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Abstract
The boundary of a cell is the interface with its surroundings and plays a key role in controlling 
the cell movement adaptations to different environments. We propose a study of the boundary 
effects on the patterns and waves of the rhythmic contractions in plasmodia of Physarum 
polycephalum, a tractable model organism of the amoeboid type. Boundary effects are defined 
as the effects of both the boundary conditions and the boundary shape. The rhythmicity 
of contraction can be modulated by local stimulation of temperature, light and chemicals, 
and by local deformation of cell shape via mechanosensitive ion channels as well. First, we 
examined the effects of boundary cell shapes in the case of a special shape resembling a 
tadpole, while requiring that the natural frequency in the proximity of the boundary is slightly 
higher and uniform. The simulation model reproduced the approximate propagated wave, 
from the tail to the head, while the inward waves were observed only near the periphery of 
the head section of the tadpole-shape. A key finding was that the frequency of the rhythmic 
contractions depended on the local shape of cell boundary. This implies that the boundary 
conditions of the phase were not always homogeneous. To understand the dependency, we 
reduced the two-dimensional model into a one-dimensional continuum model with Neumann 
boundary conditions. Here, the boundary conditions reflect the frequency distribution at the 
boundary. We described the analytic solutions and calculated the relationship between the 
boundary conditions and the wave propagation for a one-dimensional model of the continuous 
oscillatory field and a discrete coupled oscillator system. The results obtained may not be 
limited to cell movement of Physarum, but may be applicable to the other physical systems 
since the analysis used a generic phase diffusion equation.

Keywords: boundary condition, coupled oscillator model, phase equation, Physarum 
plasmodium
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1. Introduction

The plasmodium is a giant amoeboid organism and the 
structure is composed of protoplasmic gel that contains 
protoplasmic sol inside. The size of the plasmodium ranges 
from hundreds micrometers to several meters. The proto-
plasmic sol shows periodic streaming due to periodic con-
traction/relaxation of the protoplasmic gel, which results 
in complex space-time patterns, such as a propagating 
wave and rotating wave of the flow and thickness. Various 
boundary shapes and the heterogeneity of the media lead to 
interesting wave properties; with refraction and diffraction 
being the most common properties. In the case of waves in 
an excitable media, boundary effects cause other important 
properties to be considered. Unidirectional wave propaga-
tion for a particular boundary shape [1], destruction of a 
wave front leading to the formation of a spiral wave by 
an obstacle [2], a spiral wave controlled by a global feed-
back in a domain [3], and front bifurcation of concentra-
tion waves [4] are a few examples that have been studied. 
However, the details of the spontaneous formation mech-
anism and the significance of such patterns have been an 
open question.

Coupled oscillator models are useful as a mathematical 
model of spontaneous formation of spatiotemporal patterns. 
We can regard a whole organism as an assembly of oscil-
lators, each of which describes spontaneous oscillations of 
a small piece of the body. Such a model was recently used 
to study the relationship between the coupling strength and 
the sensing ability [5]. The oscillators have the possibility 
of having different natural frequencies and are coupled 
with one another by mechanical connections or chemical 
signals. Even a simple model shows various spatiotem-
poral patterns including a propagating wave, and the key 
mechanism underlying the formation of the wave is the 
synchronization of the oscillators [6]. Furthermore, by 
taking an appropriate continuum limit, one can reduce the 
coupled discrete oscillators to a partial differential equa-
tion, referred to as a phase diffusion equation, which is 
easier to analyze yet reproduces the various spatiotemporal 
patterns mentioned above [6]. Such a simple description is 
convenient to provide insight into the spatiotemporal pat-
terns exhibited by slime molds.

Here we focus on the simple propagating waves of the body 
thickness observed in the following two situations. When the 
shape of the protoplasm is set to a rectangular shape on the 
order of a centimeter, a propagating wave is observed [7–9]. 
Also, in the case where the slime mold is put on an unbounded 
region and the body size is set to 100–300 μm, the body takes 
a tadpole-like shape, and a peculiar wave pattern is observed 
where it propagates from the tail (narrower region of body) 
to the head (wider region of body) and the phase velocity 
is significantly slower in the region near the end of the tail 
[10]. These experimental observations led us to consider the 
phase gradient at the end in relation to the boundary condi-
tions. The non-zero gradient of a variable at the boundary has 
been known in the boundary condition of calcium wave as 
the flux across the plasma membrane into the cytoplasm [11]. 

Another example of the flux across a heterogeneous media 
can be seen in the wave propagation of the BZ reaction system 
[12]. In a simple system of linear wave equations, a numerical 
integration technique applicable for a wide range of boundary 
conditions—including the Neumann condition—is also  
discussed [13].

