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We theoretically investigate the collective phase synchronization between interacting groups of
globally coupled noisy identical phase oscillators exhibiting macroscopic rhythms. Using the phase
reduction method, we derive coupled collective phase equations describing the macroscopic
rhythms of the groups from microscopic Langevin phase equations of the individual oscillators via
nonlinear Fokker–Planck equations. For sinusoidal microscopic coupling, we determine the type of
the collective phase coupling function, i.e., whether the groups exhibit in-phase or antiphase syn-
chronization. We show that the macroscopic rhythms can exhibit effective antiphase synchroniza-
tion even if the microscopic phase coupling between the groups is in-phase, and vice versa. More-
over, near the onset of collective oscillations, we analytically obtain the collective phase coupling
function using center-manifold and phase reductions of the nonlinear Fokker–Planck equations.
© 2010 American Institute of Physics. �doi:10.1063/1.3491344�

Systems of limit-cycle oscillators are used to model vari-
ous rhythmic phenomena in natural and artificial sys-
tems. When the interaction between the oscillators is
weak, the system can generally be described as coupled
phase oscillators. Qualitative understanding of synchro-
nization phenomena, in particular the emergence of col-
lective oscillations, has been achieved successfully
through this type of reduced model. In the present paper,
we develop collective phase reduction method for macro-
scopic oscillations arising from mutual synchronization of
many microscopic oscillators within a group, which is
typical in the real world. We show that weakly interact-
ing groups of oscillators, each consisting of globally
coupled noisy identical phase oscillators and exhibiting
collective oscillations, can be reduced to coupled equa-
tions for collective phases. This makes it possible to ana-
lyze the nature of synchronization between the collective
oscillations in a closed way at the macroscopic level.

I. INTRODUCTION

Populations of coupled rhythmic elements can exhibit
macroscopic oscillations through mutual synchronization.1–6

The phase oscillator models have played important roles in
theoretically analyzing their behavior, and the special class
of models given by globally coupled phase oscillators, in
particular, was studied most intensively in the past.7–12

Theoretical predictions based on such models have also

been experimentally validated, e.g., in electrochemical oscil-
lator systems13–17 and in discrete chemical oscillator
populations.18–20

Recently, macroscopic synchronization between interact-
ing groups of globally coupled phase oscillators exhibiting
collective oscillations has attracted attention.21–26 In most of
the works so far, the macroscopic properties such as mutual
entrainment between the groups have been analyzed through
the microscopic individual phases. However, because we are
interested in the macroscopic behavior of the collective
rhythms exhibited by the oscillator groups, it should be much
more convenient if each group of oscillators can be treated as
a single macroscopic oscillator. Based on such consideration,
we have developed collective phase reduction methods,27–29

which provide us with the collective phase sensitivity of
macroscopic rhythms of the oscillator group to weak pertur-
bations.

In this paper, we employ the notion of collective phase
description,27–29 and formulate a theory for weakly interact-
ing groups of globally coupled noisy identical phase oscilla-
tors in a closed form at the macroscopic level. Specifically,
we derive coupled collective phase equations from micro-
scopic Langevin phase equations describing weakly interact-
ing groups of globally coupled phase oscillators. A general
formula that gives collective phase coupling functions from
the microscopic phase coupling functions between the indi-
vidual oscillators is obtained, and for the case with sinu-
soidal coupling, the types of the collective phase coupling
function are determined as a function of the coupling param-
eters. Near the onset of collective oscillations, we can evena�Electronic mail: ykawamura@jamstec.go.jp.
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analytically obtain the collective phase coupling function by
the center-manifold and phase reductions. Based on the col-
lective phase equations, we illustrate counterintuitive phe-
nomena in which two oscillator groups become antiphase
synchronized in spite of in-phase microscopic coupling be-
tween the groups, and vice versa �in-phase synchronization
despite antiphase microscopic coupling�.

