¼ miDt: ð8Þ
We refer to mi as the noise scaling factor of the ith oscillator
(Fig. 7). By combining Eqs. (5), (7) and (8), we have

SDi �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt3mi

p
2p : ð9Þ

To obtain an expression for mi, we assume that noise is
sufficiently weak and linearize Eq. (3) around the synchronized
state. The synchronized solution fs

i ðtÞ ð1r irNÞ is represented as

fs
i ðtÞ ¼Otþci, ð10Þ

where O and ci are the constants derived by setting _f i ¼O and
D¼0 in Eq. (3); i.e.,

O¼oiþk
XN

j ¼ 1

Aijf ðcj�ciÞ: ð11Þ

By introducing a small deviation

yiðtÞ ¼fiðtÞ�f
s
i ðtÞ, ð12Þ

we obtain

_yiðtÞ ¼ k
XN

j ¼ 1

wijðyj�yiÞþ
ffiffiffiffi
D
p

xiðtÞ, ð13Þ

where wij ¼ Aijf
0
ðcj�ciÞ is the effective coupling weight. For

convenience, we rewrite Eq. (13) as

_yiðtÞ ¼�k
XN

j ¼ 1

Lijyjþ
ffiffiffiffi
D
p

xiðtÞ, ð14Þ

where L¼ ðLijÞ is the Jacobian matrix with its element Lij given by

Lij ¼

�wij for ia j,P
i0a i

wii0 for i¼ j:

8<
: ð15Þ

Note that L has a zero eigenvalue with the corresponding right
eigenvector

uð1Þ ¼
1ffiffiffiffi
N
p ð1, . . . ,1Þ>: ð16Þ

Furthermore, because of the assumption of the stability of the
synchronized state, the real parts of the other N�1 eigenvalues of
L are positive, i.e., 0� l1oRe l2r � � �rRe lN . The assumption of
the stability holds true when wijZ0 (1r i,jrN) and the network
described by the adjacency matrix ðwijÞ is strongly connected
(Ermentrout, 1992; Agaev and Chebotarev, 2000; Arenas et al.,
2008). For more general cases, the stability condition is nontrivial.

For in-phase synchrony (i.e., ci ¼ 0 for 1r irN in Eq. (10)),
which occurs when the heterogeneity in the network and in
individual oscillators is sufficiently small and/or the coupling is
sufficiently strong, we obtain wijpAij for 1r i,jrN. In this case, L

is the network Laplacian generalized for a directed and weighted
network (Newman, 2010), given by

Lijp

�Aij for ia j,P
i0a i

Aii0 for i¼ j:

8<
: ð17Þ

Note that L is symmetric when the adjacency matrix A is
symmetric.

As shown in Appendix C, for any diagonalizable matrix L, we
obtain mi ¼ Cii, where

Cij �
E½ðyiðtþtÞ�yiðtÞÞðyjðtþtÞ�yjðtÞÞ�

Dt

¼
V11

N
þ

XN

m,nðmþn42Þ

2�e�klmt�e�klnt

kðlmþlnÞt
VmnuðmÞi uðnÞj : ð18Þ

Here uðnÞ ¼ ðuðnÞi Þ and vðnÞ are, respectively, the right and left
eigenvectors of L that satisfy the orthogonality and normalization
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conditions; i.e., LuðnÞ ¼ lnuðnÞ, vðnÞL¼ lnvðnÞ, and vðmÞuðnÞ ¼ dmn; and
Vmn ¼ vðmÞ � vðnÞ.

For symmetric L, which is the case for in-phase synchrony on
undirected networks, Eq. (18) becomes much simpler. Because all
the eigenvalues are real, uðnÞ ¼ vðnÞ>, Vmn ¼ uðmÞ � uðnÞ ¼ dmn for
1rm,nrN, and

PN
i ¼ 1 uðnÞi puð1Þ � uðnÞ ¼ 0 for nZ2, we obtain

mi ¼
1

N
þ
XN

n ¼ 2

1�e�klnt

klnt
uðnÞi uðnÞi : ð19Þ

Moreover, because of the normalization condition,
PN

i ¼ 1 uðnÞi uðnÞi

¼ 1, the mean of mi over the entire network, /mS¼
PN

i ¼ 1 mi=N, is
independent of the eigenvectors and is given by

/mS¼ 1

N
þ

1

N

XN

n ¼ 2

1�e�klnt

klnt
: ð20Þ

Note that the first term on the right-hand side of Eqs. (19) and
(20) is associated with the eigenvector corresponding to a homo-
geneous phase shift given by Eq. (16), which is the perturbation
along the synchronized state. The second term on the right-hand
side of Eqs. (19) and (20) is associated with the eigenvectors
transverse to the synchronized state.

3.1. Dependence of the crossover point Nn on coupling strength k

Henceforth, we assume that t is independent of k and N. We
also assume that L is symmetric in this subsection. If the
eigenvalue spectrum converges to a certain density function
qðlÞ as N-1, the second term on the right-hand size of
Eq. (20) also converges:

1

N

XN

n ¼ 2

1�e�klnt

klnt
-m1 �

Z 1
0

qðlÞ
1�e�klt

klt dl ðN-1Þ: ð21Þ

In Section 3.4, we will demonstrate that the convergence occurs
in the all-to-all and ring networks. Spectra of finite dimensional
lattices (Mohar, 1991), uncorrelated random graphs with arbi-
trary degree distributions (Samukhin et al., 2008), and the small-
world network with a fixed expected degree (Monasson, 1999)
also converge. In such networks, the N-dependence of the second
term on the right-hand size of Eq. (20) is not strong. We thus
approximate

/mS� 1

N
þm1: ð22Þ

By equating the first and second terms in Eq. (22), we estimate
the crossover point as Nn

� 1=m1. For N5Nn, the first term
dominates, so that the SD, which is proportional to

ffiffiffiffiffimi
p

(see
Eq. (9)), decreases proportionally to 1=

ffiffiffiffi
N
p

. For NbNn, the SD is
approximately constant.

