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A method for engineering the global behavior of populations of rhythmic elements is presented. The
framework, which is based on phase models, allows a nonlinear time-delayed global feedback
signal to be constructed which produces an interaction function corresponding to the desired be-
havior of the system. It is shown theoretically and confirmed in numerical simulations that a
polynomial, delayed feedback is a versatile tool to tune synchronization patterns. Dynamical states
consisting of one to four clusters were engineered to demonstrate the application of synchronization
engineering in an experimental electrochemical system. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2927531�

Populations of interacting rhythmic components can pro-
duce complex behavior in biology,1,2 communications,3

population dynamics,4 and chemistry.5–8 In biology, syn-
chronization can be beneficial, such as in orchestrating
the circadian rhythms in mammals, or pathological, such
as in the occurrence of Parkinson’s disease. We consider
here the engineering of desirable states through the intro-
duction of mild feedback, mild such that the behavior of
the individual components is not substantially changed
by the introduction of the external signal. In a previous
paper,9 we have experimentally demonstrated a general
methodology for engineering a target dynamical behavior
in oscillator assemblies. The aim of the present paper is to
describe the theory behind our methodology and to verify
it by numerical and experimental studies.

I. INTRODUCTION

Ensembles of self-sustained oscillators can spontane-
ously organize their collective dynamical behavior as a result
of interaction among elements. Examples can be found in
biological,1,2 chemical,5–8 and ecological systems,4

communications,3 as well as human activities.10 Global be-
haviors such as synchronization are often responsible for the
formation of certain beneficial biological functions, such as,
orchestrating the sleep/wake cycle �circadian rhythm� of
mammals.11 Conversely, pathological synchronization may
induce serious problems, e.g., tremors in Parkinson’s
disease2 and abnormal sway in London’s Millennium
Bridge.12

Interactions involving feedback among rhythmic ele-
ments are often associated with the formation of dynamical
order. In many cases, feedback plays an essential role in
sustaining dynamical stability and in suppressing complexity.

In chemical systems, several types of complex synchronized
behavior emerge by introducing global feedback, which oth-
erwise shows simple synchronization or chemical
turbulence.8,13,14 It may be expected that feedback loops
among neuronal clusters contribute to the design of the com-
plex dynamical functionality of the brain.15 In medical appli-
cations, heart pacemakers, deep brain pacemakers, and feed-
back control techniques have been proposed to eliminate
pathological synchronization.2,16 For applications which in-
volve biological neurons, a mild control is desired to avoid
side effects and to maintain the fundamental nature of neu-
rons in the system.

In this paper we present a comprehensive theory for de-
signing the collective dynamics of a rhythmic population us-
ing external feedback and, as an application of its use, dem-
onstrate the power of the methodology for creating various
cluster states in both numerical simulations and experimental
studies.

This method has been shown to be extremely robust in
engineering collective dynamical behavior in electrochemi-
cal experiments.9 Our method utilizes phase modeling5 �as
opposed to a physiochemical modeling� to describe the dy-
namical behavior of rhythmic elements. The simplicity and
analytical tractability of the phase model is exploited to de-
sign an optimal, delayed, nonlinear feedback signal for ob-
taining a desired collective behavior. The only properties re-
quired to construct the phase model are the waveform and
the phase response function of the oscillator, which can be
experimentally measured. Section II outlines the mathemat-
ics of the methodology. In Sec. III, the detailed description of
the feedback design method is presented, which is further
developed in Sec. IV for both harmonic and slightly inhar-
monic waveforms. Sections V and VI present examples of
synchronization engineering using numerical studies via the
Brusselator model and experimental studies using electro-
chemical oscillators, respectively.
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II. GENERAL METHODOLOGY

Our methodology seeks to engineer a target collective
dynamical behavior into a population of limit-cycle oscilla-
tors through feedback. A phase model is used to describe the
collective behavior of a population of weakly coupled oscil-
lators. For N oscillators with general interactions �which also
admits interactions through a complex network�, the phase
model is given as

d�i

dt
= �i + K�

j

Hij�� j − �i� , �1�

where �i �0��i�2�� and �i are the phase and the natural
frequency of the oscillator i, K is a coupling strength �K�0�,
and the 2� periodic function Hij��� is the �phase� interaction
function �or, phase coupling function�. The phase model is
derived as the first order approximation of a coupled limit-
cycle oscillator system, where the small quantity is the cou-
pling intensity K.5 The interaction function Hij��� can be
calculated from the properties of the limit-cycle oscillator i
and physical interaction from the oscillator j to the oscillator
i. The details of this derivation are presented in Sec. III.
Although, as presented in Sec. III, our proposed theory may
deal with Eq. �1�, we mostly devote ourselves in the present
paper to the case of global feedback. In such a case, the
phase model is reduced to

d�i

dt
= �i +

K

N
�

j

Hi�� j − �i� . �2�

Moreover, if the heterogeneity is sufficiently small compared
to the feedback intensity K, we can treat the system as iden-
tical oscillators. In such a case, we may use the following
phase model:

d�i

dt
= � +

K

N
�

j

H�� j − �i� . �3�

For simplicity, we outline our methodology in terms of Eq.
�3� in this section.

In the phase model �3�, dynamical evolution of the sys-
tem is predicted if the interaction function H��� and an ini-
tial condition are given. This comes from the fact that we
may set �=0 and K=1 without loss of generality �using a
rotating reference frame, �−�t→�, and rescaling time,
Kt→ t�. The relationship between the shape of the interaction
function and the global dynamical behavior of the system has
been well studied. For example, the conditions which admit
perfect synchrony, perfect desynchrony �the spray state�,5

phase clustering,17 and slow switching dynamics18–20 are
known. While it is possible for an interaction function to
admit multiple attractors, it is preferable to have a single
stable attractor �or at least a single dominant basin of attrac-
tion�. If a coupled limit-cycle oscillator system has a phase
interaction function which results in a single stable attractor,
the system should exhibit the expected global behavior under
general initial conditions.

Two steps are required to engineer a desired target be-
havior:

�i� Find an interaction function H��� which uniquely sta-
bilizes the desired collective behavior;

�ii� Seek the physical feedback parameters which result in
the interaction function found in �i�.