In Ref. 30, we considered a similar problem, namely,
collective phase synchronization between two groups of glo-
bally coupled oscillators. The crucial difference is that we
treat noisy identical phase oscillators in the present work,
whereas we analyzed noiseless nonidentical phase oscillators
in Ref. 30. Although these two situations look similar, they
are essentially different physical systems �i.e., stochastic ver-
sus deterministic� and mathematical treatments should be de-
veloped independently. Here we apply center-manifold re-
duction as well as phase reduction to nonlinear Fokker–
Planck equations governing the oscillator groups, whereas
we used the Ott–Antonsen ansatz in the analysis of the noise-
less nonidentical system.30 In both cases, despite the large
difference in their mathematical structures, we obtain similar
coupled collective phase equations describing macroscopic
dynamics of the groups. Thus, the present paper and Ref. 30
are mutually complementary and together give deeper under-
standing of macroscopic collective phenomena.

The organization of the present paper is the following. In
Sec. II, we introduce a model of weakly interacting groups of
globally coupled noisy phase oscillators and illustrate both
effective antiphase and in-phase collective phase synchroni-
zation between the groups by numerical simulations. In Sec.
III, we develop a theory that derives coupled collective phase
equations from the microscopic model and determine the ef-
fective type of phase coupling between collective oscilla-
tions. In Sec. IV, we analytically obtain the collective phase
coupling function near the onset of collective oscillations
and discuss several important cases. In Sec. V, we discuss a
relation to noise-induced turbulence in a system of nonlo-
cally coupled oscillators. Concluding remarks will be given
in Sec. VI.

II. THE MODEL AND ITS DYNAMICS

A. Interacting groups of globally coupled phase
oscillators

We consider two interacting groups of globally coupled
noisy identical phase oscillators described by the following
model:

�̇ j
����t� = � +

1

N
�
k=1

N

��� j
��� − �k

���� + �D� j
����t�

+
�

N
�
k=1

N

����� j
��� − �k

���� �1�

for j=1, . . . ,N and �� ,��= �1,2� or �2,1�, where � j
����t� is the

phase of the jth oscillator in the �th group consisting of N
oscillators and � is the natural frequency common to all
oscillators. The second term on the right-hand side represents
the internal coupling between the oscillators within the same

group, the third term represents the noise, and the last term
gives the external coupling between the oscillators belonging
to different groups. The internal phase coupling function
���� is assumed to be in-phase, d���� /d� ��=0	0,2 namely,
the oscillators within the same group tend to synchronize
with each other. The external phase coupling function be-
tween the groups is described by ������. Characteristic in-
tensity of the internal coupling within each group is scaled to
unity, whereas that of the external coupling between the
groups is given by �
0. The noise � j

����t� is assumed to be
white Gaussian,31–33 whose statistics are given by

	� j
����t�
 = 0, 	� j

����t��k
����s�
 = 2� jk�����t − s� . �2�

The noise intensity is characterized by D
0. When the ex-
ternal coupling is absent, i.e., �=0, Eq. �1� has a critical
noise intensity Dc below which phase coherent states are
realized, namely, collective oscillations arise when
0�D	Dc.

2 In the following, we assume that � is suffi-
ciently small and each group of oscillators exhibits stable
collective oscillations.

B. Phase synchronization between collective
oscillations

In the following numerical simulations, we assume that
the phase coupling functions are sinusoidal �note, however,
that our theory itself can be applied to general 2-periodic
phase coupling functions28�. Without loss of generality, the
natural frequency can be assumed to be zero, �=0. The in-
ternal phase coupling function between the oscillators within
the same group is given by

���� = − sin�� + ��, ��� 	


2
, �3�

which is in-phase �attractive�. In this case, the critical noise
intensity is given by Dc= �cos �� /2, as explained in Sec. IV.
The external phase coupling function is described by

������ = − sin�� + ��, ��� �  , �4�

which can be either in-phase �attractive� ����	 /2� or an-
tiphase �repulsive� ����� /2�.2 Introducing a complex order
parameter A����t� with modulus R����t� and phase �����t�
through

A����t� = R����t�ei�����t� =
1

N
�
k=1

N

ei�k
����t�, �5�

we can rewrite Eq. �1� with the sinusoidal coupling functions
given in Eqs. �3� and �4� as follows:

�̇ j
����t� = � − R��� sin�� j

��� − ���� + �� + �D� j
����t�

− �R��� sin�� j
��� − ���� + �� . �6�

Note that R��� quantifies the degree of synchronization and
���� gives the collective phase of the �th group.