Since m1 monotonically decreases with increasing k, Nn

increases with k. Furthermore, if the second smallest eigenvalue
l2 is nonvanishing in the limit N-1 (which is the case, for
example, in the all-to-all network and various random networks
including small-world networks Monasson, 1999; Samukhin
et al., 2008) and k is so large that e�kl2t51, we can neglect
e�klnt in the numerator of m1 in Eq. (21) to obtain m1p1=k. Then,
the crossover point scales as

Nn
pk: ð23Þ

3.2. Dependence of the crossover point Nn on ensemble size M

By assuming in-phase synchrony, we calculate the scaling
factor of the noise reduction for the ensemble activity of an
arbitrary set of oscillators. We rearrange the oscillator indices and
write the ensemble activity as

XðtÞ ¼
XM
i ¼ 1

zixiðtÞ, ð24Þ

where ziZ0 is an arbitrary constant with the normalization
condition

PM
i ¼ 1 zi ¼ 1. When the deviation yi from in-phase

synchrony (i.e., ci ¼ 0 for 1r irN in Eq. (10)) is small for each
oscillator, the phase of X(t) is approximated by

FðtÞ ¼
XM
i ¼ 1

zifiðtÞ ¼Otþ
XM
i ¼ 1

ziyiðtÞ: ð25Þ

Then, similar to the case of individual cell oscillations, we define
the scaling factor mF for the ensemble activity as

var½DF� ¼ mFDt, ð26Þ

where DF¼FðtþtÞ�FðtÞ�2p. We then obtain

mF ¼
var½DF�

Dt ¼
XM

i,j ¼ 1

zizj

E½ðyiðtþtÞ�yiðtÞÞðyjðtþtÞ�yjðtÞÞ�

Dt

¼
XM

i,j ¼ 1

zizjCij: ð27Þ

Henceforth, we assume zi ¼ 1=M for 1r irM, as is the case in
Figs. 4 and 5(b).

There are notable properties for symmetric L (see Appendix D).
When M¼N (i.e., X(t) is the mean activity of the entire network),
we obtain

mF ¼
1

N
, ð28Þ

that is, there is no crossover. For MoN, mF generally depends on
the choice of M oscillators. However, if we randomly choose M

oscillators out of N oscillators, where 15M5N, we estimate

mF �
1

N
þ

1

MN

XN

n ¼ 2

1�e�klnt

klnt
�

1

N
þ
m1
M

: ð29Þ

In this case, the lower bound of the SD is inversely proportional toffiffiffiffiffi
M
p

and the crossover point increases as

Nn
pM: ð30Þ

As shown later, this estimation is asymptotically exact for the
all-to-all network.

3.3. Remarks on directed networks

The behavior CVp1=
ffiffiffiffi
N
p

is obtained for NoNn when the
Jacobian L is symmetric, which is the case when a network is
undirected and the oscillators are synchronized in phase. We refer
to this situation as ‘‘democratic’’ because symmetric L implies
that the action and reaction between any two nodes are balanced.

For asymmetric L, Eq. (18) implies that the SD at small N values

decreases as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V11=N

p
instead of 1=

ffiffiffiffi
N
p

. In Masuda et al. (2010), we

analyzed the long-time diffusion property of Eq. (3) to obtain

s2 � limDt-1var½yiðtþDtÞ�yiðtÞ�=ðDDtÞ ¼ V11=N through a differ-
ent technique. This previous result is consistent with that

obtained in the present paper because s2 corresponds to phase
diffusion after infinitely many cycles, and the second term on the
right-hand side of Eq. (18) vanishes with this limit. Furthermore,

we showed in Masuda et al. (2010) that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V11=N

p
is larger than or

equal to 1=
ffiffiffiffi
N
p

for asymmetric L. For example, in directed scale-
free networks, which is a strongly heterogeneous network,

we obtained
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V11=N

p
pN�b with 0rbr1=2; the effect of collec-

tive enhancement is significantly weaker. Moreover, the

scaling
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V11=N

p
¼N�1=2 can be violated even when a network is
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undirected. This is the case when the synchronized state is not
in-phase but accompanies a wave pattern. Wave patterns arise
when the network is spatially extended (such as Euclidean
lattices) and the natural frequency is sufficiently heterogeneous
(Kuramoto, 1984; Blasius and Tönjes, 2005). In this case, V11=N

decreases with N for small N values but approaches a constant
value for large N values. Thus, strongly asymmetric connectivity
and/or strong heterogeneity in the oscillator’s properties can
hamper the collective enhancement of temporal precision.
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Fig. 9. Normalized CV in phase oscillators on the all-to-all network. (a) CV for

individual cells (M¼1) for various k and N values. (b) CV for ensemble activity for

