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We theoretically study the synchronization between collective oscillations exhibited by two weakly
interacting groups of nonidentical phase oscillators with internal and external global sinusoidal
couplings of the groups. Coupled amplitude equations describing the collective oscillations of the
oscillator groups are obtained by using the Ott–Antonsen ansatz, and then coupled phase equations
for the collective oscillations are derived by phase reduction of the amplitude equations. The
collective phase coupling function, which determines the dynamics of macroscopic phase differ-
ences between the groups, is calculated analytically. We demonstrate that the groups can exhibit
effective antiphase collective synchronization even if the microscopic external coupling between
individual oscillator pairs belonging to different groups is in-phase, and similarly effective in-phase
collective synchronization in spite of microscopic antiphase external coupling between the groups.
© 2010 American Institute of Physics. �doi:10.1063/1.3491346�

Systems of limit-cycle oscillators are used to model vari-
ous rhythmic processes in nature. When interactions be-
tween the oscillators are weak, they can be described as
coupled phase oscillators. Much of the essence of syn-
chronization phenomena has been revealed by the analy-
sis of such reduced phase models, including the emer-
gence of collective oscillations as an outstanding example.
Recently, synchronization between collective oscillations
has attracted considerable attention, because macro-
scopic rhythms in the real world are often generated by
synchronized groups, each consisting of many micro-
scopic elements. Here we show that weakly interacting
groups of globally coupled nonidentical phase oscillators
exhibiting macroscopic rhythms can be reduced to
coupled collective phase models. Using collective phase
description, we analyze synchronization between collec-
tive oscillations.

I. INTRODUCTION

Populations of coupled dynamical elements are abundant
in nature. Macroscopic collective oscillations typically
emerge in such systems through mutual synchronization of
the individual elements.1–6 Coupled phase oscillator models
have played a prominent role in theoretical investigations of
the origin and the nature of collective oscillations. Globally
coupled phase oscillators, a representative class of such mod-
els, have been particularly well analyzed.7–14 The appearance
of an experimental system of coupled electrochemical

oscillators15–19 has worked so powerfully in accelerating the
study of collective dynamics of globally coupled oscillators.
Recently, Ott and Antonsen20,21 proposed a remarkable math-
ematical ansatz for the analytical treatment of coupled phase
oscillators in the continuum limit, which is applicable to
models with global sinusoidal coupling. Since then, various
applications22–31 and extensions32,33 �see also Refs. 34 and
35� of the Ott–Antonsen ansatz have been rapidly developed.

When two or more groups of dynamical elements exhib-
iting collective oscillations interact with each other, synchro-
nization among those collective oscillations may naturally be
expected. In Refs. 36–40, two interacting groups of globally
coupled phase oscillators have been studied and mutual en-
trainment between the groups has been reported. The de-
scription of the system in those works was essentially based
on microscopic phases of the individual oscillators, and mac-
roscopic properties of the collective synchronization were
also investigated on the microscopic footing. However, it
should be more convenient and beneficial if one can describe
the collective oscillations at the macroscopic level using ap-
propriate macroscopic variables in a closed form.

In this paper, using the collective phase of each oscillator
group as the macrovariable,41–44 we formulate a theory of
synchronization between two interacting groups of globally
coupled oscillators closed at the macroscopic level, based on
the Ott–Antonsen ansatz that gives a low-dimensional de-
scription of phase oscillators with global sinusoidal coupling,
as well as on the standard phase reduction theory for limit-
cycle oscillators. We analytically derive the collective phase
coupling function, which determines the macroscopic dy-a�Electronic mail: ykawamura@jamstec.go.jp.
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namics of the interacting groups, and illustrate several repre-
sentative cases of collective phase synchronization between
the groups. In particular, we reveal a counterintuitive phe-
nomenon in which the macroscopic collective phase differ-
ence between two groups becomes antiphase in spite of mi-
croscopic in-phase external coupling between individual
pairs of oscillators between the groups, and also the opposite
phenomenon, namely, in-phase synchronization between os-
cillator groups with microscopic antiphase external coupling.