Focusing on weakly coupled collective oscillations, we
carried out numerical simulations of Eq. �6� with Eq. �5�
under the following conditions: the external coupling was
assumed to be much weaker than the internal coupling, i.e.,
�=0.01�1; we set D=Dc /2= �cos �� /4 and �=3 /8; the
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number of oscillators in each group was N=10 000, which
was sufficiently large to observe clear collective oscillations.
We separately prepared two groups of phase oscillators ex-
hibiting collective oscillations and used these states as the
initial conditions of the simulations.

In Fig. 1�a�, evolution of the collective phase difference
���1�−��2�� from almost in-phase synchronized state of the
groups is shown. In spite of the in-phase external phase cou-
pling condition between individual oscillator pairs, �=3 /8,
the collective phase difference ���1�−��2�� eventually ap-
proached , namely, the two groups became antiphase syn-
chronized after some time. Thus, Fig. 1�a� indicates that the
collective phase coupling function between the group is an-
tiphase although microscopic external phase coupling func-
tions are in-phase. In contrast, Fig. 1�b� shows evolution of
���1�−��2�� from almost antiphase synchronized state of the
groups with antiphase microscopic external phase coupling
function, �=−5 /8, which eventually became in-phase syn-
chronized.

Snapshots of the microscopic phase variables after the
collective phase difference has reached the asymptotic value
in Fig. 1 are displayed in Fig. 2. In Fig. 2�a�, the two distri-
butions of the oscillators are shifted by , indicating an-
tiphase synchronization between the groups. In contrast, the
two distributions almost overlap in Fig. 2�b�, i.e., they are
in-phase synchronized. Note that oscillators from different
groups do not synchronize with each other. In other words,
the collective phase synchronization between the groups is
not due to complete synchronization of individual oscillators
at the microscopic level.

Thus, the type of the collective phase coupling functions
can be effectively different from that of the microscopic ex-
ternal phase coupling functions, depending on the collective
dynamics of the oscillators taking place in each group. We
develop a theory that yields the collective phase coupling
function from the microscopic model in Secs. III and IV.

III. COLLECTIVE PHASE REDUCTION

We derive coupled dynamical equations for the collec-
tive phase variables of the groups from the Langevin phase
equations of individual oscillators through nonlinear Fokker–
Planck equations and obtain a formula that relates the collec-
tive phase coupling function between the groups to the mi-
croscopic phase coupling function between individual
oscillator pairs from different groups. Using them, we deter-
mine the type of the collective phase coupling function and
explain the results of the numerical simulations in Sec. II.

A. Nonlinear Fokker–Planck equations

In the continuum limit, i.e., N→�, the Langevin phase
equations �1� can be transformed into the following coupled
nonlinear Fokker–Planck equations:2,21,27,28
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FIG. 1. �Color online� Time evolution of collective phase difference
���1�−��2��. �a� Effective antiphase collective synchronization with micro-
scopic in-phase external coupling, �=3 /8. �b� Effective in-phase collec-
tive synchronization with microscopic antiphase external coupling,
�=−5 /8. The other parameters are �=0.01, �=0, D=Dc /2= �cos �� /4,
and �=3 /8. In numerical simulations, the number of oscillator in each
group is N=10 000.
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FIG. 2. �Color online� Snapshots of the asymptotic states of the individual
oscillators in Fig. 1. Only one in every five oscillators is plotted. Open circle
��� and plus �+� respectively indicate oscillator of group �1� and that of
group �2�. �a� Effective antiphase coupling with microscopic in-phase cou-
pling, �=3 /8. �b� Effective in-phase coupling with microscopic antiphase
coupling, �=−5 /8.
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�

�t
f �����,t�

= −
�

����� + 
0

2

d����� − ���f ������,t�� f �����,t��
+ D

�2

��2 f �����,t�

− �
�

���0

2

d������� − ���f ������,t�f �����,t�� �7�

for �� ,��= �1,2� or �2,1�. Here, f ����� , t� is the one-body
probability density function of the individual oscillator phase
� in the �th group, which is normalized as �0

2d�f ����� , t�
=1. The first two terms on the right-hand side represent in-
ternal dynamics of the �th group, and the third term repre-
sents weak interaction between �th group and �th group. The
complex order parameter of Eq. �5� is now expressed as

A����t� = R����t�ei�����t� = 
0

2

d�ei�f �����,t� . �8�

When the external coupling between the groups is absent,
each group of oscillators obeying Eq. �7� with �=0 exhibits
collective rhythms under the condition 0�D	Dc.