various M values with k¼ 0:5. Symbols represent numerical data. Solid lines

represent (a)
ffiffiffiffiffimi
p

given by Eq. (33) and (b)
ffiffiffiffiffiffiffimF
p

given by Eq. (34).
3.4. Examples and numerical verification

To demonstrate and numerically confirm our analytical
results, we investigate the phase model (Eq. (3)) on several
networks. In numerical simulations, we set oi ¼ 1, f ðfÞ ¼ sin f,
and

ffiffiffiffi
D
p
¼ 0:01 in Eq. (3). In the example networks, all the

oscillators synchronize in phase in the absence of noise. Thus,
wij ¼ Aij and O¼o for any coupling strength k and any N. Note
that the dependence of the CV on k and N is only through the SD
because t¼ 2p=o is constant. In the following, we show the
values of the normalized CV that is actual CV values divided by
the CV of isolated oscillators, shown as

ffiffiffiffiffiffi
Dt
p

=2p. Our theory
predicts that CVi �

ffiffiffiffiffimi
p

and CVF �
ffiffiffiffiffiffiffimF
p

.
Two asymmetrically coupled elements: The first example is two

asymmetrically coupled elements (N¼2): w12 ¼ p and w21 ¼ 1�p

(Fig. 8). In this case, we have l1 ¼ 0,l2 ¼� 1, uð1Þ ¼ ð1=
ffiffiffi
2
p
Þ ð1,1Þ>,

vð1Þ ¼
ffiffiffi
2
p
ðp,1�pÞ,uð2Þ ¼

ffiffiffi
2
p
ð1�p,�pÞ>, and vð2Þ ¼ ð1=

ffiffiffi
2
p
Þð1,�1Þ. By

substituting them in Eqs. (18) and (27) for M¼2 and setting
z1 ¼ z2 ¼ 1=2, we obtain

m1 ¼ m2 ¼
V11

2
þ 1�

V11

2

� �
1�e�kt

kt , ð31Þ

mF ¼
V11

2
þ

1

2
�

V11

2

� �
1�e�kt

kt
, ð32Þ

where V11 ¼ 2p2þ2ð1�pÞ2. For any k and t values, the best
precision is obtained in the symmetric case (p¼0.5). Fig. 8
suggests that the analytical and numerical results are in strong
agreement.

All-to-all coupling: The second example is all-to-all coupling;
i.e., wij ¼ 1=N for 1r i,jrN. The eigenvalues are given by ln ¼ 1
(2rnrNÞ. Because all the nodes are equivalent (i.e., permutation
symmetry), we obtain mi ¼/mS. Then, from Eq. (20), it follows
that

mi ¼
1

N
þ 1�

1

N

� �
1�e�kt

kt
: ð33Þ
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Fig. 8. Normalized CV versus coupling strength in asymmetrically coupled phase

oscillators (N¼2). Presented is the normalized CV, i.e., CVi=ð
ffiffiffiffiffiffi
Dt
p

=2pÞ ði¼ 1;2Þ and

CVF=ð
ffiffiffiffiffiffi
Dt
p

=2pÞ for two coupled phase oscillators with (a) p¼0.5 and (b) p¼0.2.

Numerical results are shown by symbols. The solid and dotted lines represent the

analytical results given by Eqs. (31) and (32), respectively. Note that

V11 ¼ 2p2þ2ð1�pÞ2 ¼ 1 for p¼0.5 and V11 ¼ 1:36 for p¼0.2.
We also obtain a concise form for mF (see Appendix E), given by

mF ¼
1

N
þ

1

M
�

1

N

� �
1�e�kt

kt : ð34Þ

We denote the CV value at N¼Nn by CVn. By equating the first
and second terms on the right-hand side in Eq. (34) and assuming
M5N and e�kt51, we obtain

Nn
� ktM, CVn

p
1ffiffiffiffiffiffiffiffiffiffiffi
ktM
p : ð35Þ

Fig. 9 shows the analytical and numerical results. Note that in
Figs. 4 and 5(b), the lower bounds are roughly proportional to
1=

ffiffiffiffiffi
M
p

, as our theory predicts.
Ring: The third example is the ring of size N, i.e.,

wi,iþ1 ¼wi,i�1 ¼ 1=2 for 1r irN and wi,j ¼ 0 for ja i�1,iþ1, as
an example of spatially extended systems. For this network, we
obtain

ln ¼ 1�cos
2ðn�1Þp

N

� �
ð36Þ

for 1rnrN. Because L is symmetric and the network has
permutation symmetry, we obtain mi ¼/mS where /mS is given
by Eqs. (20) and (36). Fig. 10 shows the analytical and numerical
results. Although each cell is adjacent to just two cells for any
NZ3, there is a clear N-dependence of the CV for individual cells.
Temporal precision is not simply determined by local connectivity.

The lower bound of the CV for the ring is considerably larger
than that for the all-to-all network (Figs. 9(a) and 10). The reason
for this is as follows. The Laplacian of the ring for a large N value
has negligible eigenvalues (i.e., ln for n� 0 and n�N in Eq. (36)),
and these eigenvalues significantly enlarge the second term of
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Eq. (20). In contrast, there is a nonvanishing spectrum gap (i.e.,
the second smallest eigenvalue l2) in the all-to-all and various
random networks (Monasson, 1999; Samukhin et al., 2008). In the
FHN model, we observed a similar difference between the cases of
the square lattice (Fig. 3(b)) and the all-to-all and random
networks (Fig. 3(a) and (c), respectively). This is also because
the square lattice has negligible eigenvalues (Mohar, 1991). Such
small eigenvalues are associated with slow synchronization of
remote oscillators owing to a time lag in communication, and this
property is shared by any spatially extended networks with local
interaction. Therefore, spatial networks with only local interac-
tion are disadvantageous to temporal precision.