In Ref. 43, we considered a similar problem, namely,
collective phase synchronization between two groups of glo-
bally coupled phase oscillators. The crucial difference is that
we treat deterministic noiseless nonidentical phase oscilla-
tors in the present paper, whereas we analyzed stochastic
noisy identical phase oscillators in Ref. 43. Although these
two cases may look similar, they are physically different sys-
tems and require distinct mathematical approaches; here we
rely on the Ott–Antonsen ansatz, whereas we used center-
manifold reduction as well as phase reduction to nonlinear
Fokker–Planck equations in Ref. 43. As we will show, we
still find very similar transitions between effective in-phase
and antiphase synchronization in both cases. This implies
that the two systems have similar effective low-dimensional
dynamics, despite the fact that the two models are originally
defined in completely different high-dimensional phase
spaces.

The organization of this paper is as follows. In Sec. II,
we introduce a model of weakly interacting groups of glo-
bally coupled phase oscillators and illustrate both effective
antiphase and in-phase synchronization of collective oscilla-
tions by numerical simulations. In Sec. III, we develop a
theory based on the macroscopic phase description of collec-
tive oscillations that clarifies whether the phase coupling be-
tween collective oscillations is effectively in-phase or an-
tiphase. In Sec. IV, we illustrate several representative cases
of the collective phase coupling function obtained in Sec. III
and reexamine the numerical results in Sec. II. Concluding
remarks will be given in Sec. V.

II. COLLECTIVE PHASE SYNCHRONIZATION
OF OSCILLATOR GROUPS

We consider two interacting groups of globally coupled
nonidentical phase oscillators described by the following
model:

�̇ j
����t� = � j −

K

N
�
k=1

N

sin�� j
��� − �k

��� + ��

−
�J

N
�
k=1

N

sin�� j
��� − �k

��� + �� �1�

for j=1, . . . ,N and �� ,��= �1,2� or �2, 1�, where � j
����t� is

the phase of the jth oscillator in the �th group consisting of
N oscillators. The second term on the right-hand side repre-
sents internal coupling between oscillators within the same
group, and the last term gives external coupling between
oscillators that belong to different groups. This phase model
can be derived from two interacting groups of globally
coupled limit-cycle oscillators near the Hopf bifurcation

point using the phase reduction method2 under weak cou-
pling conditions. Phase oscillators with global sinusoidal
coupling as given in Eq. �1� can be experimentally realized
in electrochemical oscillator systems.15–19

The internal coupling is specified by the parameters
K	0 and ���
� /2, where K determines the coupling inten-
sity and � gives the coupling phase shift. These parameter
values correspond to in-phase �attractive� internal coupling.
Similarly, the external coupling is specified by the param-
eters J	0 and �����. The external coupling can be either
in-phase �attractive� ����
� /2� or antiphase �repulsive�
����	� /2�.2 The characteristic magnitude of the weak exter-
nal coupling is given by a small parameter �0.

The natural frequency � j is assumed to be drawn from
the Lorentzian distribution with central value �0 and disper-
sion �,

g��� =
�

�

1

�� − �0�2 + �2 . �2�

We define a parameter

� =
�

K cos �
, �3�

which is the ratio of the frequency dispersion � to the attract-
ing component K cos � of the internal coupling function.
When the external coupling is absent, i.e., �=0, Eq. �1� de-
scribes two independent oscillator groups ��=1,2�, each of
which exhibits collective oscillations under the condition 0
��
1 /2.8

Introducing a complex order parameter A����t� with
modulus R����t� and phase �����t� through

A����t� = R����t�ei�����t� =
1

N
�
k=1

N

ei�k
����t� �4�

for each group, we can rewrite Eq. �1� as

�̇ j
��� = � j − KR��� sin�� j

��� − ���� + ��

− �JR��� sin�� j
��� − ���� + �� . �5�

The order parameter R��� quantifies the degree of synchroni-
zation in each group �0�R����1�, and ���� gives the mac-
roscopic collective phase of the group.