2,21,27,28

We assume that this situation persists even if � becomes
slightly positive and the two groups interact with each other
weakly.

The collectively oscillating solution of the nonlinear
Fokker–Planck equations �7� without external coupling
��=0� can be expressed as a steadily rotating wave packet on
a periodic interval �0,2�,

f �����,t� = f0������, ���� = � − ����, �̇��� = � �9�

for �=1,2, where the f0��� represents the steady functional
shape of the wave packet, ���� is the location of the wave
packet at time t, namely, the collective phase of the �th
group, and � is the collective frequency common to both
groups.27,28

B. Collective phase equations

Let us assume �=0 and focus on a single group. The
group index � will be dropped for the moment. Inserting Eq.
�9� into the nonlinear Fokker–Planck equation �7� with �=0,
we find that f0�����=�−�� satisfies the following equation:

D
d2

d�2 f0��� + �� − ��
d

d�
f0��� −

d

d�
�g0���f0���� = 0,

�10�

where

g0��� = 
0

2

d����� − ���f0���� . �11�

Let u�� , t� represent small disturbance to the collectively os-
cillating solution and consider a slightly perturbed solution
f�� , t�= f0���+u�� , t�. Equation �7� with �=0 is linearized in

u�� , t�, i.e., �tu�� , t�= L̂u�� , t�, where the linear operator L̂ is
given by

L̂u��� = D
d2

d�2u��� + �� − ��
d

d�
u��� −

d

d�
�g0���u����

−
d

d�� f0���
0

2

d����� − ���u����� . �12�

Defining the inner product as

�u����,u���� = 
0

2

d�u����u��� , �13�

we introduce an adjoint operator L̂� of L̂ by

�u����,L̂u���� = �L̂�u����,u���� . �14�

The adjoint operator L̂� is explicitly given as

L̂�u���� = D
d2

d�2u���� − �� − ��
d

d�
u���� + g0���

d

d�
u����

+ 
0

2

d������ − ��f0����
d

d��
u����� . �15�

In the calculation below, we need only zero eigenfunctions

u0��� of L̂ and u0
���� of L̂�. Note that the right zero eigen-

function can be chosen as

L̂u0��� = 0, u0��� =
d

d�
f0��� , �16�

which follows from differentiation of Eq. �10� with respect to
�. The left zero eigenfunction is normalized as

L̂�u0
���� = 0, �u0

����,u0���� = 1. �17�

Now let us introduce weak external coupling, i.e., we
assume 0	��1 and treat the last term in Eq. �7� as pertur-
bations. Using the phase reduction method,2,27,28 we can de-
rive coupled collective phase equations from the nonlinear
Fokker–Planck equations �7�. Namely, we project the nonlin-
ear Fokker–Planck equations �7� onto the unperturbed collec-
tively oscillating solution as

d

dt
�− �����

= �u0
��� − �����,

�

�t
f �����,t��

� − � − ��u0
����,

d

d�


0

2

d������� − �� − ���� − �����

�f0����f0���� , �18�

where we approximated f ����� , t� by the unperturbed solu-

tion f0������ and used that �u0
���� , ḟ0����=−�. Therefore, the

collective phase equation takes the form

�̇��� = � + ��������� − ����� , �19�

where the collective phase coupling function is given by
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�������� − ����� = 
0

2

d�
0

2

d������� − �� + ���� − �����

�k0���f0���� �20�

for �� ,��= �1,2� or �2,1�. The function k0��� is defined by

k0��� = − f0���
d

d�
u0

���� �21�

and normalized as


0

2

d�k0��� = 
0

2

d�u0
����u0��� = 1, �22�

which is the kernel function determining the collective phase
sensitivity of the group as a convolution of the microscopic
phase sensitivity.28

C. The case with sinusoidal coupling

When the microscopic external phase coupling function
������ is sinusoidal as given in Eq. �4�, the collective phase
coupling function also takes a sinusoidal form

������ = − � sin�� + �� , �23�

because Eq. �20� is a double convolution of �����−��+��
with k0���f0����. Here, the parameter � cos � determines the
effective type of the collective phase coupling function; it is
in-phase when � cos ��0 and antiphase when � cos �	0.
This quantity can be evaluated from the following equation:

� cos � = − �d������
d�

�
�=0

= − 
0

2

d�
0

2

d������� − ���k0���u0���� .