In these experiments, observed patterns are critically 
dependent on ambient conditions, that is, the surrounding 
environment and the shape of the considered region. In the 
first case, a favorite stimulus, such as a comfortable temper-
ature for the organisms, is provided in a confined proto-
plasm, and the wave in the body propagates from an end 
included in the region. It is known that favorite stimulus such 
as food or comfortable temperature increases the oscillation 
frequency of the body part subjected to the stimulus. Such a 
region may serve as a wave source, as predicted by the phase 
diffusion equation [6]. In the second case, when a wave pat-
tern is modeled by sectional oscillations, the wave pattern 
plays an important role in the net transport of passive scalar 
factors, corresponding to internal chemicals or nutrients 
[14]. In previously described models [14], the tadpole shape 
of slime mold is simplified to two regions oscillating inde-
pendently. The phase of the oscillation is uniform in each 
region and the phase difference in the regions represents an 
inhomogeneous wave. Those experimental and theoretical 
studies suggest that the boundary effect is a key factor in 
determining the types of wave patterns observed in slime 
mold. However, most theoretical studies on pattern forma-
tion have employed restricted boundary conditions such as 
the Neumann boundary condition with zero gradient [15]. 
To understand peculiar patterns observed in slime mold, one 
needs to consider more general boundary conditions appro-
priate for each experimental setup.

We investigate the coupled discrete oscillators and its con-
tinuum limit in the following two setups, with special atten-
tion to the phase gradient at the boundary. The first system is 
a two dimensional system with a tadpole-like shape in which 
a uniform boundary state with a slightly higher frequency is 
applied in order to see how a specific shape of cell causes 
modulation of phase waves. In the second system, the two-
dimensional system is reduced to a one-dimensional system 
in which different phase gradients are applied to the two 
ends of the system as the boundary conditions, resulting in 
models reproducing the peculiar wave pattern observed in the 
experiment.

Our results will be organized as follows. In section  2, 
experimental observation of a tadpole-shaped Physarum is 
briefly reviewed. In section 3, we will show that the cou-
pled oscillator model with a tadpole shape causes a similar 
wave pattern to Physarum even if the natural frequency on 
the boundary is uniform. In section 4, we relate the natural 
frequency difference near the boundary to the boundary 
condition in the phase equation with a peculiar wave pat-
tern observed in the slime mold with the tadpole shape, and 
the wave pattern giving us insight to the characteristics of 
the coupling function in the coupled oscillator description. 
In section  5, we briefly summarize the characteristics of 
both models.

J. Phys. D: Appl. Phys. 50 (2017) 154004
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2. Experimental phase patterns  
of the tadpole-shaped slime mold

In this section, we briefly review the observation of peri-
staltic motion of the tadpole-shaped Physarum polycephalum 
by Matsumoto et  al [10] (see also [14]). The size is about  
100–300 µm and the thickness is approximately 30 µm; thus the 
structure inside the body can be regarded as two-dimensional. It 
attaches to the base plate and moves from the tail to head. The 
thickness of the slime mold in the tail oscillates and the spatio-
temporal pattern is a wave propagating from the tail to the head.

Figure 1 shows a spatiotemporal pattern of the thickness 
of the slime mold and the flow along a centerline of the tad-
pole shape [10, 14]. Isophase lines of the oscillation for the 
flow correspond to the dark region, and those for the thickness 
the open circles and black circles. Apparently, the gradient of 
the constant phase is relatively small near the tail, whereas 
the constant phase line fluctuates in the head part which can 
be roughly defined by x  >  300 µm (for the detailed shape of 
the slime mold, see [10]). Such bending pattern of the con-
stant phase is not observed when the phase wave has a spa-
tially uniform phase velocity. Because each part of the slime 
mold oscillates with a natural frequency and they are coupled 
with each other via mechanical or chemical signals, a cou-
pled oscillator model can be used to describe this pattern. In 
the following, we focus on the boundary condition at the tail 
end and consider the wave pattern of the phase equation under 
Neumann boundary condition.

3. Numerical simulation of a two-dimensional 
model

We hypothesize that the phase wave observed in a slime mold 
is propagated from a part subjected to a preferred stimulus, 
which increases the natural frequency of the stimulated part. 
In this section, we consider the effect of the boundary shape 

by considering a two-dimensional phase distribution in the 
tadpole region. We assume homogeneous boundary condi-
tions with constant phase gradients, and focus on how the 
asymmetry of the shape in the anterior part and the posterior 
part causes the phase wave, in particular, the direction of the 
phase wave.

The tadpole-shape body and the boundary are denoted by B and 
∂B, respectively. To implement the boundary of arbitrary shape, 
we first discretize a two-dimensional region [ ] [ ]×L L0, 0,x y  
by rectangular meshes, [ ( ) ] [ ( ) ]∆ + ∆ × ∆ + ∆i x i x j y j y, 1 , 1  
where / /∆ = ∆ =x L N y L N,x x y y and ⩽ ⩽< <i N j N0 , 0x y. In 
the following, we assume that ∆ = ∆x y for simplicity. The 
mesh characterized by (i, j) is indicated by ( )=x i j, . We clas-
sify the meshes in the following three categories. The meshes 
occupied with the region B alone are indicated by Bi. The 
meshes including ∂B, defined by x such that ∉x Bi and one of 
the conditions ( )± ± ∈i j B1, 1 i are satisfied, are indicated by 
Bb. Other meshes are regarded as the outside of the body. To 
describe them, we define a state function ( )xs  as

( )
⎧
⎨
⎪

⎩⎪
=

∈
∈

−
x

x
xs

B
B

0 ,
1 ,
1 otherwise.

i

b (1)