Focusing on weakly coupled collective oscillations, we
carried out numerical simulations of Eq. �5� with Eq. �4�
under the following conditions: without loss of generality,
we can assume K=J=1 and �0=0. The external coupling
was assumed to be much weaker than the internal coupling,
�=0.01. We set the frequency dispersion �= �K cos �� /4 and
the internal coupling phase shift �=3� /8, so that the param-
eter � was given by �=1 /4. The number of oscillators in
each group was N=4096, which was sufficiently large to
observe clear collective oscillations.

Figure 1�a� shows the typical evolution of the collective
phase difference ���1�−��2�� with in-phase condition for mi-
croscopic external coupling, �=3� /8. Two groups of phase
oscillators exhibiting collective oscillations were separately
prepared with their collective phases being almost equal, and
these states were used as the initial condition. Despite the
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in-phase external coupling condition for individual pairs of
oscillators in different groups, the collective phase difference
became antiphase ����1�−��2��=�� after some time. Thus,
Fig. 1�a� implies that effective antiphase coupling between
collective oscillations is realized. In contrast, Fig. 1�b� shows
effective in-phase synchronization between collective oscil-
lations ����1�−��2��=0� with microscopic antiphase external
coupling, �=−5� /8.

Snapshots of the phase oscillators after the collective
phase difference has reached the asymptotic value in Fig. 1
are displayed in Fig. 2. The oscillators are sorted in increas-
ing order of their natural frequencies. The coherent segment
represents phase-locked oscillators within each group and
scattered points correspond to drifting oscillators. The coher-
ent, phase-locked segment of each group is not centered
about the middle oscillator because the internal coupling
phase shift � is nonzero. In Fig. 2�a�, the two distributions of
the oscillators are shifted by �, indicating antiphase synchro-
nization between the groups. In contrast, the two distribu-
tions almost overlap in Fig. 2�b�, i.e., they are in-phase syn-
chronized. Note that drifting oscillators from different groups
do not synchronize with each other. In other words, the col-
lective phase synchronization between the groups is not due
to complete synchronization of individual oscillators at the
microscopic level.

III. DERIVATION OF THE COLLECTIVE PHASE
COUPLING FUNCTION

We now derive collective phase equations describing the
interacting oscillator groups via the amplitude equations ob-

tained by using the Ott–Antonsen ansatz.20,21 We analytically
determine the collective phase coupling function and its type,
specifically, whether it is in-phase or antiphase.

Using the order parameters defined in Eq. �4�, we can
rewrite Eq. �1� as

�̇ j
��� = � j −

K

2i
�Ā���ei�j

���
ei� − A���e−i�j

���
e−i��

−
�J

2i
�Ā���ei�j

���
ei� − A���e−i�j

���
e−i�� , �6�

where Ā��� is the complex conjugate of A���. In the con-
tinuum limit, N→�, we can obtain the following continuity
equation for each �:20,21

�

�t
f �����,�,t� +

�

��
�	� −

K

2i
�Ā���ei�ei� − A���e−i�e−i��

−
�J

2i
�Ā���ei�ei� − A���e−i�e−i��
 f �����,�,t�� = 0, �7�

which describes the dynamics of the probability density
function f ����� ,� , t� of the phase and the frequency. Here,
f ����� ,� , t� satisfies normalization conditions,
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FIG. 1. �Color online� Time evolution of collective phase difference
���1�−��2��. �a� Effective antiphase collective synchronization with micro-
scopic in-phase external coupling, �=3� /8. �b� Effective in-phase collec-
tive synchronization with microscopic antiphase external coupling,
�=−5� /8. The other parameters are K=J=1, �=0.01, �0=0,
�= �K cos �� /4, and �=3� /8. The number of oscillators in each group is
N=4096.