The difficulty of step �i� depends on the desired target behav-
ior. To illustrate the engineering methodology, we have se-
lected a simple collective behavior which has been well char-
acterized in terms of the phase model: perfect synchrony and
balanced cluster states. Two different approaches can be uti-
lized to optimize feedback parameters. The first approach
simply requires knowledge of the precise interaction function
to be targeted. However, there are many cases �such as phase
clustering� in which there exists a large family of valid func-
tions, each capable of producing the desired target behavior.
By arbitrarily selecting one of these functions, the most ef-
fective means of generating the target behavior may be over-
looked. Additionally, an arbitrary choice of an interaction
function can substantially increase the difficulty of the feed-
back parameter optimization. Therefore, instead of targeting
a precise interaction function, we place constraints on spe-
cific properties of the interaction function as required to gen-
erate the appropriate behavior. The optimum feedback pa-
rameters are selected such that the associated interaction
function meets these constraints with the minimum feedback
amplitude.

To engineer a target interaction function into a physical
system, we introduce a feedback Kp�t� to some global pa-
rameter of the system with the following functional form:

p�t� =
1

N
�
i=1

N

h�xi� , �4�

h�xi� = �
n=0

S

kn�xi�t − �n� − a0�n, �5�

where xi�t� is an observable variable of the oscillator i at
time t, a0 is the time average of xi, kn and �n the gain and the
delay of the nth order feedback respectively, and K and S the
overall gain and the overall order of the feedback, respec-
tively. Our choice of function �5� is motivated from the fact
that each feedback term yields different combinations of in-
tensities of Fourier components and the feedback delay value
�n controls the ratio between the symmetric and antisymmet-
ric Fourier components. In addition, the nth harmonic of the
interaction function is efficiently enhanced by the nth order
feedback. Thus, flexible and efficient design of the interac-
tion function is possible. In Sec. III, we show that any target
interaction function which is composed of Sth and lower
Fourier components can be indeed produced by using the S
overall order feedback. In particular, when the waveform
xi�t� is exactly harmonic, feedback parameter values �kn� and
��n� may be calculated analytically, as illustrated in Sec. IV.
For a general waveform, a numerical optimization is often
required to determine the feedback parameters.

III. THEORY OF FEEDBACK DESIGN

We present a theory for designing the external feedback
signal yielding a desired phase interaction function. Because
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the extension to more complex situations is straightforward,
it is suitable to start with the case where the oscillator 1 is
affected by the feedback signal composed as a function of
the state variable of the oscillator 2. The dynamical equation
for the oscillator 1 is then given as

dA1�t�
dt

= F1�A1�t�� + KP�t� , �6�

where Ai= �xi ,yi , . . . �T is the state variable of the oscillator
i�i=1,2�, Fi�Ai� is a nonlinear function admitting limit-cycle
oscillation, and P�t� is a feedback signal. The dynamical
equation for the oscillator 2 is arbitrary provided that it pro-
duces nearly periodic dynamics. We define the observable
variable to be x and the variable to be perturbed by the feed-
back to be y �these variables need not be mutually exclusive,
which is the case in the numerical studies and experiments�.
Thus,

P�t� = �0,h�x2�,0, . . . ,0�T, �7�

where h�x� is Eq. �5�.
Because we are interested in mild engineering, we as-

sume that the overall gain K is small such that the dynamical
behavior of the system Eq. �6� can be approximated by the
phase oscillator model,

d�1

dt
= �1 + KH��2 − �1� . �8�

The interaction function H��2−�1� is computed as

H��2 − �1� =
1

2�
�

0

2�

Z��1 + ��h��2 + ��d� , �9�

where Z��1� and h��2� are evaluated from single isolated
oscillators 1 and 2, respectively. The function Z��1� is re-
ferred to as the phase response function �or, the phase sensi-
tivity function� of the oscillator 1, which is the gradient of
the phase along the y-direction on the limit-cycle orbit
A1

C���,

Z��1� = 	 ��1

�y1
	

A1=A1
C
. �10�

There are several ways to measure Z��� of a given oscillator.
�For example, see Ref. 5 for the analytical derivation, the
software by Ermentrout, xppaut, for the numerical deriva-
tion, and Refs. 21–23 for the experimental derivation. Some
of the methods are reviewed in Ref. 24.� The function h��2�
is obtained by first describing x2�t� as the function of the
phase of the oscillator, x2��2�. Because �2�t−��=�2�t�
−�2� when the interaction is absent, we have x2��2�t−���
=x2��2�t�−�2��. As a result, h��2� assumes the form

h��2� = �
n=0

S

kn�x��2 − �2�n� − a0�n, �11�

or, upon expanding x���=�lale
−il�, as

h��2� = �
n=0

S

kn
�
l�0

ale
−il�2eil�2�n�n

. �12�

Thus, the phase model is an autonomous system despite the
existence of time delays in the original system �6�. Such an
approximation is valid so long as K� remains small �note that
the dimension of K is inverse time�.19,25

For given Z��2�, the feedback parameters kn and �n

yielding a target H��� are found in the following way. To
simplify the problem, the functions are expanded into their
Fourier series, H���=�lHle

−il�, Z���=�lZle
−il�, and h���

=�lhle
−il� �where Hl=H

−l
* ,Zl=Z

−l
* , and hl=h

−l
* �. Using these

Fourier coefficients, we obtain the relation

Hl = hlZ−l, �13�

where hl is the function of kn and �n. By solving a set of
complex equations �13�, the feedback parameters kn and �n

can be determined. In theory, any interaction function com-
posed of harmonic components Hl for 0� l�S can be con-
structed using a feedback signal with an overall order of S,
provided that zl for l=0, . . . ,S is nonvanishing.

It is important to point out that the flexibility of our
engineering method is reduced for certain types of oscilla-
tors. For example, the Stuart–Landau oscillator �i.e., the nor-
mal form for the Hopf bifurcation� has Zl=0 for l	2,5 forc-
ing all higher harmonics �l	2� in the interaction function to
vanish regardless of the nonlinear terms in the feedback. A
similar problem may occur in systems which contain special
symmetry. For example, the Van der Pol oscillator has sym-
metry with respect to the center of the oscillation. This fact
implies that Z��+��=Z���, i.e., Zl=0 for even l. Thus, the
even Fourier components of the interaction function vanish.
In these special cases, the methodology is limited to control-
ling only those harmonics of the H��� which do not corre-
spond to the vanishing harmonics in Z���.