Small-world networks: By using a type of the Watts–Strogatz
model (Newman, 2000; Newman et al., 2000) of fixed size N, we
demonstrate that a small fraction of long-range interactions
added to the ring drastically improves temporal precision. We
generate a network by adding pN bidirectional shortcuts sequen-
tially to the ring, where p is the shortcut density. Under the
condition that multiple links are avoided, the two endpoints of
each shortcut are chosen from the N nodes with equal probability.
The generated network is undirected. To maintain the total
coupling strength independent of p, we set wij ¼wji ¼ 1=ð2þ2pÞ

for all links. The ring and all-to-all networks are obtained at p¼0
and p¼N=2�1, respectively. Fig. 11 shows the numerically
obtained /CVS for each p, where /CVS�

PN
i ¼ 1 CVi=N for a

single realization of the network. The lines represent
ffiffiffiffiffiffiffiffiffiffiffi
/mS

p
obtained from Eq. (20), where we numerically computed the
eigenvalues ln for the generated network. We set the coupling
strength such that /mSb1=N (i.e., NbNn) for the initial ring
(p¼0).

Fig. 11 indicates that temporal precision is considerably
improved at p� 1, i.e., when O(N) shortcuts are added (the
small-world regime). Moreover, the corresponding CV value is
close to that of the all-to-all network, in which OðN2

Þ ‘‘shortcuts’’
exist. As discussed above, there are small eigenvalues that
hamper temporal precision in spatially extended networks. Such
small eigenvalues do not exist in networks with a sufficient
number of shortcuts because of rapid communication between
any pair of oscillators.

3.5. Mechanism of the crossover

We demonstrated using various models that the crossover
generally occurs in the collective enhancement. On the basis of
our theory, the crossover can be interpreted as follows. When
Jacobian L is symmetric, the SD for the mean phase decreases as
1=

ffiffiffiffi
N
p

for any N (Eq. (28)). When coupling strength k is infinite,
the oscillators are completely synchronized in phase. Then, the
phase of each oscillator is identical with the mean phase, and so is
the SD, i.e., SDip1=

ffiffiffiffi
N
p

for any N. This behavior is expressed in the
first term on the right-hand side of Eq. (19). However, for finite k,
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Fig. 11. Normalized CV for individual cells in phase oscillators on the variant of
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i ¼ 1 CVi=N. Lines represent
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given by Eq. (19). We set N¼400.
individual oscillators’ phases fluctuate around the mean phase
because of the independent noise applied to the oscillators.
Owing to this additional fluctuation, the SD for individual oscilla-
tors is larger than that for the mean phase, as expressed in the
second term on the right-hand side of Eq. (19). Although the
fluctuation in the mean phase vanishes with the limit N-1, it
remains finite in individual oscillators. This is the origin of the
lower bound.

In our previous paper (Masuda et al., 2010), with Eq. (3), we
analyzed phase diffusion after infinitely many cycles. There, we
neglected the second term on the right-hand side of Eq. (18)
because we assumed that l2 is nonvanishing and a period of
infinitely many cycles corresponds to t-1. In contrast, the
temporal precision defined in the present paper is based on
cycle-to-cycle periods, so that we need to consider finite t. The
second term can be comparable to or even larger than the first
term for large N or small k values. Particularly in these cases, our
extension from the previous paper (Masuda et al., 2010) is crucial
for the understanding of temporal precision. It should also be
noted that our theory in the present paper can be applied to the
case of infinitely small l2, as is the case in, e.g., the ring with large
N values (see Eq. (36)).

3.6. Relation between synchrony and temporal precision

With the example shown in Fig. 3(d), we demonstrated that
temporal precision is enhanced as N increases while the level of
synchrony is unchanged (Fig. 3(d)). This example implies that
synchrony and temporal precision are distinct properties of
oscillator networks.

The level of synchrony is estimated by the proximity of the
state in the phase to the synchronized state. The level of
synchrony generally increases with eigenvalues kln ðnZ2Þ
because then the synchronized state is more strongly attracting.
The noise scaling factor for symmetric L has the same tendency;
i.e., the second term of the right-hand side in Eq. (20) also
decreases with eigenvalues kln ðnZ2Þ. However, the first term
in Eq. (20) depends only on N and has nothing to do with the level
of synchrony, as is obvious from the fact that this term is
independent of coupling strength k. This term makes temporal
precision distinct from synchrony.
4. Discussion and conclusions

We found that the collective enhancement is ineffective for
system size N above the crossover point Nn. We further showed
that Nn increases with coupling strength (Eq. (23)). Therefore, as
oscillators are more strongly coupled, the behavior CVp1=

ffiffiffiffi
N
p

persists up to a larger N value. This is the case for different
oscillation and coupling mechanisms, as demonstrated in the two
biological models (the FHN and SCN models) and the phase
oscillator model. Moreover, this behavior also holds true for
different network connectivities, as demonstrated using the ring,
the square lattice, the all-to-all network, and the random graph.