We used the coupling function ( ) ( )= − +Θ + Θf x xsin sin ,  
where θ is a constant, and constructed the model by setting 
natural frequencies as follows; (1) the natural frequency of 
the oscillator in the region Bi is ω, a constant; (2) the natural 
frequency of the oscillator in the region Bb is ω ω+∆ , another 
constant to represents the phase gradient of the boundary 
(the relationship between ω∆  and the phase gradient of 
the boundary is discussed in section  4.1); (3) the coupling 
between sites in ∪B Bi b only is considered. The model used 
for the simulation was the following discretized phase equa-
tion for the phase φ x t,( ),

( ) ( ) ( ) ( ( ) ( )) ( )
⩽
∑

φ
ω ω φ φ= + ∆ + − ∈ ∪′ ′

′| − |

x
x x x x x x

t

t
s k f t t B B

d ,

d
, , , ,

x x
i b

1

 (2)

Figure 1. The spatiotemporal pattern of the tadpole-shaped slime mold (modified from [10], copyright 2008, with permission from 
Elsevier). Grayscale shows the flow speed and open circles and solid circles show the onset of contractions and relaxations, respectively.
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and the phase dynamics in the region defined by ∉x Bi and 
∉x Bb were omitted because they do not affect the dynamics of 

the phase in the region ∪B Bi b. Here, | − |′x x  is the L1  −  norm 
(or the Manhattan distance) of the vector − ′x x . The connec-
tivity function ( )′x xk ,  is:

( ) ( ) ( )⎧
⎨
⎩

=
≠− ≠−

′
′

x x
x x

k
k s s

,
1 and  1

0 (otherwise)
0

 (3)

The region B is defined by two circles and one rectangular 
shown in figure 2.

We used the following parameters: = = =L L L 2x y ,  
/πΘ = − ×0.7 2, /= ∆k x0.0050

2, ω π= 2 , ω∆ = ×0.02   
/π ∆x2 . Parameter ω∆  should depend on ∆x so that the 

product ω∆ ∆x, which determines the phase gradient of the 
boundary, converges in the limit →∆x 0. Similarly, param-
eter k0 should proportional to ∆ −x 2. (For the continuous 
limit of the coupled oscillator model for the one dimen-
sional case, see section 4.1). The tadpole shape is defined as 

/= = = = = =x L x L y L L r L r L0.2 , 0.75 , 2 0.5 , 0.1 , 0.2y1 2 1 1 2 , 
and ∆ =t 0.001 and = = =N N N 100x y . The time evolution 
was calculated by the fourth-order Runge–Kutta method. We 
also performed numerical simulations using the same param-
eter values except ( ) ( ) ( )∆ =N t, 150, 0.001 , 100, 0.0005  as 
well as k0 and ω∆  to keep the products ∆k x0

2 and ω∆ ∆x con-
stant, and confirmed that the following results do not depend 
on these parameters significantly.

The isophase lines in the region ∪B Bi b are shown in 
figure  3(top left). An asymmetric wave propagation from 
the tail to the head is shown. This asymmetry comes from 
the asymmetry of the shape of the tail and the head. In the 
case =r r1 2, the region ∪B Bi b is symmetric with respect 
to the line ( )/= +x x x 21 2 . The two-dimensional phase 
wave pattern is shown in figure  3(top right). Here, unidi-
rectional wave propagation is not observed and the waves 
from the boundaries reach to the center of the region. In 
figure  3(bottom), spatio-temporal pattern of the phase 
corre sponding to figure 3(top left), along the line y  =  y1, is 

shown. This pattern in the tail part (x  <  0.55L) is similar to 
the experimental results (figure 1).

In this model, the wave propagation was the result of the 
asymmetry of body shape in the head part and that in the tail 
part. The shape differences lead to the different details of 
inward waves from the boundary in each part. If the observed 
wave pattern were reduced to one-dimensional along the 
axis defined by y  =  y1, this asymmetry causes a difference 
of the dominant region in the phase wave generated from the 
boundary. In the tadpole-shaped model, the wave pattern is 
dominated by the end of the tail region and the phase wave 
propagates to the center of the head region. Such a differ-
ence of the dominant regions can be achieved by the value 
of the phase gradient of the boundary, which is referred to in 
appendix. Furthermore, such differences can also be repro-
duced in the phase wave pattern similar to experimental obser-
vation in that the wave speed near the tail was slightly slower, 
yet it increased when the wave entered the head region. In the 
next section, we will consider a one dimensional model incor-
porating this wave property.

4. Boundary condition of the one-dimensional 
phase diffusion equation

4.1. Locally synchronized state and the boundary condition

In this section, we introduce a coupled oscillator model to 
investigate the relationship between the boundary condition 
of the phase diffusion equation and the inhomogeneity of the 
natural frequency at the end part.

We consider N  +  2 coupled oscillators aligned on a line 
segment with equal distance, l. The equation of the system is 
given by

˜ ( )
φ

ω φ φ= + −
t

kf
d

d
,0

0 0 1 (4)

˜{ ( ) ( )}

( )�

φ
ω φ φ φ φ= + − + −

=

− +t
k f f

j N

d

d
1, 2, , ,

j
j j j j j1 1 

(5)

˜ ( )
φ

ω φ φ= + −+
+ +t

kf
d

d
,N

N N N
1

1 1 (6)

where φj and ωj ( �= +j N0, , 1) are the phases and the nat-
ural frequencies of the jth oscillator, respectively. ˜( )>k 0  is a 
constant describing coupling strength, and f(x) is a coupling 
function between adjacent oscillators. The coupling function 
f(x) is periodic with the period π2 . Without loss of generality, 
we assume that f(0)  =  0.