It is straightforward to extend the above arguments to a
population of oscillators. Under the assumption that a param-
eter in each individual oscillator can be independently tuned
online, we may consider

dAi�t�
dt

= Fi�Ai�t�� + K�0,pi, . . . �T, �14�

where the function pi is fully generalized as

pi�t� = �
j

�
n=0

S

kij
�n�yj

n�t − �ij
�n�� . �15�

The corresponding phase model then reads Eq. �1�. The in-
teraction function Hij��� is determined as a function of the
physical feedback parameters �kij

�n�� and ��ij
�n��; any Hij��� can

be designed by giving appropriate feedback parameters. The
phase model �1� is very general and a large class of collec-
tive behavior can be engineered.

A simple situation, which is the case in the numerical
and experimental studies in Secs. V and VI, is that a global
parameter of the system is tuned by feedback. In such a case,
we consider the phase model �3� by adopting the global feed-
back signal Eqs. �4� and �5�.

026111-3 Synchronization engineering Chaos 18, 026111 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



IV. USE OF HARMONIC SIGNALS

An oscillator may appear to have a nearly harmonic
waveform by the nature of oscillation or through the use of a
low pass filter. In the case of a perfectly harmonic waveform,
feedback parameters can be explicitly calculated and the ef-
fect of each feedback term on the interaction function clearly
understood. However, it is unrealistic to assume that an exact
harmonic waveform can be obtained experimentally. There-
fore, the effect of a weakly inharmonic waveform is also
examined.

A. Harmonic waveform

We first assume that x��� is an exact harmonic wave-
form with zero mean. Properly defining the origin of the
phase, we may set

x��� = e−i� + c.c., �16�

where c.c. indicates the complex conjugate �i.e., ei� in this
case�.

Introducing �n��−��n, we obtain

x��n�n = �
m=0

n

Cm
n ei�n−2m��n, �17�

where Cm
n is a number of m combinations from a set of n

elements. Since x��n�n contains only lth harmonics �where
l=n ,n−2,n−4, . . .� the nth feedback term in Eq. �13� only
contributes to the lth �l=n ,n−2,n−4, . . . � Fourier compo-
nents of the interaction function. The feedback delay varies
the ratio between the even and odd components of each har-
monic.

Combining the feedback terms using Eq. �5� yields an
interaction function composed of Fourier components Hl for
l�S,

h��� = �
n=0

S

�
m=0

n

Cm
n ei�n−2m��n �18�

or, for l	0,

hl = �
n=l

S

knCn+l/2
n eil��n, �19�

where for convenience we define Cm
n =0 if m is not an inte-

ger. Therefore,

H��� = �
n=0

S

kn�
m=0

n

Cm
n zn−2mei�2m−n��n, �20�

or, for l	0,

Hl = z−l�
n=l

S

knCn+l/2
n eil��n. �21�

Therefore, for a given target Hl, �l=0, . . . ,S�, the feedback
parameters kn and �n �n=0, . . . ,S� can be explicitly obtained.
Since HS is determined solely by the Sth term, the parameters
kS and �S can be found by solving a complex equation ob-
tained by setting l=S. The same process can be used for the
HS−1 component, to solve for the parameters kS−1 and �S−1.

Since HS−2 is dependent on the Sth and �S−2�th terms, kS−2

and �S−2 can be determined. Repeating this processes for
each term, all feedback parameters can be calculated.

As an illustration, the feedback parameters required to
produce a Hansel–Manubille–Mato-type18 interaction func-
tion will be calculated. The target function H��� is selected
to be

H��� = sin�� − 
� − r sin�2�� = −
i

2
ei
e−i� +

ir

2
e−2i� + c.c.,

�22�

where 
 and r�0 are the parameters of the function. Since
the target interaction function has second order components,
second order feedback is required. Therefore, Eq. �20� for
S=2 becomes

H��� = �k0 + 2k2�z0 + k1z−1ei��1e−i� + k2z−2e2i��2e−2i� + c.c.

�23�

Comparing Eqs. �22� and �23�, we find one of the solutions
to be

k0 = −
r

z−2
, k1 =

1

2z−1
, k2 =

r

2z−2
, �24�

�1 =


 −
�

2
− arg�z−1�

�
, �2 =

�

2
− arg�z−2�

2�
. �25�

B. Slightly inharmonic waveform

The effect of weak inharmonic components is considered
using the waveform

x��� = ei� + �ei2� + O��2� + c.c., �26�

where � is a small complex number. Introducing �n

=�−��n, for n	1 yields

x��n�n = �
m=0

n

Cm
n ei�n−2m��n

+ ��
m=0

n−1

Cm
n−1�ei�n−2m+1��n + ei�n−2m−3��n� + O��2� , �27�

and x0=1. The nth term contributes to the lth �l=n+1,
n−1, . . . � harmonic with order �. Sth order feedback strongly
enhances the harmonics hl of the interaction function for l
�S. Therefore, Sth order feedback is required to produce a
target interaction function composed of harmonics l�S. Al-
though the �S+1�th Fourier component appears in the inter-
action function, it is expected to be very small �of the order
of O��ZS+1�� and can be safely neglected. Similarly, this re-
sult is also true in cases where the first order Fourier com-
ponent of the waveform is dominant.

When the waveform is strongly inharmonic, each feed-
back term enhances various harmonics, including higher or-
der harmonics Hl �l�S� of the interaction function. In these
situations, no analytical solution is possible, and the feed-
back parameters must be numerically optimized using
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Eq. �9� or Eq. �13�. In addition, usually, a high order feed-
back is required �i.e., large S� such that Zl for l�S are neg-
ligible.