Our theory is useful for inferring the magnitude of fluctuations
in individual cells and the coupling strength between cells.
Suppose that temporal precision in a pacemaker tissue that is
genetically modified or subjected to a treatment (e.g., drug) is
lower than that in an intact tissue. If the cells in the tissue are
well synchronized in both cases, one may consider that the
treatment affects the oscillation mechanism of individual cells.
Our theory suggests another possibility: a decrease in the cou-
pling strength, not the alteration in the oscillation property of
individual cells, may be the reason for the reduced temporal
precision (Fig. 3(a,b,c)). By observing reduced temporal precision
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only, we cannot distinguish these two possibilities. However, our
theory makes it possible to individually quantify the effects of the
treatment on the two properties if we can observe cell networks
of different sizes. By observing temporal precision in small (i.e.,
NoNn) tissues of different sizes, we can infer the magnitude of
fluctuations in individual cells by fitting the law CVp1=

ffiffiffiffi
N
p

.
Furthermore, by observing relatively large tissues and determin-
ing Nn values for different treatments (e.g., different days of
cultivation, different concentrations of a drug, treated versus
untreated), we can infer changes in the coupling strength induced
by the treatment because Nn increases with the coupling strength
(Eq. (23)).

Our study also indicates that long-range interactions among
cells are advantageous to temporal precision. As demonstrated in
Fig. 11, the addition of shortcut links considerably decreases the
CV. A similar result was reported in a previous numerical study
using a more realistic model for the SCN (Vasalou et al., 2009).
This result might underlie an evolutionary origin of dense fibers
across the SCN (Abrahamson and Moore, 2001).

Our theoretical results provide an interpretation of previous
experiments on cardiac and circadian oscillations. Kojima et al.
(2006) observed a decrease in the CV with increasing cell number
in cultivated cardiac cells coupled via micro channels. They
showed that the CV decreases considerably with N for small N

values (N¼1,2,3), while it is almost constant for NZ4. In contrast,
in cultivated cardiac cells that are directly and tightly coupled to
each other, Clay and DeHaan (1979) found that the reduction in
the CV roughly obeys CVp1=

ffiffiffiffi
N
p

up to N� 100. Although the cells
are kept synchronized in both cases, the behavior of temporal
precision is different. This discrepancy may be due to a difference
in coupling strength. While the coupling was strong enough to
guarantee synchrony in both cases, coupling in the latter experi-
ments may be stronger than that in the former experiments,
resulting in Nn

� 4 and Nn4100, respectively. It would be of great
interest to investigate systematically how the crossover point
increases with coupling strength, possibly controlled by the width
of the micro channel implemented in the former experiments
(Kojima et al., 2006).

Collective enhancement has been examined experimentally in
circadian oscillation as well. Herzog et al. (2004) measured
temporal precision in SCN cells. There, individual cell oscillations
in both synchronized and unsynchronized cases were observed in
slice cultures of SCN and dispersed SCN cells, respectively. They
found that the SD in the former (0.42 h) was approximately five
times smaller than that in the latter (2.1 h), and argued that the
collective enhancement of temporal precision occurs in synchro-
nized cells. They further speculated that, under the assumption
SD� 1=

ffiffiffiffi
N
p

, only 25 cells out of the order of 105 cells composing
the SCN are involved in the collective enhancement of temporal
precision in the explant SCN.

We interpret this experimental result as follows. In the SCN, a
wave pattern is observed (Yamaguchi et al., 2003; Doi et al.,
2011). As indicated above as well as in our previous paper
(Masuda et al., 2010), the law SDp1=

ffiffiffiffi
N
p

is violated in the
presence of a wave pattern even if the coupling is sufficiently
strong. Roughly speaking, the reason for this is that only the cells
forming the source of the wave pattern can contribute to the
collective enhancement of temporal precision, and other cells
simply obey those cells (Masuda et al., 2010). The number of cells
forming the source might be of the order of 25. Cells located
downstream of the wave may contribute to functions other than
temporal precision.

In our theoretical approach, we assumed that all oscillators are
synchronized in frequency. We expect that this is a reasonable
approximation for biological systems. For example, in the slice
culture of the SCN, most of observed cells appear to be well
synchronized in frequency (Yamaguchi et al., 2003; Doi et al.,
2011). In the heart, most cells are thought to be synchronized in
frequency because otherwise spiral waves may arise and those
waves are associated with pathological behavior such as tachy-
cardia and fibrillation (Winfree, 2001).

Our approach can not be applied to the case of partial
synchronization, where a large number of oscillators are not
synchronized in frequency. It is of great interest to extend our
theory to partial synchronization. However, an established analy-
tical method to treat partial synchronization works only for the
all-to-all network of infinite system size (Ott and Antonsen, 2008,
2009; Kawamura et al., 2010), while we are concerned with
general networks of finite system size. Therefore, we leave it as
an open problem.

Our theory is widely applicable to frequency-synchronized
oscillators with weak noise and weak coupling. Our theory can
also apply to the case of the coexistence of multiple coupling
mechanisms, only by replacing coupling function f by fij in the
phase model (Eq. (3)). Although the phase model is not justified
when the assumption of weak noise and weak coupling is
violated, we have numerically confirmed that our main finding,
i.e., the properties (i)–(v), are preserved in the case of strong
coupling and strong noise (Fig. 5). We thus expect that our theory,
based on the phase model, captures the essence of the collective
enhancement of temporal precision.
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Appendix A. Definition of models and networks

We consider two systems—the FHN model and the SCN model
representing the cardiac pacemaker organ and the circadian
master clock, respectively.