To consider the inhomogeneity at the both ends given 
by j  =  0,N  +  1, we assume that ω ω ω ω ω= +∆ =, j0 0  
( )�=j N1, 2, ,  and ω ω ω= +∆+ +N N1 1, where ω ω∆, 0, and 
ω∆ +N 1 are constants.
The inhomogeneity at both ends is related to the boundary 

conditions of the partial differential equation obtained by the 
continuum limit as shown in considering the synchronized 
solution of the type

Figure 2. A tadpole region = ∪ ∪B C C R1 2 , where C1 and C2 are 
circles of radii r1 and r2 centered at x y,1 1( ) and x y,2 1( ), and R is the 
rectangle of the size − ×x x r22 1 1( ) . We define C2 as the head, and 

= ∪ ∩B C C R C2 1 2\ ( )  as the tail.

J. Phys. D: Appl. Phys. 50 (2017) 154004
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φ α= Ω +t lj,j (7)

where Ω, the frequency of the synchronized state, and α, the 
increment of the phase per unit length (the phase gradient), are 
constants. It should be noted that equation (7) does not satisfy 
the whole set of equations (4)–(6), but approximately repre-
sents the behavior near each of the ends. To see this, we con-
sider the case in which a synchronized state (7) that satisfies 
the set of equations (4) and (5), which represents the phases 
near the region where j is close to zero (locally synchronized 
state). Substituting the expression (7) into equations (4) and 
(5), we get

˜ ( )ω ω αΩ = +∆ + −kf l0 (8)

˜{ ( ) ( )}ω α αΩ = + + −k f l f l . (9)

These equations contain two unknowns, α and Ω. We easily 
obtain α by solving the equation  ˜ ( )ω α∆ = kf l0 , and Ω is 
obtained by equation (8) with the obtained value of α.

If the natural frequency is homogeneous at the end j  =  0, 
i.e. ω∆ = 00 , and thus we obtain ( ) ( )α ωΩ =, 0, ; the phase 
of the synchronized state is also homogeneous. In the case 
ω∆ ≠ 00 , α≠ 0 in general. If / ˜�ω∆ k 10 , then α is obtained 

by using the approximation ( ) ( ) ( ) ( )� + =′ ′f x f xf xf0 0 0  
( ( ) /=′f x f xd d ) as

˜ ( )
α

ω
=
∆
′klf 0

.0
 (10)

This formula shows that the phase increment between adja-
cent oscillators is proportional to the increment of the fre-
quency at the end ω∆ 0. A similar formula is obtained at the 
other end, j  =  N  +  1.

A continuum limit follows by regarding φj as the phase 
at the position x  =  lj, putting L  =  l(N  +  1), and replacing 

˜=k kl2. Then, the gradient of the phase at j  =  0, estimated by 
( )/φ φ− l1 0  is:

( )
φ φ

α
ω−

= =
∆
′l

l

k f 0
.1 0 0

 (11)

In the limit →l 0 with keeping L and ω β∆ =l 0
left( ), we obtain

( )
( )

( )φ β∂
∂

=
′x kf

0

0
.

left

 (12)

Thus, the frequency difference at an end in the discrete system 
corresponds to the Neumann boundary condition with non-
zero gradient in the continuum system.

Figure 3. Top left: isophase lines at φ π= n 10/ (n is an integer). The dark gray region and the light gray region are indicated by ∪B Bi b and 
Bb, respectively. Top right: same as the left, but r2  =  0.1L. Bottom: the spatiotemporal pattern of the isophase lines at φ π= n2  in the case 
of the tadpole shape along the line y  =  L/2. Isophase lines near the boundaries show sharp bends, but this is an artifact due to the contour 
algorithm of the software.

J. Phys. D: Appl. Phys. 50 (2017) 154004
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We derive the continuum limit of equations (5) as:

( )φ
ω ν

φ
µ
φ∂

∂
= +

∂
∂
+

∂
∂t x x

,
2

2
2 (13)

( ) ( )″ν µ= − =′kf kf0 , 0 . (14)

Here, we additionally assume ν> 0, as ( )<′f 0 0, for stability 
[6]. If f(x) has the particular form ( ) ( ) ( )= − +Θ + Θf x xsin sin , 
then ν = Θk cos  and µ = − Θk sin . The boundary conditions 
at both ends are:

( )
( )

( )
( )

( ) ( )φ β φ β∂
∂

=
∂
∂

= −
′ ′x kf

L

x kf

0

0
,

0
,

left right

 (15)

where β ω= ∆ +lliml N
right

0 1
( )

→ .
The effect of a non-zero gradient boundary can be clearly 

seen by considering a half-infinite system, such as [ )∈ ∞x 0, , 
with the boundary condition

( )φ
η

∂
∂

=
x

0
. (16)

Because ( )<′f 0 0, negative η corresponds to positive ω∆ 0 in 
the discrete system. We assume the following solution

( )φ α= Ω +x t t x, , (17)

where Ω is the global synchronized frequency and α is a con-
stant phase gradient. Because of the boundary condition,

α η= (18)

Substituting equation (17) in (13), we obtain

ω µα ω µηΩ = + = + .2 2 (19)

Therefore, the synchronized frequency Ω is determined by 
the boundary condition. Moreover, when η< 0, the solution 
given by equation  (17) describes a phase wave sourced at 
the boundary x  =  0. These properties are in accordance with 
those in the discrete system.