-π

0

π

0 1024 2048 3072 4096

φ j

(a)

[ β = 3π / 8 ] j

(1) (2)

-π

0

π

0 1024 2048 3072 4096

φ j

(b)

[ β = -5π / 8 ] j

(1) (2)

FIG. 2. �Color online� Snapshots of the asymptotic states of the oscillators
in Fig. 1. The oscillators in each group are sorted in increasing order of their
natural frequencies. Only one in every two oscillators is plotted. Open
circles ��� and plus signs �+� indicate oscillator in group �1� and in group
�2�, respectively. The collective frequency of each group is
�= �−3 /4�sin�3� /8�, which differs from the central frequency �0=0.
�a� Effective antiphase coupling with microscopic in-phase coupling,
�=3� /8. �b� Effective in-phase coupling with microscopic antiphase cou-
pling, �=−5� /8.
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�
0

2�

d�f �����,�,t� = g��� ,

�8�

�
0

2�

d��
−�

�

d�f �����,�,t� = 1,

and the complex order parameter A��� is now defined by

A����t� = �
0

2�

d��
−�

�

d�ei�f �����,�,t� �9�

for �=1,2.
We now apply the Ott–Antonsen ansatz,20,21

f �����,�,t� =
g���
2�

�1 + �
n=1

�

�a�����,t��nein�

+ �ā�����,t��ne−in��� , �10�

to the continuity equation �7�, which replaces all the Fourier
coefficients of f ����� ,� , t� by integer powers of the complex
variable a����� , t�. This ansatz leads to a two-dimensional
representation of the infinite-dimensional partial differential
equation when the frequency distribution g��� is Lorentzian.
It has been shown that the above restricted functional form
of f ����� ,� , t� yields asymptotically correct dynamics of the
complex order parameter A����t�.21

By substituting this expression into Eq. �7�, we can de-
rive the following equation for the complex dynamical vari-
able a����� , t�:

�

�t
a��� + i�a��� +

K

2
�A����a����2e−i� − Ā���ei��

+
�J

2
�A����a����2e−i� − Ā���ei�� = 0, �11�

where �� ,��= �1,2� or �2, 1�. Moreover, in the case of the
Lorentzian frequency distribution, Eq. �2�, the complex order
parameter A����t� can simply be expressed by a����� , t� as

A����t� = �
0

2�

d��
−�

�

d�ei�f �����,�,t�

= �
−�

�

d�ā�����,t�g���

= ā����� = �0 − i�,t� �12�

by performing a complex contour integral in the lower-half
complex plane of �, where �=�0− i� gives the pole of the
integrand with the Lorentzian g���.20,21 Therefore, we arrive
at the following coupled amplitude equation for the complex
order parameter A����t� in a closed form:

Ȧ��� = �� + i�c�A��� − g�A����2A���

+ ��d̄A��� − d�A����2Ā���� �13�

for �� ,��= �1,2� or �2, 1�, where the parameters are defined
by

� =
K cos �

2
− �, �c = �0 −

K sin �

2
,

�14�

g =
K

2
ei�, d =

J

2
ei�.

Note that Eq. �13� describes two coupled Stuart–Landau os-

cillators, each of which �i.e., Ȧ= ��+ i�c�A−g�A�2A� repre-
sents collective oscillations of the respective oscillator
group. Also, note that it is valid for the whole parameter
region of the system, not only near the synchronization tran-
sition points of each oscillator group, �=1 /2 ��=0�. This is
in sharp contrast to the conventional center-manifold reduc-
tion method2 that leads to similar coupled amplitude equa-
tions, but which is valid only near the bifurcation points.