V. NUMERICAL STUDY: PHASE CLUSTERING

Our methodology is numerically verified for a popula-
tion of limit-cycle oscillators, using the Brusselator model, a
simple two variable ODE system that admits a Hopf
bifurcation.26 The dynamical equations for a Brusselator
population under global feedback are

dxi

dt
= �B − 1�xi + A2xi + f�xi,yi� +

K

N
�
j=1

N

h�xj� ,

�28�
dyi

dt
= − Bxi − A2yi − f�xi,yi� ,

where f�x ,y�= �B / A�x2+2Axy+x2y. Here, it is assumed that
the feedback signal is constructed from and applied to the
variables xi. Note that for convenience, the variables xi and yi

are transformed such that the fixed point is shifted to �x ,y�
= �0,0�. For a single uncoupled oscillator, the Hopf bifurca-
tion occurs at B=Bc�1+A2. The parameters of Eq. �28�
were chosen to be A=1.0 �so that Bc=2.0� and B=2.3. The
waveform x��� and the response functions Z��� along the
x-direction �the response function is calculated using xppaut�
are displayed in Fig. 1, and their Fourier coefficients can be
found in Table I.

The phase of an oscillator �i is determined by measuring
the times at which the orbit in �xi ,yi� state space crosses a
particular point on its limit cycle. The phase of the oscillator
�i�t� for tm−1� t� tm can be defined as

�i�t� =
2��t − tm−1�

tm − tm−1
, �29�

where tm is defined as the time at which the mth crossing
occurs. Note that 0��i�t��2�. To quantify the amount of
collective global order within the system, it is useful to in-
troduce the order parameter Rk,

Rk = 	 1

N
�
j=1

N

eik�j	 . �30�

For a large population �i.e., large N�, Rk=0 for uniform phase
distribution and Rk=1 for a balanced k cluster state, in which
the population is split into k equally populated point clusters
distributed uniformly in phase �see the Appendix�.

Phase clustering commonly appears in globally coupled
oscillator systems.17,27 In systems of identical coupled oscil-
lators, these states always exist independent of the interac-
tion function, such that the only outstanding issues to be
addressed are the stability and the basin of attraction of the
states. In this example, four parameter sets are created �one
for each cluster state �n=1,2 ,3 ,4�� with the following con-
ditions:

�i� the n cluster state is uniquely stable among the bal-
anced cluster states;

�ii� the cluster state has high linear stability;
�iii� small amplitude feedback is preferable.

For condition �i�, it is convenient to use a target interaction
function of the form Im Hn�0 and Im Hl�0 for l�n �note
that the symmetric parts Re Hl are irrelevant to the stability
of the balanced cluster states, so that we may arbitrarily set
the symmetric parts�. For such an interaction function, the
maximum eigenvalue is given by �max

�n� =−�l=1
 2l Im Hnl �see

the Appendix for the details�. We thus require �max
�n� �0. Sat-

isfying condition �ii� requires that Im Hn is large enough for
high stability. To satisfy condition �iii�, nth order feedback is
used to generate the nth cluster state �i.e., S=n�, since the nth
cluster state requires nth order harmonics in its interaction
function.

A large number of interaction functions satisfies condi-
tions �i� and �ii�. Out of this family of interaction functions,
the optimal feedback parameter set is selected such that it
minimizes the cost function �l=1

n kl under the conditions
shown in the left side of each column of Table II. The table
also displays the optimized feedback parameter sets �ob-
tained numerically using Mathematica�, the resulting Im Hl

�in the right side of each column�, and the resulting maxi-
mum eigenvalue �max

�n� .
Applying the optimized feedback parameter sets to Eq.

�28� causes the system to approach the desired cluster states.
The convergence of the system to the cluster states is illus-
trated in Fig. 2, using the appropriate order parameter Rn.
Several different random initial conditions were used for
each parameter set and in each case the desired cluster state
was obtained �not shown�.

It is worth noting that, in practice, the 3 and 4 cluster
states are difficult to obtain unless high order feedback is
used. For example, when only the linear term is used, the

FIG. 1. �Color online� Waveform x��� and phase response function Z��� of
the Brusselator oscillator. The parameter values are A=1.0 and B=2.3, re-
sulting in T=6.43 and �=0.977.

TABLE I. Brusselator �A=1,B=2.3�. Fourier coefficients of the wave form
x��� and the phase response function Z���.

l 0 1 2 3 4 5

Re al 0.00 0.30 0.12 0.05 0.02 0.00
Im al ¯ 0.00 0.00 −0.01 −0.01 −0.01
al 0.00 0.30 0.12 0.05 0.02 0.01
Re Zl 1.19 −0.98 −0.20 0.04 0.01 0.00
Im Zl ¯ −0.85 0.21 0.01 −0.01 −0.00
Zl 1.19 1.29 0.28 0.04 0.01 0.00
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magnitude Hl= Zlal is very small for l	3. This fact im-
plies that the maximum eigenvalue of the n	3 cluster states
cannot be large and negative. Therefore, the presence of
noise or heterogeneity, if any, would destroy the n	3 cluster
states.

VI. EXPERIMENTAL STUDIES

A. Experimental setup

The preceding theoretical work on synchronization engi-
neering was experimentally tested using a population of elec-

trochemical oscillators. These oscillators were created using
an electrochemical cell which consisted of 64 Ni electrodes
�99.99% pure� in a 3 M H2SO4 solution, a Pt mesh counter
electrode, and a Hg /Hg2SO4 /K2SO4 �sat� reference elec-
trode. The cell was enclosed in a jacketed glass vessel held at
a constant temperature of 11 °C. An EG&G potentiostat was
used to adjust the circuit potential �V� of the cell, causing the
nickel electrodes to undergo transpassive dissolution. The
dissolution current of each electrode, Ij�t�, was measured by
zero resistance ammeters �ZRA�. A resistor �Rp� was at-

TABLE II. Brusselator population with global feedback. The target and resulting interaction functions, feedback parameters, and the resulting maximum
eigenvalue for the n cluster state.