Thus, in order to explain the phase wave observed in slime 
molds, we considered a coupled oscillator system with the 
inhomogeneity in the peripheral part. We illustrated that a 
change in the frequency at the boundary in the discrete system 
corresponds to the Neumann boundary condition with a non-
zero gradient in the phase diffusion equation.

4.2. Global synchronized solution and the effective peristaltic 
pumping for the tadpole-shaped slime mold

We consider the globally synchronized state of the coupled 
oscillator. To treat such a state, we consider the following one-
dimensional phase diffusion equation:

( )φ
ω ν

φ
µ
φ∂

∂
= +

∂
∂
+

∂
∂t x x

,
2

2
2 (20)

where ω ν µ> > ≠0, 0, 0 are assumed. Also, the region 
assumed ⩽ ⩽−L x L with the boundary condition

( ) ( )φ
η

φ
η

∂ −
∂

=
∂
∂

=− +
L t

x

L t

x

,
,

,
, (21)

where η+ and η− are constants. Our purpose in this section is 
to show that a similar peristaltic pumping pattern as [10] is 
achieved by setting an appropriate boundary conditions, i.e. 
η± values. The solution of the equation (20) with the boundary 
conditions (21) is explicitly given in appendix.

According to [14], we estimate the characteristic values of 
the system parameters as follows. The value of ν is estimated 
by the diffusion coefficient of chemicals in the protoplasmic 
sol, = × −D 4.4 10 13 m s−1. A typical length scale is estimated 
as  µ=L 150 m, so that the length of the tail part of the tad-
pole-shape, 2L, is  µ300 m. A typical time scale is T  =  100 s, 
the same order as the oscillation. Using these values, we non-
dimensionalize equation (20) by ˜ ˜= =t Tt x Lx,  and obtain

( )φ
π ν

φ
µ
φ∂

∂
= +

∂
∂
+

∂
∂

′ ′
t x x

2 ,
2

2
2 (22)

where x and t are nondimensional values and the tildes 

are omitted, ν µ= =′ ′ν µ,T

L

T

L2 2 . The estimated value gives 

ν =′ 0.002. We have no data to determine µ′, but it is known 
that both ν and μ are proportional to D [6]. Considering this 
fact, our estimation of μ includes an order of unity to compare 
the mathematical results with the observations.

For the boundary condition η η= − =− +5, 0 are adopted, 
but these values are just selected to represent the difference of 
the boundary gradients at the both ends, followed by η = −50  
and η∆ = 5, which leads to the parameter P (definition is 

equation (A.5) in appendix) as =P
Lb

10 .
To relate figure  1 to the solution of a one-dimensional 

model (20) and (21), we assume that the synchronized state is 
given as ( ) ( )φ ω= +x t g x t, 0 , where x and t means the coor-
dinate representing a position along the body axis and time, 
respectively. Then the phase is constant along the line deter-
mined by ( )φ =x t, const. We represent this line as x  =  x(t) so 

that ( )
( )

= = −′ ω
′

x t x

t g x

d

d
0  ( ( ) =′g x g

x

d

d
). Figure  1 indicates that 

( ) ⩾′x t 0 and ′x  are relatively small when x is small, and large 
where x is large. In terms of ( )′g x , ( ) ⩽′g x 0 and | |′g  are relatively 
large where x is small, and is close to zero where x is large.

Using equation (20), we obtain the differential equation of 
g(x) as

( ) ( ( ))″
ω π
ν

µ
ν

µ
ν

= − =
−

= =′
′

′
′

g x a b g x a b,
2

, .2 0 

(23)

Introducing ( ) ( )= ′v x g x , the equation of v(x) is given as

( ) ( ( )) ( ) ( ) η= − | | < ± =′ ±v x a b v x x L v L, ,2 (24)

where ( ) /=′v x dv dx. We note that the synchronized frequency 
ω0 is given by a obtained by solving equations  (23) and 
(24): ω π ν= + ′a20 . Letting η η= = −+ −0, 5 and using the 

Table 1. Values of a in synchronized states for both positive and 
negative values of b.

b a b a

1 25. −10 0.0604 697
0.1 3.598 07 −1 0.510 417
0.01 2.5856 −0.1 1.850 43
0.001 2.508 36 −0.01 2.418 85
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general formulae in appendix, we have the globally synchro-
nized solutions, which do not describe a simple plane wave in 
which g(x) is linear to x. The formulae depends on the sign of 
b, and typical values of a and b are listed in table 1.