As mentioned above, each oscillator group exhibits col-
lective oscillations when �
1 /2 ��	0�. Correspondingly,
in the absence of the external coupling, �=0, Eq. �13� has a
circular limit-cycle solution A0��� on the complex plane,
whose analytical expression can explicitly be given by

A0��� =� �

Re g
ei�, R0 = �A0� = �1 − 2� ,

�15�

�̇ = � = �c − �
Im g

Re g
= �0 − K sin � + � tan � ,

where R0 and � represent the amplitude and the frequency of
the collective oscillation in the model �1� with �=0, respec-
tively �see Appendix A�. The right Floquet eigenvector of the
limit-cycle solution A0��� associated with the zero eigen-
value is given by U0���=dA0��� /d�, namely,

U0��� = i� �

Re g
ei�, �16�

and the corresponding left zero Floquet eigenvector at each
� can be taken as

U0
���� = i�Re g

�

g

Re g
ei�. �17�

Taken together, they satisfy the normalization condition,

Re�Ū0
����U0���� = 1. �18�

Although the above quantities are expressed by complex
numbers for the sake of convenience in analytical calcula-
tions performed below, they are exactly the same as the
known results for the Stuart–Landau oscillator.2

Now let us introduce weak external coupling, i.e., we
assume that � takes small positive values and treat the last
term of the amplitude equation �13� as a perturbation. Using
the phase reduction method,2 we can obtain the collective
phase dynamics of the amplitude equation �13� by projecting
it onto the unperturbed limit-cycle orbit as

�̇��� = Re�Ū0
�������Ȧ����

� � + � Re�Ū0
�������d̄A0������

− d�A0�������2Ā0�������� , �19�
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where we approximated A��� by the unperturbed solution

A0������ and used Re�Ū0
����Ȧ0����=�. We have thus ob-

tained the following coupled collective phase equation from
Eq. �13�:

�̇��� = � + ������� − ����� �20�

for �� ,��= �1,2� or �2, 1�, where the collective phase cou-
pling function is given by

������ − ����� = Re�Ū0
�������d̄A0������

− d�A0�������2Ā0�������� . �21�

Similarly, we can also derive the collective phase sensitivity
function42 �see Appendix B�.

By inserting the expressions of Eqs. �14�, �15�, and �17�
into Eq. �21�, the collective phase coupling function ���� is
obtained in the sinusoidal form,

���� = − � sin�� + �� , �22�

where the parameters � and � are, respectively, the modulus
and the argument of a complex number given by

�ei� = J��1 − ��cos � − � tan � sin ��

+ i�1 − ��sin � + � tan � cos ��� . �23�

This formula is the main result of the present paper. It deter-
mines the collective phase coupling function, Eq. �22�, in the
collective phase equation �20�, which is derived from Eq. �1�
via the complex amplitude equation �13�. The type of cou-
pling is found from the following quantity:

� cos � = J�1 − ��cos � − � tan � sin �� , �24�

where � cos �	0 represents the in-phase coupling and
� cos �
0 gives the antiphase coupling. Reflecting the sym-
metry of Eq. �1�, Eq. �24� is symmetric about the origin in
the �-� plane.

IV. REPRESENTATIVE CASES OF COLLECTIVE
PHASE COUPLING FUNCTIONS

We here illustrate five representative cases of the collec-
tive phase coupling function obtained in Sec. III, which cor-
respond to several special sets of the parameters, i.e., the
ratio � given by Eq. �3�, the phase shift � of the internal
coupling function, and the phase shift � of the external cou-
pling function. We then reexamine the results of our numeri-
cal simulation in Sec. II.

�i� The first case is �=0, which implies that all oscilla-
tors are identical, i.e., �=0. In this case, the oscilla-
tors in the same group become completely phase syn-
chronized due to the in-phase internal coupling, so
that the maximum amplitude of collective oscillations
is realized, namely, R0=1. Inserting �=0 into Eq.
�23�, we obtain the following result:

� = 0, �ei� = Jei�, �25�

which says that the parameters of the collective phase
coupling function are identical to those of the micro-
scopic external phase coupling function, so that the

types of the effective coupling between the groups
and the external coupling between individual oscilla-
tors coincide. The same result for the completely
phase synchronized case has been obtained in differ-
ent ways.42–44 Note that the above results are indepen-
dent of the value of the internal coupling phase shift
�, so that � does not affect the collective phase cou-
pling function at all.