n 1 2 3 4

Im H1 �1.0 1.00 �−1.0 −1.00 �−1.0 −3.28 �−1.0 −9.04
Im H2 �0.0 −0.07 �0.3 0.30 �−0.4 −0.40 �−0.4 −3.27
Im H3 �0.0 −0.01 �0.0 −0.00 �0.2 0.20 �−0.2 −0.20
Im H4 �0.0 −0.00 �0.0 −0.00 �0.0 −0.02 �0.15 0.15
k1 �1 −2.56 2.40 2.01 2.06 0 0 0 0
k2 �2 ¯ ¯ −6.50 0.44 35.7 2.95 0.25 5.26
k3 �3 ¯ ¯ ¯ ¯ 19.3 0.68 68.6 3.61
k4 �4 ¯ ¯ ¯ ¯ ¯ 42.0 0.32

�max
�n� −1.72 −1.16 −1.18 −0.80

FIG. 2. �Color online� Engineering cluster states in the Brusselator model. Time traces of the order parameters Rn and snapshots for �a� n=1, �b� n=2, �c� n=3,
and �d� n=4 for N=12 and K=0.001. In each panel, the parameter set n displayed in Table II is used. In the insets, snapshots in the one-oscillator phase space
at Kt=20 are displayed. The dashed lines are the orbits of an oscillator. In panel �a�, initial conditions are shown �on the left side�. Note that the initial
condition is the same for all panels.
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tached to each channel to induce oscillations in the electrode
potential. A Labview based real time data acquisition com-
puter was used to read the ZRA measurements, stream these
measurements to the host machine, and apply the feedback
signal to the potentiostat at a rate of 250 Hz. The current
measurements were scaled:

Ij��t� =
Amean

Aj
�Ij�t� − Ij

offset� . �31�

The mean value of each channel �Ij
offset� was removed from

the measurement, and the result was scaled by the amplitude
of its oscillation �Aj� relative to the mean amplitude of the
population �Amean�. The host machine was used to continu-
ously determine the offset and amplitude of each rhythmic
element in the population. To calculate the feedback signal,
the potential drop across the double layer, xj�t�, was deter-
mined from the scaled current measurements

xj�t� = V�t� − Ij��t�Rp, �32�

where V�t� is the applied voltage. The perturbation signal
p�t� which was fed back to the potentiostat, V�t�=V0

+Kp�t�, was calculated by taking the mean value of h�xj�t��
over every element in the population

p�t� =
1

N
�
j=0

N

h�xj�t�� , �33�

h�x�t�� = �
n=0

S

knx�t − �n�n, �34�

where K is the overall feedback gain, N is the number of
elements in the population, kn is the nth polynomial feedback
coefficient, �n is the time delay of the nth polynomial feed-
back term, and S is the polynomial feedback order.

B. Experimental validation of theory

The synchronization engineering framework, as derived
in Sec. IV B for weakly inharmonic waveforms, predicts that
nth order feedback can enhance up to and including the nth
harmonics of the interaction function for harmonic wave-
forms, and �n+1�th harmonics for weakly inharmonic wave-
forms. To test the range of the validity of this result, the
experimental system was used to measure how the harmon-
ics of an interaction function change with increasing feed-
back order. The operating voltage of the system was selected
to be 1.110 V as this was found to be close enough to the
Hopf bifurcation to produce a nearly harmonic waveform,
but far enough to ensure that the periodic cycle was robust
against external perturbations �Figs. 3�a� and 3�b��.

A two oscillator system was used to measure the inter-
action function associated with the global feedback signal.
This method of measurement was created by extending the
work of Miyazaki and Kinoshita28 to rhythmic systems under
global feedback. By measuring the change in the period of
the two elements as a function of their phase difference, the
interaction function can be experimentally determined.

While the first order harmonic of the waveform accounts
for 71% of its magnitude, this may not be sufficient to allow

the O��� terms of Eq. �27� to be neglected. Therefore, it is
expected that the �n+1� order harmonics of the interaction
function will be dominant. Figure 3�c� illustrates the percent-
age of the cumulative magnitude of the harmonics of H���
as a function of the choice of the highest harmonic compo-
nent to be considered. The cutoff harmonic is given in terms
of the feedback order to allow different orders of feedback to
be compared to one another. Applying a first order feedback
signal to the experimental system produced an interaction
function with a large first order component and a relatively
small second order component �Figs. 3�d� and 3�g��. While
the first order harmonic only makes up 82% of H���, the
combination of the first and second order harmonics account
for 96% of its magnitude. When a second order feedback
was used, it substantially reduced the first order harmonic of
H��� while increasing the second order harmonic �Figs. 3�e�
and 3�h��. A small increase in the third order harmonic was
observed due to anharmonicity. Together, these three compo-
nents make up �90% of the overall magnitude of H���.
Third order feedback increases the ratio between the third
and first order harmonics of H��� when compared to first
order feedback �0.126 for third order feedback versus 0.027
for first order feedback�. Due to strong second order harmon-
ics in the waveform, nontrivial second and fourth order com-
ponents were also observed in H���. In this case, the first
four components account for �98% of the overall magnitude
of the interaction function. These results indicate that the
overall shape of the H��� is largely composed of lth harmon-
ics with l�n+1, where n is the feedback order used to pro-
duce the function, in line with theoretical expectations.

While the magnitude of the harmonics of H is controlled
by the feedback order and their associated feedback gains
�kn�, the ratio between the symmetric and antisymmetric
components of H is controlled by the feedback delay ��n�.
This indicates that increasing the feedback delay is equiva-
lent to shifting the phase of the corresponding components of
the interaction function. To validate this claim experimen-
tally, a series of interaction functions was measured using a
two oscillator system with global first order feedback over a
range of feedback delay �1 from 0.013 to 1 rad /2�.

The base interaction function ��1=0.013 rad /2�� is il-
lustrated in Fig. 4�a�. As the feedback delay was increased,
the interaction function was observed to shift �Fig. 4�b��. To
determine the phase shift of the interaction functions when
�1�0.013 rad /2�, a correlation function was calculated be-
tween the base interaction function and each of the shifted
interaction functions. The correlation function was deter-
mined by finding the correlation coefficient between the
shifted interaction functions and the base interaction function
as the phase of the base function was rotated from 0 to 2�.
The phase which produced the maximum value of the corre-
lation coefficient was taken as the experimentally observed
phase shift. Figure 4�c� indicates that the phase shift of H is
directly proportional to the feedback delay with a proportion-
ality constant of 1. For each measurement, the maximum
value of the correlation coefficients remained high ��0.98�,
indicating that the overall shape of the interaction function
was preserved.
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Knowing the relationship between the harmonics of the
interaction function and the feedback parameters, it is pos-
sible to engineer a feedback that produces a desired interac-
tion function, for example, H���=sin��−
�−r sin�2��,
where 
=1.32 and r=0.25.