In all cases listed, however, the synchronized frequency is 
almost the same as the natural frequency (the difference is less 
than 1%). Spatio-temporal diagram of the constant phase and 

( )φ x  for b  =  −1 are shown in figure 4, which shows a qualita-
tive agreement with figure 1, despite the very simple model. 
Although solutions with different values and signs of b sat-
isfied the same boundary conditions, the transition region of 
the phase velocity is different. If b  <  −1, the region affected 
by the boundary condition at x  =  −1 becomes narrower. On 
the other hand, if b  >  −1, a larger region is affected by the 
boundary condition at x  =  −1.

As discussed in this section  and illustrated in appendix, 
the phase gradient at the boundary modulates the phase wave 
propagation for a synchronized state in a region near the 
boundary. If the value of the phase gradient differs at both 
ends, we can regard the whole region as a set of regions so that 
the phase wave property in each region is mainly determined 
by the phase gradient at one end. The typical area (or length) 
of such region depends on the set of the values of the phase 
gradient at the ends. Our results suggest how the phase wave 
propagation in a two dimensional case was determined by the 
boundary condition in the tail region, where the boundary 
shape affects the area of influence.

5. Concluding remarks

In conclusion, we have considered the inhomogeneous wave 
propagation of the slime mold. Every organism has a boundary 
that divides the individual and the environment, so that the 
region near the boundary should be strongly affected by the 
environment. It is a natural assumption to suggest some kind 
of heterogeneity at the boundary. Based on this viewpoint, we 
considered heterogeneity of the boundary in discrete coupled 
oscillators as a model of contraction waves in slime molds. We 
have shown that the discrete model is reduced to the phase dif-
fusion equation with nonzero flux boundary conditions under 
an appropriate continuum limit.

Our derived phase diffusion equation  provides analytical 
inhomogeneous phase wave solutions, which is essential for 
the transport of chemicals in the tadpole shaped slime mold. 
Two models were considered to compare with the meas-
ured data of the phase distribution of a tadpole shape slime 
mold. One was a two-dimensional model that has a slightly 
higher natural frequency in the region of the boundary and 
the tadpole-like body shape being considered. The other was 
a one-dimensional model that has different gradients at both 
boundaries. Analytical solutions for both are obtained. In both 
models, we observed heterogeneous phase wave solutions and 
a slow phase wave in a small region at the end of the tail sim-
ilar to the wave pattern in slime mold.

While many studies have suggested the existence of self-
sustained biochemical oscillators in Physarum plasmodium, 
a primary oscillator is not known yet. One of the more likely 
possibilities is a Ca2+ oscillator [11], which may be derived 
by biochemical processes: (1) Ca2+ -induced Ca2+ release in 
transmembrane Ca2+ transport and/or (2) mechano-chemical 
interactions of actin with the other actin-related proteins and 
Ca2+ . As a result, Ca2+ can play a critical role in the rhyth-
micity of the contraction-relaxation cycle.

Biochemical kinetics of Ca2+ oscillations is already well-
studied from a general point of view, and one of the most ele-
mentary and fundamental models is the 2-pool model, which has 
been well-examined [11]. In this model, the frequency of Ca2+ 
oscillations depends on the balance between inflow through a 
Ca2+ channel and outflow through a Ca2+ pump in the cell mem-
brane. This implies that the ratio of surface area of membrane 
and volume at the intracellular vicinity of the cell membrane vary 
in a complex cellular shape owing to different curvatures of the 
membrane. This is a possible cause of inhomogeneous boundary 
conditions, if the densities of the Ca2+ pump and channels are 
distributed homogeneously on the membrane surface.

However, recent studies show that channel proteins often 
tend to form in large clusters; therefore, the inhomogeneity 
of the channel distribution is also a possible cause of inho-
mogeneous boundary conditions. We note that not only the 
oscillation mechanism alone, but also the body shape and 
the cytoskeletal network might contribute to the oscillation 
properties [16, 17]. As inhomogeneous boundary conditions 

Figure 4. Left: contours of the constant phases (φ π= +n const.). Right: spatial distribution of the phase. The gradient of the  
line is η−. (b  =  −1).
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are possible in amoeboid movement, clarifying the effects 
of various boundary conditions is an important considera-
tion requiring further study. Our study also suggests that it is 
essential to consider appropriate boundary conditions when 
modeling the behavior of organisms interacting with their sur-
rounding environment.
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Appendix. Analysis of the phase diffusion  
equation with Neumann boundary conditions

We consider the phase diffusion equation (20)

( )φ
ω ν

φ
µ
φ∂

∂
= +

∂
∂
+

∂
∂t x x

,
2

2
2 (A.1)

where ω ν µ> > ≠0, 0, 0 are assumed. The region is [−L, L] 
and Neumann boundary conditions are defined by

( ) ( )φ
η

φ
η

∂ −
∂

=
∂
∂

=− +
L t

x

L t

x

,
,

,
. (A.2)

The synchronized solution of this equation  of the type 
( ) ( )φ ω= +x t g x t, 0  is considered, where the phase profile 

g(x) and the synchronized freqeuncy ω0 are to be determined. 
We note that as a frame of reference, the phase wave prop-
agates in positive x-direction if ( )<′g x 0 and vise versa. By 

substituting this solution into equation (A.1), and introducing 
( ) ( )= ′v x g x , we obtain

η= − ± =′ ±v x a b v x v L, ,2( ) ( ( )) ( ) (A.3)

where

ω ω
ν

µ
ν

=
−

=a b, .0
 (A.4)

We note that the sign of v(x) determines the propagation direc-
tion. The ordinary differential equation in (A.3) can be solved 
for given b and η±. Below we show that different expressions 
for v(x) and a are obtained depending on the set of b and η±.