�24�

Now we examine the case D=Dc /2= �cos �� /4, which
we considered in the numerical simulations shown in Fig. 1.
Typical functional shapes of f0���, u0���, u0

����, and k0���
in this case are illustrated in Fig. 3, which were numerically
obtained from the nonlinear Fokker–Planck equation. Details
of the numerical method are described in Ref. 27. From these
functions, the dependence of � cos � on � and � was numeri-
cally evaluated by Eq. �24�, as shown in Fig. 4�a�. The type
of the collective phase coupling function is represented in
Fig. 4�b�, where the solid curves satisfying � cos �=0 repre-
sent the borders between the in-phase and the antiphase pa-
rameter regions. The two sets of parameter values used in
Fig. 1 are also plotted in Fig. 4�b�. As can be seen, the set of
parameters corresponding to Fig. 1�a� is in the antiphase re-
gion, � cos �	0, which yields effective antiphase collective
phase coupling between the groups. Similarly, the parameter
set corresponding to Fig. 1�b� is in the in-phase region,
� cos ��0, yielding effective in-phase collective phase cou-
pling. Thus, the collective phase reduction theory success-
fully explains the numerical results in Fig. 1.

IV. CENTER-MANIFOLD AND PHASE REDUCTIONS

In this section, we analytically determine the collective
phase coupling function at the onset of collective oscillations
by applying phase reduction to amplitude equations obtained
by the center-manifold reduction of the nonlinear Fokker–
Planck equations. This method gives analytical results with-
out recourse to numerical determination of the kernel and
other functions for general microscopic phase coupling func-
tions, although restricted to the vicinity of the onset of col-
lective oscillations.
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FIG. 3. �a� Distribution function f0���. �b� Right zero eigenfunction u0���.
�c� Left zero eigenfunction u0

����. �d� Kernel function k0���. Parameters are
D=Dc /2= �cos �� /4 and �=3 /8, where order parameter amplitude is
R=0.653 28. �=3 /8 gives � cos �=−0.322 64, whereas �=−5 /8 gives
� cos �=0.322 64.
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FIG. 4. �Color online� Effective type of phase coupling between collective
oscillations with �� �− /2, /2�, �� �− ,�, and D=Dc /2= �cos �� /4,
which is numerically evaluated by Eq. �24�. �a� Dependence of � cos � on �
and �. �b� The solid curves are determined by � cos �=0. The filled circle
��� indicates �=�=3 /8 corresponding to Figs. 1�a� and 2�a�. The cross
��� indicates �=3 /8 and �=−5 /8 corresponding to Figs. 1�b� and 2�b�.
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A. Amplitude equations near the onset of collective
oscillations

We derive coupled amplitude equations that describe the
macroscopic rhythms of the groups near the onset of collec-
tive oscillations. Expanding the 2-periodic functions
f ����� , t�, ����, and ������ into Fourier series as

f �����,t� =
1

2
�

l=−�

�

f l
����t�eil�, f l

����t� = 
0

2

d�f �����,t�e−il�,

�25�

���� = �
l=−�

�

�le
il�, �l =

1

2


0

2

d�����e−il�, �26�

������ = �
l=−�

�

���,le
il�, ���,l =

1

2


0

2

d�������e−il�, �27�

the coupled nonlinear Fokker–Planck equations �7� can be
expressed as

ḟ l
����t� = − �Dl2 + il�� + �0 + �l��f l

��� − il �
m�0,l

�mfm
���f l−m

���

+ ��− il���,0f l
��� − il���,l f l

��� − il �
m�0,l

���,mfm
���f l−m

��� � .

�28�

When the noise intensity D is decreased below the criti-
cal value Dc in the absence of external coupling between the
groups, �=0, the uniform solution f ����� , t�=1 / �2� of
Eq. �7�, corresponding to the incoherent state, becomes un-
stable. Equivalently, the trivial solution f0

���=1, f l
���=0�l�0�

of Eq. �28� is destabilized and a pair of modes f�lc

��� with
critical nonzero wavenumbers �lc starts to grow. From the
linear part of Eq. �28�, instability of the mode l occurs when
Dl2− l Im �l	0, namely, D	 Im �l / l. Thus, the most un-
stable wavenumbers �lc are those that maximize Im �l / l.
Generally, the fundamental harmonic components tend to be
predominant in the phase coupling function, so that we ob-
tain lc= �1 in most cases.