The FHN model has been extensively used as a model of
neurons and cardiac cells (Keener and Sneyd, 1998). Our FHN
model is given by

dxi

dt
¼ xiða�xiÞðxi�1Þ�yiþrxiðtÞþk

XN

j ¼ 1

Aijðxj�xiÞ, ð37aÞ

dyi

dt
¼ Eðxi�byiþcÞ, ð37bÞ

where a,b,c,E are the model parameters, r is the noise strength,
xiðtÞ is white Gaussian noise with E½xiðtÞ� ¼ 0 and
E½xiðtÞxjðt

0Þ� ¼ dijdðt�t0Þ. We chose parameter values such that each
unit is autonomous oscillator. In Figs. 1, 3 and 4, we set
a¼ 0:1,E¼ 0:01,b¼ 0:5, and c¼0.05. In Fig. 5(a), we replace c with
ci ¼ 0:1þ0:02ni (1r irNÞ, where ni is a random variable inde-
pendently taken from the Gaussian distribution with zero mean
and unit variance. We varied the noise strength and coupling
strength, as specified in the figures and their captions. The
distance d from the in-phase state is defined as

d¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1

XN

i ¼ 1

ðxi�xÞ2

vuut , ð38Þ

where x ¼
PN

i ¼ 1 xi=N.
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As the SCN model, we employed a previously proposed model
(Locke et al., 2008), given by

dxi

dt
¼ Ti V1

Kn
1

Kn
1þzn

i

�V2
xi

K2þxi
þVc

kFi

KcþkFi

 !
þrxðxÞi , ð39aÞ

dyi

dt
¼ Ti k3xi�V4

yi

K4þyi

� �
þrxðyÞi , ð39bÞ

dzi

dt
¼ Ti k5yi�V6

zi

K6þzi

� �
þrxðzÞi , ð39cÞ

dri

dt
¼ Ti k7xi�V8

ri

K8þri

� �
þrxðrÞi , ð39dÞ

Fi ¼
XN

j ¼ 1

Aijrj, ð39eÞ

where V1 ¼ 6:8355, n¼5.6645, K1 ¼ 2:7266, K2 ¼ 0:2910, k3 ¼

0:1177, V4 ¼ 1:0841, K4 ¼ 8:1343, k5 ¼ 0:3352, V6 ¼ 4:6645,
K6 ¼ 9:9849, k7 ¼ 0:2282, V8 ¼ 3:5216, K8 ¼ 7:4519, Vc ¼ 6:7924,
Kc ¼ 4:8283, k¼ 12:0, and V2¼12.0. All parameter values except
for k and V2 are taken from (Locke et al., 2008). Time constant Ti is
introduced to express heterogeneity in the oscillation period. We
set Ti¼1 in Fig. 1. In Fig. 5(b), Ti ¼ 1þ0:05ni with ni independently
obeying the Gaussian distribution with zero mean and unit
variance. The functions xðzÞi ðtÞ (z¼ x,y,z,r) represent white Gaus-
sian noise processes with E½xðzÞi ðtÞ� ¼ 0 and E½xðzÞi ðtÞx

ðZÞ
j ðt

0Þ� ¼

dijdzZdðt�t0Þ. The noise strength r and coupling strength k are
specified in the figures and their captions.

In both models, we applied sufficiently strong coupling to
ensure that the oscillators were synchronized nearly in phase.
When we computed the CV, we assumed random initial condi-
tions and measured a sufficiently large number of cycle-to-cycle
periods after the transient.

The all-to-all network used in Figs. 1(b,d,f), 3(a,d), 4, 5(b) and 9 is
defined by Aij ¼ 1=N for 1r i,jrN. The one-dimensional lattice with
an open boundary condition used in Fig. 1(e) is defined by Aij ¼ 1=2
for 1r irN and 1r j¼ i71rN, and Aij ¼ 0 otherwise. The ring
used in Fig. 10 is the same as the one-dimensional lattice except that
we impose a periodic boundary condition A1,N ¼ AN,1 ¼ 1=2. The
square lattice with an open boundary condition used in Figs. 3(b) and
5(a) is defined by Aij ¼ 1=4 with cell j adjacent to i for 1r i,jr

ffiffiffiffi
N
p

and Aij ¼ 0 otherwise. The undirected random graph used in
Fig. 3(c) is the Erd+os–Rényi random graph, where Aij ¼ Aji ¼ 1=8 for
1r io jrN with probability p¼ 8=N and Aij ¼ Aji ¼ 0 otherwise. We
set link weights such that the summed weight of the links per node
is independent of N; i.e., for 1r irN,

PN
j ¼ 1 Aij ¼ 1 in the ring and

all-to-all network and
PN

j ¼ 1 Aij � 1 in the other networks including
the Watts–Strogatz model used in Fig. 11.
Appendix B. Phase description