For convenience, we introduce

( ) ( )η η
η

η η η η η η= − ∆ −
∆

= + ∆ = −+ − + −P
Lb

2
, , ,0

2 2
0

 (A.5)
which is used as well as η∆  for the classification of the solu-
tion. Below, we classify the solutions according the signs of 
η∆b, , and P.

Solutions for b  >  0

 (I) Case of η∆ > 0. One can show that the solution exists for 
a  >  0 as

( ) ( ( ))= −v x
a

b
ab x xtanh ,0 (A.6)

  with which the values of a and x0 are further determined using 
equation (A.3). The direction of the phase wave changes at 
x  =  x0 if | | <x L0 . The condition a  >  0 implies ω ω>0 .

 (II) Case of η∆ = 0.

( ) ( ⩾ )η η= =v x a b, 0 ,2 (A.7)

  where η η= ±. When a  >  0, g(x) and the phase is 
monotonic, therefore, the phase wave propagates in one 
direction. Also ⩾ω ω0  because ⩾a 0.

Table A1. Categories of solution (b  >  0). P.D. stands for the 
‘propagation direction’ of the phase wave. The abbreviations of 
‘one direction’, ‘pos. & neg’, and ‘no’ stand for propagation in one 
direction, the coexistence of the waves propagating in positive and 
negative directions, and no propagation, respectively.

Case v(x) P.D. ω0

(I) η∆ > 0 tanh-type One direction/
pos. & neg.

ω ω>0

(II) η∆ = 0 Constant One direction/no ω ω>0

(III) η∆ < <P0, 0 coth-type One direction ω ω>0

(IV) η∆ < =P0, 0 1/x-type One direction ω ω=0

(V) η∆ < >P0, 0 tan-type One direction/
pos. & neg.

ω ω<0

Table A2. Categories of solution (b  <  0).

Case v(x) P.D. ω0

(V’) η∆ > >P0, 0 tan-type One direction/
pos. & neg.

ω ω>0

(IV’) η∆ > =P0, 0 1/x-type One direction ω ω=0

(III’) η∆ > <P0, 0 coth-type One direction ω ω<0

(II’) η∆ = 0 Constant One direction/no ω ω<0

(I) η∆ < 0 tanh-type One direction/
pos. & neg.

ω ω<0

Figure A1. Diagram of the solution in the case b  >  0. This diagram 
shows how ( )η η+,  (equivalently, (η η∆,0 )) determines the sign a and 
the function of the solution.
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 (III) Case of η∆ < 0 and P  <  0. One can show that the solu-
tion exists for a  >  0 as

( ) ( ( ))= −v x
a

b
ab x xcoth .0 (A.8)

  Because the sign of v does not change in [−L, L], g(x) is 
monotonic and the phase wave propagates in one direc-
tion. Also, ω ω>0  because a  >  0.

 (IV) Case of η∆ < 0 and P  =  0. One can show that the solu-
tion exists for a  =  0 as

( )
( )

=
−

v x
b x x

1
.

0
 (A.9)

  Because the sign of v does not change in [−L, L], g(x) is 
monotonic and the phase wave propagates in one direc-
tion. Also, ω ω>0  because a  >  0.

 (V) Case of η∆ < 0 and P  >  0. One can show that the solu-
tion exists for a  <  0 as

( ) ( ( ))= − − − −v x
a

b
ab x xtan .0 (A.10)

  Because the sign of v can chance in [−L, L], g(x) may have 
a peak in [−L, L], thus, the direction of the phase wave may 
change at a certain point satisfying v(x)  =  0 if the point is in 
the region [−L, L]. The condition a  <  0 implies ω ω<0 .

Solutions for b  <  0

For b  <  0, by introducing

˜ ˜ ˜= − = − = −v v a a b b, , ,

we can rewrite equation (24) as

˜ ( ) ˜ ˜( ˜( )) ˜( ) η= − ± = −′ ±v x a b v x v L, .2 (A.11)

Because of ˜ = − >b b 0, the solutions of (A.11) are obtained 
as seen in section 5. For classification, we introduce

˜ ˜ ( ˜ ˜
˜ )η η
η

= − ∆ −
∆

P
Lb

2
,0

2 2 (A.12)

which is actually the same as P because 
˜ ˜( ) ˜( )η η∆ = − − = −∆v L v L , ˜ ˜( ) ˜( )η η= + − = −v L v L0 0.

Summary

The solution table is shown in tables A1 and A2. For the cases 
b  >  0, the classification diagram is given in ( )η η∆,0 -space 
(figure A1).