Before the feedback parameters associated with this in-
teraction function can be calculated, the waveform �Fig. 5�a��
and the response function of the oscillations must be deter-

mined. The response function was calculated using Eq. �9�
from multiple measurements of interaction functions under
different feedback conditions �usually first, second, and third
order feedback�. Since Eq. �9� does not have an analytical
solution for the response function, a numerical optimization
algorithm was used to calculate the Fourier coefficients of
Z��� �Fig. 5�b��. Once the response function was known, the
feedback parameters �kn� and ��n� were optimized to achieve

FIG. 3. Electrochemical experiments. �a� Time series of a single nearly smooth oscillator �V0=1.110 V, Rp=650��. �b� Percentage of the first seven
harmonics within the waveform of the rhythmic element. �c� The percentage of H��� contained within the first k harmonics of H��� as a function of the choice
of k. The values of k have been recentered by the feedback order n. �d–f� Experimental measurements of interaction functions corresponding to �d� first order
feedback �K=0.07, k0=0 V, k1=1, �1=0.013 rad /2��, �e� second order feedback �K=1.6, k0=−0.003 V, k1=0, k2=1 V−1, �2=0.013 rad /2��, and �f� third
order feedback �K=18, k0=6.5�10−5 V, k1=0, k2=0 V−1, k3=1 V−2, �3=0.013 rad /2��. �g–i� Percentage of the first seven harmonic components within the
measured interaction function using �g� first order feedback, �h� second order feedback, and �i� third order feedback.

FIG. 4. �Color online� �a� Experimental measurements �dots� with a Fourier fit �line� of an interaction function obtained using linear feedback �V0

=1.165 V, Rp=650 �, K=0.07, k0=0 V, k1=1, �1=0.013 rad /2��. �b� Interaction functions obtained with �1= �0.013,0.2,0.4,0.6� rad /2� respectively. �c�
Phase shift of the interaction function and maximum value of the correlation coefficient as a function of feedback delay.
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the desired interaction function also using Eq. �9�.9 The in-
teraction function produced by the optimized feedback pa-
rameters was experimentally determined to ensure that they
produce the expected function. Figure 5�c� compares the ex-
perimentally measured interaction function to the interaction
function predicted by Eq. �9�. By calculating the Fourier co-
efficients of the experimental measurements, it was deter-
mined that 
=1.350 and r=0.242, within 3% of their target
values.

C. Phase clustering experiments

To engineer a cluster state in the experimental system,
feedback parameters were selected such that the desired clus-
ter state was stabilized. Four sets of experiments were con-
ducted to obtain balanced cluster states composed of one to
four clusters, using a population of 64 oscillators. Since a
four cluster state requires the presence of fourth order har-
monics in the response function, the operation voltage of the

system was set at 1.195 V for each experiment causing
weakly relaxational oscillations �Figs. 6�a� and 6�b��. The
Fourier coefficients of the waveform and response function
can be found in Table III.

As seen in the numerical simulations �Sec. V�, there ex-
ists a large number of equally valid target interaction func-
tions which can produce the desired cluster states. No spe-
cific target function was selected; The Fourier coefficients of
the interaction function were optimized such that the desired
cluster state was uniquely �or almost uniquely� stabilized.
Given previous numerical results, nth order feedback was
used to produce an n cluster state. Since linear feedback is
sufficient to produce the one cluster state, no optimization
was necessary in this case. For the higher order cluster states,
a set of penalties were created to describe the fitness of the
interaction function based on the distance between its Fou-
rier coefficients and an acceptable range of coefficients. The
fitness of H��� was calculated using the equations

FIG. 5. �a� Time series of electrode potential �V0=1.165 V, Rp=650 ��. �b� Response function Z��� and waveform �inset� of a single oscillator. �c� Target
�solid line�, optimized �dashed line�, and measured �dots� interaction function with feedback parameters K=0.0494, k0=−0.0526 V, k1=8.7376, k2

=16.3696 V−1, �1=0.21 rad /2�, �2=0.68 rad /2�.

FIG. 6. Experiments: Effects of polynomial feedback on the interaction function. �a� Time series of electrode potential during electrodissolution of nickel
wires in sulfuric acid �V0=1.195 V, Rp=650 ��. �b� Response function and waveform �inset� of a single oscillator. �c� Interaction function optimized to
produce a 1 cluster state �K=0.4, k0=0 V, k1=1, �1=0.014�. �d� Interaction function optimized to produce a 2 cluster state �K=0.0425, k0=14.97 V, k1

=−3.265, k2=−66.087 V−1, �1=0.014, �2=0.368�. �e� Interaction function optimized to produce a 3 cluster state �K=0.0424, k0=20.747 V, k1=−4.142, k2

=−72.317 V−1, k3=251.744 V−2, �1=0.014 rad /2�, �2=0.32, �3=0.04�. �f� Interaction function optimized to produce a 4 cluster state �K=0.0839, k0

=1.787 V, k1=−5.099, k2=−34.136 V−1, k3=196.145 V−2, k4=3139.686 V−3, �1=0.014, �2=0.44, �3=0.02, �4=0.36�. The feedback delay times are given in
rad /2�.
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fitness = magnitude + penalties,

magnitude = K�
n=1

S kn
10n ,

�35�

penalties = �
n=1

7

Pn,

Pn = �	Bn −
LBn + UBn

2
	 for Bn � LBn or Bn � UBn

0 for LBn � Bn � UBn,
�

where Bi is the ith odd Fourier coefficient of H���. The
upper and lower bounds �UB and LB� of the odd Fourier
coefficients were selected such that the desired cluster state
would be stable and the other �up to 6� cluster states in the
system would be unstable. As previously demonstrated, this
requires that the interaction function for an n cluster state has
a large positive nth order harmonic, and sufficiently negative
mth harmonics �m�n� to destabilize all other cluster states.
The target Fourier coefficient ranges reflect this requirement,

and are tabulated in Table IV. Additionally, a magnitude ad-
justment was added to penalize parameter sets which pro-
duced a large amplitude feedback signal. Large feedback per-
turbations are not desirable since they may change the
amplitude of the rhythmic elements of the system, violating
the phase approximation. By minimizing the value of the
fitness variable, the optimization forced the interaction func-
tion to have Fourier coefficients necessary to produce the
desired cluster state. The optimized interaction functions are
illustrated in Figs. 6�c�–6�f�.