Assuming lc= �1, we introduce a complex amplitude
A����t� of the fundamental harmonic modes of f ����� , t� as

f �����,t� =
1

2
+

1

2
�A����t�e−i� + Ā����t�ei�� , �29�

where Ā����t� is the complex conjugate of A����t�= f−1
����t�. We

are concerned with weakly coupled collective oscillations,
and thus consider the external interaction as perturbations.
Using the center-manifold reduction method,2 we can derive
a pair of coupled complex amplitude equations from Eq. �28�
in the following form:21

Ȧ��� = �� + i�c�A��� − g�A����2A��� + �d��A
��� �30�

for �� ,��= �1,2� or �2,1�, where the parameters are given by

� = Dc − D, Dc = − Im �−1,

�31�
�c = � + Re �−1 + �0 + ����,0

and

g =
− �−1��−2 + �1�

2 Im �−1 − i Re �−1 + i�−2
, d�� = i���,−1. �32�

See Refs. 2, 21, and 27 for details of the derivation. We
should note that Eq. �30� represents two coupled Stuart–

Landau oscillators, each of which �i.e., Ȧ= ��+ i�c�A
−g�A�2A� describes collective oscillations of the respective
oscillator group.

B. Phase reduction of the amplitude equations

Next, we derive coupled collective phase equations by
reducing the coupled Stuart–Landau equations obtained
above by assuming that the external interaction between the
groups is sufficiently weak, i.e., � is small. When the two
groups are uncoupled, �=0, the limit-cycle solution A0��� of
Eq. �30� is given by �� is dropped again for the moment�

A0��� =� �

Re g
ei�, �̇ = � = �c − �

Im g

Re g
. �33�

The left and right Floquet eigenvectors of this limit-cycle
solution associated with the zero eigenvalue can be written
as

U0��� =
dA0���

d�
= i� �

Re g
ei�,

�34�

U0
���� = i�Re g

�

g

Re g
ei�,

where the inner product of U0��� and U0
���� satisfies the

normalization condition

Re�Ū0
����U0���� = 1. �35�

Although Eq. �34� is expressed in complex representation for
the sake of convenience in analytical calculations performed
below, they are equivalent to the known results.2

Now let us introduce weak external coupling as pertur-
bations, i.e., we assume 0	����1. Using the phase re-
duction method,2 we can derive the collective phase equation
�19� from the amplitude equation �30�. Namely, we project
the amplitude equation �30� onto the unperturbed limit-cycle
orbit as

�̇��� = Re�Ū0
�������Ȧ����

� � + � Re�Ū0
�������d��A0������� , �36�

where we approximated A��� by the unperturbed solution

A0������ and used that Re�Ū0
����A0����=�. Thus, the re-

duced equation is obtained in the form of Eq. �19�, and the
collective phase coupling function is given by
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�������� − ����� = Re�Ū0
�������d��A0������� . �37�

By inserting the expressions of Eqs. �31�–�34� into the for-
mula equation �37�, the collective phase coupling function
������ can be analytically obtained, which takes a sinu-
soidal form

������ = − � sin�� + ��, �ei� =
gd̄��

Re g
. �38�

Note that we have not assumed that the external phase cou-
pling function ������ is sinusoidal so far. The sinusoidal
collective phase coupling function arises because we assume
that collective oscillations exhibited by the groups of oscil-
lators are near the supercritical Hopf bifurcation point.

When the phase coupling functions are given by the
sinusoidal forms, Eqs. �3� and �4�, the parameters of Eqs.
�31�–�33� can be calculated as

Dc =
cos �

2
, �c = � −

sin �

2
,

�39�

� = � −
3 sin �

4
+

D tan �

2

and

g =
1

4 cos � − 2i sin �
, d�� =

1

2
e−i�. �40�

Inserting Eq. �40� into Eq. �38�, we obtain

�ei� =
1

4
�2 cos � − tan � sin ��

+
i

4
�2 sin � + tan � cos �� . �41�

Therefore, the type of the collective phase coupling function
is analytically found from the following quantity:

� cos � =
1

4
�2 cos � − tan � sin �� . �42�

Reflecting the symmetry of the original model of Eq. �6�
with respect to �� ,��→−�� ,�� and �→−�, Eq. �42� is
symmetric about the origin in the �-� plane. The type of the
collective phase coupling function at the onset of collective
oscillations, i.e., D=Dc, is represented in Fig. 5, which is
very similar to Fig. 4.