�ii� The second case is the limit �→1 /2, which indicates
that each oscillator group is exactly at the onset of
collective oscillations, i.e., R0→0. Inserting �=1 /2
into Eq. �23�, we obtain the following result:

� →
1

2
, �ei� =

J

2 cos �
ei��+��, �26�

which yields the real part � cos �= �J /2�cos �
−tan � sin ��. Thus, the microscopic internal cou-
pling parameter � most significantly affects the pa-
rameters of the collective phase coupling function, in
contrast to case �i�. Depending on the values of � and
�, the types of the effective coupling between the
groups and the external coupling between individual
oscillators can be either the same or opposite.

�iii� The third case is �=0, which gives an antisymmetric
�odd� internal coupling function between individual
oscillators. In this case, �=� /K and R0=�1−2�. In-
serting �=0 into Eq. �23�, we obtain the following
result:

� = 0, �ei� = �1 − ��Jei�. �27�

Thus, the type of the collective phase coupling func-
tion is solely determined by the microscopic external
coupling phase shift �. Further, the collective and mi-
croscopic external coupling functions are of the same
type. Similar scenarios have been encountered in dif-
ferent models.42–44

�iv� The fourth cases correspond to special values of the
microscopic external coupling phase shift �, which
give symmetric �even� or antisymmetric �odd� exter-
nal coupling functions. Inserting �=0 �in-phase�, ��
�antiphase�, and �� /2 �marginal� into Eq. �23�, we
obtain the following results:

� = 0, �ei� = J��1 − �� + i� tan �� , �28�

� = � �, �ei� = J�− �1 − �� − i� tan �� , �29�

� = �
�

2
, �ei� = J��� tan � � i�1 − ��� . �30�

For antisymmetric �odd� microscopic external cou-
pling functions, i.e., for �=0 and ��, the type of the
collective phase coupling is not affected by the inter-
nal coupling phase shift �, because � does not appear
in the real part � cos �. In contrast, for the symmetric
�even� microscopic external coupling, i.e., �= �� /2,
the type of the collective phase coupling function is
solely determined by the internal coupling parameter
�. The types of effective coupling between groups
and the external coupling between individual oscilla-
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tors coincide when �=0, �� and also when
�= �� /2 and �=0.

�v� The fifth case is �=�, namely, the case that the ex-
ternal and the internal couplings have the same cou-
pling phase shift. Since we assume ���
� /2, the
value of � should also be in this range. Inserting �=�
into Eq. �23�, we obtain the following result:

� = �, �ei� = J�	cos � −
�

cos �

 + i sin �� . �31�

In this case, � cos � depends on the internal coupling
phase shift � and on the ratio �. Therefore, effective
antiphase collective coupling can be realized when
cos2 �
�, in spite of the microscopic in-phase exter-
nal coupling ����
� /2�. When �→1 /2, the effective
antiphase collective coupling is realized for
cos2 �
1 /2, i.e., � /4
 ���
� /2.

Now, let us reexamine the case with �=1 /4, which we
used in the numerical simulations displayed in Fig. 1. The
types of the collective phase coupling function of Eq. �22�
are shown in Fig. 3 on the �-� parameter plane, where the
solid curves represent boundaries between the in-phase and
antiphase regimes. The curves show the marginal condition
� cos �=0, which is determined from Eq. �24�. Two sets of
parameter values used in generating Fig. 1 are plotted in
Fig. 3. As can be seen, the set of parameters corresponding to
Fig. 1�a� is in the effective antiphase regime, whereas that
corresponding to Fig. 1�b� is in the effective in-phase regime.
Therefore, the theory developed in Sec. III successfully ex-
plains the numerical results displayed in Fig. 1.