The transversal eigenvalues of states with one to four
clusters can be seen in Table III for each experiment. They
were calculated from the Fourier coefficients of the experi-
mental interaction functions using Eqs. �A3� and �A4�. The
eigenvalues indicate that the desired one, two, and three clus-
ter states are uniquely stable. In the case of the four cluster
experiment, the numerical optimization was unable to find
feedback parameters to stabilize the four cluster state without
also stabilizing the two cluster state. This is not unexpected,
given that the difficulty of the optimization dramatically in-
creases with feedback order. Therefore, the four cluster ex-
periment will have a bistability between the four cluster state

TABLE III. �Top� Fourier coefficients of the waveform, response function, and the optimized interaction functions for each of the four experimental
objectives. �Bottom� transversal eigenvalues for cluster states 1–4 for each of the four experiments, as calculated from the Fourier coefficients of the
corresponding interaction function.

n

Waveform Response Fn H �1 cluster� H �2 cluster� H �3 cluster� H �4 cluster�

Even Odd Even Odd Even Odd Even Odd Even Odd Even Odd

1 −0.0710 +0.0063 +5.6533 +15.460 −0.0799 +0.2211 −0.0014 −0.1688 −0.0619 −0.1289 +0.1503 −0.0617
2 −0.0399 −0.0056 +12.229 +14.496 −0.1303 +0.0819 +0.1475 +0.0446 +0.1313 −0.0157 −0.1384 −0.0291
3 −0.0212 −0.0054 +9.9103 +5.7058 −0.0507 +0.0010 −0.0473 −0.0138 −0.0657 +0.0353 +0.1281 −0.0593
4 −0.0133 −0.0026 +1.8530 +2.6015 −0.0071 +0.0029 −0.0101 −0.0127 −0.0140 −0.0148 −0.0049 +0.0414
5 −0.0064 −0.0005 −0.8616 +2.1364 −0.0004 +0.0031 −0.0067 +0.0013 −0.0009 −0.0057 −0.0275 +0.0069
6 −0.0038 +0.0004 +0.5878 +1.7258 −0.0010 +0.0011 −0.0033 −0.0010 −0.0021 +0.0024 +0.0130 −0.0022

1 cluster �1 �2 �3 �4 2 cluster �1 �2 �3 �4

M =1 −0.422 ¯ ¯ ¯ M =1 +0.172 ¯ ¯ ¯

M =2 +0.058 −0.182 ¯ M =2 −0.236 −0.032 ¯ ¯

M =3 +0.196 +0.196 −0.010 ¯ M =3 −0.014 −0.014 +0.048 ¯

M =4 +0.108 +0.159 +0.108 −0.012 M =4 −0.051 +0.134 −0.051 +0.051
3 cluster �1 �2 �3 �4 4 cluster �1 �2 �3 �4

M =1 +0.127 ¯ ¯ ¯ M =1 +0.111 ¯ ¯ ¯

M =2 +0.025 +0.076 ¯ ¯ M =2 −0.299 −0.094 ¯ ¯

M =3 −0.245 −0.245 −0.121 ¯ M =3 +0.231 +0.231 +0.191 ¯

M =4 +0.034 +0.043 +0.034 +0.059 M =4 −0.268 −0.237 −0.268 −0.166

TABLE IV. Range of the odd Fourier coefficients of H��� used to optimize feedback parameters to produce
phase cluster states 2–4.

Harmonic: 1st 2nd 3rd 4th 5th 6th 7th

2 cluster exp. lower bounds �LB� −1.0 0.5 −2.0 −0.8 −0.5 −0.50 −0.50
2 cluster exp. upper bounds �UB� −0.5 1.0 −0.4 −0.3 −0.1 −0.05 −0.05
3 cluster exp. lower bounds �LB� −1.0 −2.0 0.5 −0.8 −0.5 −0.50 −0.50
3 cluster exp. upper bounds �UB� −0.5 −0.4 1.0 −0.3 −0.1 −0.05 −0.05
4 cluster exp. lower bounds �LB� −1.0 −2.0 −0.8 0.2 −0.5 −0.50 −0.50
4 cluster exp. upper bounds �UB� −0.5 −0.4 −0.3 0.5 −0.1 −0.05 −0.05
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and the two cluster state. In this case, the final state of the
system will be determined by the initial conditions of the
system.

After the feedback parameters were determined, they
were applied to the experimental system, driving it towards
the appropriate cluster state �Fig. 7�. Initially no feedback is
present in the system, and the rhythmic elements were iso-
lated from one another. Without feedback, these elements
have a base frequency of 0.5 Hz�5% with phases randomly
distributed between 0 and 2�. Upon application of the feed-
back signal, the system progresses towards the desired clus-
ter state after a short transient period. When the feedback is
removed, the system relaxes back to its original unstructured
configuration. Each experiment was successful in producing
the desired cluster state from the appropriate feedback signal.
It is important to note that although the four cluster experi-
ment was predicted to have a bistability between the two and
four cluster states, only the four cluster state was experien-
tially observed. This seems to indicate that the basin of at-
traction for the four cluster state is sufficiently larger than the
basin of the two cluster state.

VII. CONCLUDING REMARKS

We have presented a framework for engineering target
dynamical behavior in populations of oscillators with mild
feedback. Using a time delayed, nonlinear feedback, Eq. �5�,
a variety of collective dynamics possible in weakly coupled
oscillators can be engineered. The comprehensive theory,
based on phase models, behind the methodology has been
presented. We have verified the theoretical arguments by
both numerical and experimental studies, showing that the
methodology can be applied accurately to limit-cycle oscil-
lator systems. As an illustration, by introducing the global
feedback given as Eq. �4�, various clustering behaviors have
been demonstrated numerically and experimentally.