C. Several important cases

Here, we consider three special and important cases of
the collective phase coupling functions derived for the sinu-
soidal microscopic phase coupling functions, Eqs. �3� and
�4�, at the onset of collective oscillations.

�i� The first case is �=0, which indicates that the internal
phase coupling function within the same group is an-
tisymmetric. Inserting �=0 into Eq. �41�, we obtain
the following result:

�ei� = 1
2ei�, �43�

so that � cos �= �cos �� /2. Thus, the collective phase
coupling function has the same type as the micro-
scopic external phase coupling function. The internal
phase coupling function does not affect the type of the
collective phase coupling. A similar scenario has been
encountered in different models.28–30

�ii� Several special values of the microscopic external
coupling phase shift � comprise the second case. In-
serting �=0, � , � /2 into Eq. �41�, we obtain the
following results:

� = 0, �ei� =
1

2
+

i

4
tan � , �44�

� = � , �ei� = −
1

2
−

i

4
tan � , �45�

� = �


2
, �ei� = �

1

4
tan � �

i

2
. �46�

For antisymmetric external interactions, i.e.,
�=0, �, the type of the collective phase coupling
function coincides with the microscopic external cou-
pling and is not affected by the type of the micro-
scopic internal coupling phase shift �. In contrast, for
symmetric external interactions, i.e., �= � /2, the
type of the collective phase coupling function is
solely determined by the internal coupling parameter
�, which can be either in-phase or antiphase.

�iii� The third case is �=�, namely, when the external
coupling has the same phase shift as the internal one.
Inserting �=� into Eq. �41�, we obtain the following
result:

-2

-1

0

1

2

α

β

(a)

[ D = Dc ]

-π / 2 0 π / 2

-π

-π / 2

0

π / 2

π

-π

-π / 2

0

π / 2

π

-π / 2 0 π / 2

β

(b)

anti-phase

in-phase

anti-phase

[ D = Dc ] α

FIG. 5. �Color online� Effective type of phase coupling between collective
oscillations in � and � with D=Dc= �cos �� /2, which is analytically given
by Eq. �42�, i.e., � cos �= �2 cos �−tan � sin �� /4. �a� Dependence of
� cos � on � and �. �b� The solid curves are determined by � cos �=0.
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�ei� =
1

4
�2 cos � − tan � sin �� + i

3 sin �

4
. �47�

Note that ���= ���	 /2 in this case, namely, both in-
ternal and external coupling functions are in-phase.
The type of the collective phase coupling function is
antiphase when tan2 ��2. As we discuss below, this
condition is the same as the condition for noise-
induced turbulence in nonlocally coupled phase
oscillators.27

V. ON NOISE-INDUCED TURBULENCE

Finally, we briefly discuss the relation between “effec-
tive antiphase coupling” and “noise-induced turbulence.” In
this section, our arguments do not assume that collective
oscillations are near the onset. In Ref. 27, we considered a
system of nonlocally coupled noisy phase oscillators de-
scribed by the following model:

�

�t
��r,t� = � + dr�G�r − r������r,t� − ��r�,t��

+ �D��r,t� , �48�

where ��r , t� represents the phase field of spatially extended
oscillatory media, G�r� is a nonlocal kernel function that
decays with the distance �r�, ���� is the phase coupling func-
tion, ��r , t� represents spatiotemporally white Gaussian
noise, and D is the noise intensity.