V. CONCLUDING REMARKS

Three cases of macroscopic phase descriptions for col-
lective oscillations exhibited by coupled phase oscillator sys-
tems have been established for �i� phase coherent states in
nonlocally coupled noisy identical oscillators, �ii� fully
phase-locked states in networks of coupled noiseless non-
identical oscillators, and �iii� partially phase-locked states in
globally coupled noiseless nonidentical oscillators. Here, the

case �ii� can be fully analyzed from the viewpoint of dynami-
cal systems, while other cases �i� and �iii� necessitate statis-
tical treatments.

The collective phase dynamics of the case �i� was estab-
lished in Refs. 41–43, where the collective phase equation
was derived for the first time. In this case, it is essential to
derive a nonlinear Fokker–Planck equation from coupled
Langevin phase equations by using the mean-field theory,2

which is applicable for nonlocal coupling as well as for glo-
bal coupling in a large population of identical oscillators
with independent noise. Applying the phase reduction
method to the nonlinear Fokker–Planck equation, we can de-
rive the collective phase equation. Furthermore, using the
center-manifold reduction method in addition to the phase
reduction method, a detailed analysis can be performed near
the onset of collective oscillations via the supercritical Hopf
bifurcation.

The collective phase description for case �ii� was formu-
lated in Ref. 44. In this case, we can systematically treat any
system size, connectivity, heterogeneity in the coupling, and
nonuniform external forcing, as long as the oscillators ex-
hibit fully phase-locked collective oscillations. In particular,
the Jacobi matrix of the collectively oscillating solution takes
the form of the Laplacian matrix encountered in graph
theory,45,46 so that several analytical results can be obtained
by using the matrix tree theorem.47,48 There exist several
studies related to this case49,50 �see also Refs. 51 and 52�.

The present paper provides a tractable example of the
collective phase description for case �iii�. The keystone in
our analysis is the Ott–Antonsen ansatz,20,21 which is unfor-
tunately limited to the case with global sinusoidal coupling
and Lorentzian frequency distributions, but which yields
analytically tractable coupled Stuart–Landau equations for
the complex order parameters. By virtue of the circular sym-
metry of the limit-cycle, we could explicitly calculate the
collective phase coupling function between the groups.

However, a general framework for collective phase re-
duction in case �iii� is still missing. It would be necessary to
derive a continuity equation, such as the nonlinear Fokker–
Planck equation, similar to case �i�, which can easily be
done. However, the fundamental difficulty in applying the
phase reduction method to the continuity equation in this
case lies in the fact that the zero eigenvalue corresponding to
the collective phase mode may not be isolated, but immersed
in the continuous spectrum on the imaginary axis, as implied
by the linear stability analysis.53 In the formulations of cases
�i� and �ii�, it is critically important that the zero eigenvalue
corresponding to the collective phase mode is isolated. In the
present study, reduction of the infinite-dimensional phase
space to a finite-dimensional manifold by using the Ott–
Antonsen ansatz yielded an isolated zero eigenvalue corre-
sponding to the collective phase mode. But it is an open
problem at this point how to extend the present analysis to
more general phase coupling functions with higher harmonic
terms and to more general frequency distributions of the
oscillators.

In conclusion, we have established an analytically trac-
table example of the collective phase description of globally
coupled nonidentical phase oscillators. We have found that

-π

-π / 2

0

π / 2

π

-π / 2 0 π / 2

β

anti-phase

in-phase

anti-phase

[ η = 1 / 4 ] α

FIG. 3. �Color online� A diagram showing whether the collective phase
coupling function between the groups is in-phase or antiphase on the �-�
plane for �� �−� /2,� /2�, �� �−� ,��, and �=1 /4. The solid curves are
theoretically determined from Eq. �24�, i.e., by � cos �=0. The filled circle
��� indicates �=�=3� /8 corresponding to Figs. 1�a� and 2�a�, and the
cross ��� indicates �=3� /8 and �=−5� /8 corresponding to Figs. 1�b� and
2�b�.
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the type of the collective phase coupling function can be
different from that of microscopic external coupling func-
tion, and clarified the relation between them by systemati-
cally deriving the collective phase equation from the micro-
scopic phase equations. The collective phase reduction
would serve as a powerful method in analyzing metagroups
of coupled oscillators comprised of multiple interacting
groups.