A large class of oscillator systems including the FHN and SCN
models (Eqs. (37) and (39)) are reduced to phase models if the
coupling and noise are sufficiently weak (Winfree, 1967;
Kuramoto, 1984). The concept behind the reduction is as follows.
We denote an element of the state variable of the ith oscillator by
xi(t). When unperturbed, the oscillator portrays a one-dimen-
sional closed orbit after transient so that xiðtÞ ¼ xiðtþ2p=oiÞ,
where oi is the intrinsic frequency. We define the phase fi by
xiðtÞ ¼ xiðfi=oiÞ; that is, the phase increases linearly with time in
the unperturbed oscillator. For convenience, we denote the
unperturbed orbit by wðfiÞ ¼ xiðfi=oiÞ. Although the trajectory
deviates from the closed orbit when the oscillator is weakly
perturbed, it is still possible to parametrize a trajectory of an
oscillator by only the phase and describe the dynamics of coupled
oscillators in terms of the phases only (Winfree, 1967; Kuramoto,
1984). The resulting equation is given by Eq. (3). Because of the
assumption of weak perturbation, xi(t) is approximated by that of
the unperturbed orbit, i.e.,

xiðtÞ � wðfiðtÞÞ: ð40Þ

Therefore, the first passage time problem for xi(t) is approximated
by that for fiðtÞ.
Appendix C. Calculation of Eq. (18)

Our linearized equation is given by Eq. (14), which is repro-
duced as

_yiðtÞ ¼�k
XN

j ¼ 1

Lijyjþ
ffiffiffiffi
D
p

xiðtÞ, ð41Þ

where yi (1r irN) is the deviation from the synchronized state,
k40 is the coupling strength, L¼ ðLijÞ is a diagonalizable matrix,
and xiðtÞ is white Gaussian noise with

E½xiðtÞ� ¼ 0, E½xiðtÞxjðsÞ� ¼ dijdðt�sÞ: ð42Þ

From the assumption of the stability of frequency synchroniza-
tion, we have

0¼ l1oRe l2rRe l3r � � �rRelN : ð43Þ

The right and left eigenvectors of L corresponding to ln are
denoted by uðnÞ ¼ ðuðnÞi Þ and vðnÞ ¼ ðvðnÞi Þ, respectively; i.e.,

LuðnÞ ¼ lnuðnÞ, ð44aÞ

vðnÞL¼ lnvðnÞ ð44bÞ

with the normalization and orthogonality conditions

vðmÞuðnÞ ¼ dmn: ð45Þ

Using these eigenvectors, we decompose yiðtÞ as

yiðtÞ ¼
XN

m ¼ 1

jmðtÞu
ðmÞ
i , ð46Þ

where jmðtÞ is given by

jmðtÞ ¼
XN

i ¼ 1

yiðtÞv
ðmÞ
i : ð47Þ

By taking the time derivative of Eq. (47) and using Eqs. (41), (45)
and (46), we obtain

_jmðtÞ ¼ �klmjmþZmðtÞ, ð48Þ

where

ZmðtÞ ¼
ffiffiffiffi
D
p XN

i ¼ 1

vðmÞi xiðtÞ: ð49Þ

Eq. (42) yields /ZmðtÞS¼ 0. We also have

E½ZmðtÞZnðsÞ� ¼ E D
XN

i ¼ 1

vðmÞi xiðtÞ
XN

j ¼ 1

vðnÞj xjðsÞ

2
4

3
5

¼D
XN

i,j ¼ 1

vðmÞi vðnÞj E½xiðtÞxjðsÞ� ¼D
XN

i,j ¼ 1

vðmÞi vðnÞj dijdðt�sÞ

¼D
XN

i ¼ 1

vðmÞi vðnÞi

 !
dðt�sÞ ¼DVmndðt�sÞ, ð50Þ

where

Vmn �
XN

i ¼ 1

vðmÞi vðnÞi : ð51Þ
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Now we derive Cij given in Eq. (18). The definition of Cij is

Cij �
1

Dt
E½ðyiðtþtÞ�yiðtÞÞðyjðtþtÞ�yjðtÞÞ�: ð52Þ

By substituting Eq. (46) in Eq. (52), we obtain

Cij ¼
1

Dt
XN

m,n ¼ 1

uðmÞi uðnÞj E½ðjmðtþtÞ�jmðtÞÞðjnðtþtÞ�jnðtÞÞ�: ð53Þ

The solution to Eq. (48) is formally written as

jmðtÞ ¼ e�klmtjmð0Þþ

Z t

0
dse�klmðt�sÞZmðsÞ: ð54Þ

Using Eq. (54), we obtain

j1ðtþtÞ�j1ðtÞ ¼

Z tþt

t
dsZ1ðsÞ, ð55Þ

E½ðj1ðtþtÞ�j1ðtÞÞðj1ðtþtÞ�j1ðtÞÞ�

¼

Z tþt

t
ds1

Z tþt

t
ds2E½Z1ðs1ÞZ1ðs2Þ�

¼DV11

Z tþt

t
ds1

Z tþt

t
ds2dðs1�s2Þ ¼DV11t: ð56Þ

To evaluate the terms on the right-hand side of Eq. (53) for
mþn42, we first calculate

Bmnðt1,t2Þ �

Z t1

0
ds1

Z t2

0
ds2e�klmðt1�s1Þ�klnðt2�s2ÞE½Zmðs1ÞZnðs2Þ�

¼

Z t1

0
ds1

Z t2

0
ds2e�klmðt1�s1Þ�klnðt2�s2ÞDVmndðs1�s2Þ

¼DVmn

Z minðt1 ,t2Þ

0
dse�klmðt1�sÞ�klnðt2�sÞ

-DVmn
e�klmðt1�sÞ�klnðt2�sÞ

kðlmþlnÞ

����
s ¼ minðt1 ,t2Þ

: ð57Þ

We consider the limit t-1 in Eq. (57) because we are concerned
with a stationary process. Using Eq. (57), we obtain