The Langevin phase equation �48� can be transformed
into a nonlinear Fokker–Planck equation in the following
form:

�

�t
f��,r,t� = −

�

����� + 
0

2

d����� − ���

�f���,r,t�� f��,r,t�� + D
�2

��2 f��,r,t�

−
�

���0

2

d����� − ���

��G2�
2f���,r,t��f��,r,t�� − ¯ . �49�

Here, we have expanded the nonlocal coupling term as

 dr�G�r − r��f���,r�,t� = �
n=0

�

G2n�
2nf���,r,t� , �50�

where G2n is the 2nth moment of G�r�.
The space-dependent order parameter A�r , t� is defined

by

A�r,t� = R�r,t�ei��r,t�

= dr�G�r − r��
0

2

d��ei��f���,r�,t� , �51�

where ��r , t� can be considered as the space-dependent col-
lective phase, f�� ,r , t�= f0��−��r , t��. Applying the phase

reduction method to Eq. �49�, we obtained the following col-
lective phase equation:

�

�t
��r,t� = � + �̄�2��r,t� + �̄����r,t��2 + ¯ , �52�

where �̄ and �̄ are coefficients. In particular, the collective
phase diffusion coefficient �̄ was given by

�̄ = − G2
0

2

d�
0

2

d����� − ���k0���u0���� , �53�

which can be negative and then induce spatiotemporal chaos
�turbulence�. Details of the definitions and the derivations are
given in Ref. 27.

Now, it is clear that Eqs. �7�, �19�, and �24� describing
interacting groups of globally coupled noisy phase oscillators
are similar to Eqs. �49�, �52�, and �53� describing a system of
nonlocally coupled noisy phase oscillators. When the exter-
nal phase coupling function is the same as the internal one,
i.e., ������=����, Eq. �24� is essentially equivalent to Eq.
�53�. Namely, the instability condition −���0�	0 for in-
phase collective synchronization between two groups, which
gives the antiphase condition for the sinusoidal coupling, co-
incides with the instability condition �̄	0 for spatially uni-
form solutions of the collective phase equation. Therefore,
the phase diagram plotted in Fig. 6 using D and � with �=�
is the same as that we obtained for noise-induced turbulence
in Ref. 27.

The above situation for collective oscillations at the
macroscopic level is in parallel with the classical problem for
phase oscillators at the microscopic level, in which the insta-
bility condition for in-phase synchronization of two coupled
phase oscillators coincides with the instability condition for
spatially uniform solutions of the phase diffusion equation.2
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FIG. 6. �Color online� Effective type of phase coupling between collective
oscillations in D and � with �=�. �a� Dependence of � cos � on D and �.
�b� The solid curves are determined by � cos �=0.
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VI. CONCLUDING REMARKS

In the present paper, we considered two weakly interact-
ing groups of globally coupled noisy identical phase oscilla-
tors undergoing collective oscillations. To analyze them, we
adopted the idea of collective phase description, namely, we
treated the collective oscillations of each group as a single
macroscopic phase oscillator. We developed a theory that
derives the collective phase coupling function between the
groups from the microscopic external phase coupling func-
tion between individual oscillator pairs belonging to the dif-
ferent groups. Based on this theory, we illustrated counterin-
tuitive situations in which the two groups become antiphase
synchronized despite in-phase microscopic coupling, and
vice versa. We also developed a theory that gives explicit
analytical expressions of the collective phase coupling func-
tions near the onset of collective oscillations. A complete

phase diagram in the case of the sinusoidal internal and ex-
ternal coupling functions is summarized in the Appendix.

In our companion work,30 we considered two weakly
interacting groups of globally coupled noiseless nonidentical
phase oscillators and discussed their collective synchroniza-
tion properties. The strong similarity in results between the
two types of systems, one stochastic and the other determin-
istically random, is remarkable, while the theoretical meth-
ods employed are completely different between them. In par-
ticular, we found the same counterintuitive phenomena,
namely, the disagreement of the types between the collective
phase coupling function and the microscopic external phase
coupling function.

The notion of collective phase description is convenient
and powerful in analyzing complex macroscopic rhythms
arising from systems of interacting microscopic dynamical
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elements. Further development of the theories will provide
useful viewpoints to understand various complex rhythms in
real-world systems, in particular, their functional meaning.

APPENDIX: PHASE DIAGRAM FOR SINUSOIDAL
COUPLING

We here present a complete phase diagram for the case
of the sinusoidal internal and external coupling functions.
The type of the collective phase coupling function is found
from � cos � given in Eq. �24�, which was numerically
evaluated for �� �− ,� in the parameter region of D /Dc

� �0.1,1.0� and �� �−a /2,a /2� with a=0.9. In addition,
we used the analytical formula equation �42� on the Hopf
bifurcation line, i.e., D=Dc= �cos �� /2. Phase diagrams in D
and � with several values of � are displayed in Fig. 7.
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