Our methodology is based on the fact that the existence
and stability conditions of dynamical states in weakly
coupled identical oscillators are characterized by the phase
interaction function. Thus, knowing an interaction function
resulting in a target collective dynamics, the only remaining
issue is how to construct the physical interaction yielding the
phase interaction function. An interaction function can be
constructed using the proposed feedback function, Eq. �5�.
The choice of the specific form of the feedback function was
motivated by the flexible application of the imposed interac-
tion function for synchronization engineering �Sec. IV�. It
has been shown that the nth order term of the feedback signal
effectively enhances the nth Fourier components of the inter-
action function. The time delay of the nth term is utilized to
arbitrarily tune the balance of even and odd parts of the
Fourier components. These correspondences appear intu-
itively reasonable, as the nth power of the harmonic signal
makes a component of harmonic signal having n times fre-
quency and the time delay shifts the waveform. In general,
the higher order harmonics in the interaction function are
responsible for complex dynamical behavior including dy-
namical clustering. Our methodology provides a framework
for tuning all the harmonics in the interaction function.

A major advantage of our methodology is that the feed-
back resulting in a target interaction function can be de-
signed through the knowledge of the macroscopic observ-
ables of an isolated oscillator, that is, the waveform and the
phase response function. When focusing on engineering syn-
chronization properties, a microscopic investigation of the
system is not needed. This point is beneficial when applica-
tions to biological systems are considered. It is usually a
formidable task to construct an appropriate, detailed math-
ematical model of a biological system. However, the inves-
tigation of the phase response function is often possible; the
PRCs of circadian oscillators with respect to light or tem-

FIG. 7. �Color online� �A� Time series of the R1 order parameter, using feedback optimized to produce a one cluster state. Arrows indicate the application and
termination of the feedback signal. �B� Time series of the R2 order parameter using feedback optimized to produce a two cluster state. �C� Time series of the
R3 order parameter using feedback optimized to produce a three cluster state. �D� Time series of the R4 order parameter using feedback optimized to produce
a four cluster state.
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perature stimuli have been extensively measured29 as well as
the PRCs of neurons with respect to electric stimuli.21,23

Our methodology may be used not only to induce dy-
namical order but also to destroy synchronization. In a pre-
vious paper,9 we have demonstrated that a theoretically de-
signed feedback successfully desynchronizes a population of
chemical oscillators which otherwise shows simple synchro-
nization due to global interaction among elements. The
model-engineered feedback may find an application in pace-
maker and antipacemaker design for medical use �tremors,
epilepsy�.

Because of the robustness of phase description of limit-
cycle oscillators, our methodology for designing interaction
function with feedback is robust against �at least weak�
noise. However, when a complex dynamical structure is de-
signed, we need to consider the �structural� stability of the
designed dynamical behavior in the presence of noise. For
example, global noise can enhance the extent of phase
synchronization,30 but can destroy subtle structures like slow
switching.18,19 Therefore, the precision of the fitted interac-
tion function and the overall gain shall be carefully chosen in
the presence of noise to obtain the desired structure. Because
the proposed methodology was shown to work in the experi-
mental system, our method should be applicable in systems
with weak noise and well-defined oscillator waveform and
response function.

Limitations to our approach should be noted. We have
focused on mild engineering, mild such that essential dy-
namical properties of elements are preserved. This strategy
allows us to use the phase model. The phase models cannot
be used with strong feedback because of amplitude effects.
Also, the applicability of our method to chaotic oscillators is
unclear because the rigorous phase description for chaotic
oscillators has not been established yet. In coupled chaotic
oscillators, various types of collective behavior arise and
some of them are analogous to those in weakly coupled
limit-cycle oscillators, such as phase synchronization.31,32 It
would be thus worth trying to extend the method to chaotic
oscillators. Another issue arises in cases where limit-cycle
oscillators have inherent complex interactions. In the present
paper, oscillators are assumed to be independent �i.e., un-
coupled� unless feedback is applied. In the presence of inher-
ent global coupling, we have shown the desynchronization is
possible using our methodology.9 What happens if the oscil-
lators are coupled via space dependent interactions or com-
plex networks? This issue requires further exploration, for
example, in chemical reaction-diffusion systems and control
neural networks.

ACKNOWLEDGMENTS

We thank Alexander Mikhailov, Yoshiki Kuramoto,
Ichiro Tsuda, and Yasumasa Nishiura for useful discussions
and warm hospitality.

H.K. acknowledges financial support from the Alexander
von Humboldt Foundation and the 21st Century COE Pro-
gram “Mathematics of nonlinear structures via singularities”
at Hokkaido University, Japan. This work was supported in
part by the National Science Foundation under Grant No.
CBET-0730597.

APPENDIX: EXISTENCE AND STABILITY
OF THE BALANCED CLUSTER STATES

The balanced n cluster state may be described as

� j�Ck
= �t + 2k�/n , �A1�

where the set Ck identifies the oscillators forming the cluster
k �k=0, . . . ,n−1� and each set includes N /n elements. Such
a solution always exists in the phase model �3�. Substituting
Eq. �A1� into Eq. �3�, we obtain

� =
K

n
�
k=0

n−1

H�2k�/n� = H0 + 2�
l=1



Re Hl. �A2�

The linear stability problem for the balanced cluster states
has been studied by Okuda.17 The eigenvalues were found to
be

�intra
�n� = − 2�

l=1



l Im Hnl, �A3�

Re �inter,p = �intra
�n� − �

l=1



l Im�Hn�l−1�+p + Hnl−p� , �A4�

�0 = 0, �A5�

where �intra
�n� is associated with intracluster fluctuations �N−n

multiplicity�, �inter,p �p=1, . . . ,n−1� are associated with in-
tercluster fluctuations, and �0 is associated with the identical
phase shift.

For the interaction function with Im Hn�0 and Im Hl

�0 for l�n, the following relation holds:

Re �inter,p � �intra
�n� � �max

�n� . �A6�

Thus, the n cluster state is linearly stable if and only if
�max

�n� �0.
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