APPENDIX A: SELF-CONSISTENT THEORY
OF COLLECTIVE OSCILLATIONS

As a validation of our arguments based on the Ott–
Antonsen ansatz,20,21 we compare the limit-cycle solution
given in Eq. �15� with the result obtained by a conventional
self-consistent theory.2 As is well known, the self-consistent
equation2,7,8 for the order parameter amplitude R of Eq. �5�
with �=0 is given in the following form �see also Refs. 54
and 55�:

Rei� = �
−�

�

d�g�����1 − �� − �

KR
�2

+ i�� − �

KR
�� ,

�A1�

where contributions from both coherent and incoherent parts
are expressed in a single formula.56–58 There is a unique
eigenvalue � of the collective frequency for which the self-
consistent equation �A1� of the order parameter amplitude R
admits a solution. For the Lorentzian distribution of Eq. �2�,
we can analytically solve the self-consistent equation �A1� as
follows. No such calculation seems to have been carried out
so far.

The Lorentzian distribution of Eq. �2� can be expressed
by

g��� =
�

�

1

��� − �0� + i����� − �0� − i��
. �A2�

Taking the upper half-plane as the contour of integration for
Eq. �A1�, we obtain

Rei� = �1 − z2 + iz, z �
��0 − �� + i�

KR
. �A3�

This equation can be transformed into

R2ei� − 2iRz − e−i� = 0, �A4�

which is equivalent to the following simultaneous equations:

R2 cos � +
2�

K
− cos � = 0, �A5�

R2 sin � −
2��0 − ��

K
+ sin � = 0. �A6�

Solving these equations, the amplitude and frequency of the
collective oscillation can be respectively obtained as

R2 = 1 −
2�

K cos �
, �A7�

� = �0 − K sin � + � tan � , �A8�

which coincide with the results given in Eq. �15�.

APPENDIX B: DERIVATION OF THE COLLECTIVE
PHASE SENSITIVITY FUNCTION

We consider a group of globally coupled nonidentical
phase oscillators subject to common weak external forcing
�p�t� described by the following equation:

�̇ j = � j −
K

N
�
k=1

N

sin�� j − �k + �� + �Z�� j�p�t� , �B1�

where the microscopic phase sensitivity function2 is taken as

Z��� = − sin � . �B2�

The Ott–Antonsen ansatz is applicable also in this global
sinusoidal case.20,21 Therefore, we can derive the amplitude
equation for the complex order parameter A�t� in the follow-
ing form:

Ȧ = �� + i�c�A − g�A�2A + � 1
2 �1 − A2�p�t� . �B3�

By applying the phase reduction method, the collective phase
equation is obtained as

�̇ = � + �����p�t� , �B4�

where we assumed that the external forcing is sufficiently
weak. The collective phase sensitivity function is given by

���� = Re�Ū0
����

1

2
1 − �A0����2��

= − �R0 + R0
−1

2
�sin � +

Im g

Re g
�R0 − R0

−1

2
�cos � ,

�B5�

which is sinusoidal in form. In general, the collective phase
sensitivity function ���� differs from the microscopic phase
sensitivity function Z���. When the oscillators become com-
pletely phase synchronized, �=0, i.e., R0=1, the collective
phase sensitivity function coincides with the microscopic
one, ����=Z���. Near the onset of collective oscillations,
��1 /2, i.e., ��0, the amplitude of the collective phase
sensitivity function increases as ����=O��−1/2�.
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