E½ðjmðtþtÞ�jmðtÞÞðjnðtþtÞ�jnðtÞÞ�

¼ Bmnðtþt,tþtÞ�Bmnðtþt,tÞ�Bmnðt,tþtÞþBmnðt,tÞ

-DVmn
2�e�klmt�e�klnt

kðlmþlnÞ
ðt-1Þ: ð58Þ

By combining Eqs. (53), (56) and (58), we obtain

Cij ¼ V11uð1Þi uð1Þj þ
XN

m,nðmþn42Þ

2�e�klmt�e�klnt

kðlmþlnÞt
VmnuðmÞi uðnÞj : ð59Þ

In Eq. (18), we set uð1Þi ¼ 1=
ffiffiffiffi
N
p

for 1r irN.
Appendix D. Scaling factor lF for the ensemble activity

In this section, we derive mF used in Eqs. (28) and (29). By
substituting Eq. (40) in Eq. (24), we express the ensemble activity
X(t) in terms of the phases as

XðtÞ ¼
XM
i ¼ 1

zixiðtÞ �
XM
i ¼ 1

ziwðfiðtÞÞ: ð60Þ

For in-phase synchrony (i.e., ci ¼ 0) and small deviation yi, we can
further approximate X(t) to

XðtÞ � wðOtÞþ
XM
i ¼ 1

ziw0ðOtÞyiðtÞ � wðFðtÞÞ, ð61Þ

where w0ðfÞ ¼ dwðfÞ=df and F is the mean phase of the ensemble,
given by

FðtÞ ¼Otþ
XM
i ¼ 1

ziyiðtÞ: ð62Þ
Thus, similar to the case of individual cell oscillations, the cycle-
to-cycle period for the ensemble activity X(t) is approximated by
the cycle-to-cycle period DtðkÞF for the mean phase FðtÞ. We further
employ the following approximation (Fig. 7):

2p
t

std½DtF� � std½DF�, ð63Þ

where DF�FðtþtÞ�FðtÞ�2p. We define the scaling factor mF for
the ensemble activity as

var½DF� ¼ mFDt: ð64Þ

We then obtain

mF ¼
var½DF�

Dt ¼
XM

i,j ¼ 1

zizj

E½ðyiðtþtÞ�yiðtÞÞðyjðtþtÞ�yjðtÞÞ�

Dt

¼
XM

i,j ¼ 1

zizjCij, ð65Þ

where Cij is given by Eq. (18).
We consider the case of symmetric L and zi ¼ 1=M for

1r irM. Substituting Eq. (19) in Eq. (65), we obtain

mF ¼
1

N
þ

1

M2

XN

n ¼ 2

XM
i,j ¼ 1

1�e�klnt

klnt
uðnÞi uðnÞj : ð66Þ

For M¼N,
PN

i ¼ 1 uðnÞi ¼ uð1Þ � uðnÞ ¼ 0 for 2rnrN (orthogonality)
leads to

mF ¼
1

N
, ð67Þ

that is, there is no crossover. For MoN, Eq. (66) implies that mF
depends on the choice of M oscillators. When we randomly
choose M out of N oscillators, where 15M5N, the dependence
of mF on M is estimated as follows. The orthogonality and
normalization, respectively, imply

1

N

XN

i ¼ 1

uðnÞi ¼ 0,
1

N

XN

i ¼ 1

uðnÞi uðnÞi ¼
1

N
: ð68Þ

Therefore, the distribution of uðnÞi (1r irN) has the mean of 0 and
variance of 1/N. We randomly choose M (5N) elements and
assume that they are independent random numbers with the
same mean and variance. Then, we apply the central limit
theorem for Mb1 to obtain

XM
i ¼ 1

XM
j ¼ 1

uðnÞi uðnÞj �
XM
i ¼ 1

uðnÞi uðnÞi �
M

N
: ð69Þ

By substituting Eq. (69) in the right-hand side of Eq. (66), we
obtain Eq. (29).
Appendix E. Calculation of Eq. (34)

It is convenient to choose the eigenvectors uðnÞ ¼ ðuðnÞi Þ for

2rnrN as uðnÞi ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
n2�n
p

for 1r irn�1, uðnÞn ¼ ð1�nÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
n2�n
p

and uðnÞi ¼ 0 for nr irN. Then, the following property holds:

1

M

XM
i ¼ 1

uðnÞi ¼

0 for 2rnrM,
1ffiffiffiffiffiffiffiffiffiffiffiffi

n2�n
p for Mþ1rnrN:

8><
>: ð70Þ
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Substitution of Eq. (70) and the eigenvalues ln ¼ 1 (2rnrN) in
Eq. (66) results in

mF ¼
1

N
þ

1�e�kt

kt
XN

n ¼ 2

1

M

XM
i ¼ 1

uðnÞi

 !
1

M

XM
j ¼ 1

uðnÞj

0
@

1
A

¼
1

N
þ

1�e�kt

kt
XN

n ¼ Mþ1

1

n2�n
¼

1

N
þ

1�e�kt

kt
XN

n ¼ Mþ1

1

n�1
�

1

n

� �

¼
1

N
þ

1

M
�

1

N

� �
1�e�kt

kt : ð71Þ
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