These solutions v(x) connect both boundaries smoothly 
and monotonically but the function of the shape determines 
the shape details. For instance, the difference between the 
tanh type and tan type is shown in figure  A2. Although all 
the obtained functions v(x) connect the boundaries smoothly,  
the details of their shapes are different. For instance, as shown 
in figure  A2, the phase distributions ( ) ( )φ =x g x, 0  for the 
tanh-type (case (I)) and the tan-type (case (V)) are clearly 
different. Here, b  =  1 is fixed and the boundary gradient has 
the same magnitude but with a different sign. We remark that 
the phase equation is not invariant under →φ φ−  because of 
the term ( / )φ∂ ∂x 2, so this difference is expected. General 
Neumann boundary conditions can generate various phase 
waves, in addition to uniformly propagating phase waves. For 
example, as shown in figure A2 (left), the tanh type solution 
may have coexistent left- and right-propagation waves without 
any source of the wave inside the system region. Another solu-
tion of the tan type is displayed in figure A2(right), which is 
similar to figure A2(left) in a sense that both left- and right-
propagation waves coexist. However, there is a distinct differ-
ence between the two wave types: in the tanh type solution, 
the phase velocity of the wave is almost uniform except near 
the region where counter-propagating waves collide, whereas 
in the tan type solution the phase velocity of the wave varies 
smoothly.

References

	 [1]	 Kogan B Y, Karplus W J and Karpoukhin M G 1994 The 
effect of boundary conditions and geometry of 2D excitable 
medeia on properties of wave propagation Int. Workshop on 
Dynamism and Regulation in Non-linear Chemical Systems 
pp 79–81

	 [2]	 Starobin J and Starmer C 1996 Boundary-layer analysis 
of waves propagating in an excitable medium: medium 
conditions for wave-front-bstacle separation 
 Phys. Rev. E 54 430–7

Figure A2. Phase distribution φ =x g x, 0( ) ( ) for the case L  =  b  =  1. Left: η η= ∆ =0, 100  (tanh type). Right: η η= ∆ = −0, 100  (tan type).

J. Phys. D: Appl. Phys. 50 (2017) 154004

https://doi.org/10.1103/PhysRevE.54.430
https://doi.org/10.1103/PhysRevE.54.430
https://doi.org/10.1103/PhysRevE.54.430


M Iima et al

10

	 [3]	 Zykov V S, Mikhailov A S and Muller S C 1997 Controlling 
spiral waves in confined geometries by global feedback 
Phys. Rev. Lett. 78 3398–401

	 [4]	 Haas G, Bär M, Kevrekidis I G, Rasmussen P B, 
Rotermund H H and Ertl G 1995 Observation of front 
bifurcations in controlled geometries: from one to two 
dimensions Phys. Rev. Lett. 75 3560–3

	 [5]	 Hoeller O, Toettcher J E, Cai H, Sun Y, Huang C H, 
Freyre M, Zhao M, Devreotes P N and Weiner O D 
2016 Gβ regulates coupling between actin oscillators 
for cell polarity and directional migration PLoS Biol. 
14 1–36

	 [6]	 Kuramoto Y 1984 Chemical Oscillations, Waves, and 
Turbulence (New York: Dover)

	 [7]	 Kamiya N 1959 Protoplasmic streaming 
 Protoplasmatologia 8 1–199

	 [8]	 Kamiya N and Allen R (ed) 1964 Primitive Motile Systems in 
Cell Biology (New York: Academic)

	 [9]	 Miyake Y, Tabata S, Murakami H, Yano M and Shimizu H 
1996 Environment-dependent self-organization of 
positional information field in chemotaxis of Physarum 
plasmodium J. Theor. Biol. 178 341–53

	[10]	 Matsumoto K, Takagi S and Nakagaki T 2008 Locomotive 
mechanism of Physarum plasmodia based on 

spatiotemporal analysis of protoplasmic streaming  
Biophys. J. 94 2492–504

	[11]	 Keener J and Sneyd J 2009 Mathematical Physiology I. 
Cellular Physiology (Berlin: Springer) pp 273–303

	[12]	 Agladze K, Ágota Tóth, Ichino T and Yoshikawa K 
2000 Propagation of chemical waves at the boundary 
of excitable and inhibitory fields J. Phys. Chem. A 
104 6677–80

	[13]	 Ryaben’kii V S, Tsynkov S V and Turchaninov V I 2001 
Global discrete artificial boundary conditions for time-
dependent wave propagation J. Comput. Phys. 174 712–58

	[14]	 Iima M and Nakagaki T 2012 Peristaltic transport and 
mixing of cytosol through the whole body of Physarum 
plasmodium Math. Med. Biol. 29 263–81

	[15]	 Cross M C and Hohenberg P C 1993 Pattern formation outside 
of equilibrium Rev. Mod. Phys. 65 851–1112

	[16]	 Arai A, Kyozuka K and Nakazawa T 1999 Cytoplasmic Ca2+ 
oscillation coordinates the formation of actin filaments in 
the sea urchin eggs activated with phorbol ester Cell Motil. 
Cytoskeleton 42 27–35

	[17]	 Mayne R, Adamatzky A and Jones J 2015 On the role of 
the plasmodial cytoskeleton in facilitating intelligent 
behavior in slime mold physarum polycephalum Commun. 
Integrative Biol. 8 1–11

J. Phys. D: Appl. Phys. 50 (2017) 154004

https://doi.org/10.1103/PhysRevLett.78.3398
https://doi.org/10.1103/PhysRevLett.78.3398
https://doi.org/10.1103/PhysRevLett.78.3398
https://doi.org/10.1103/PhysRevLett.75.3560
https://doi.org/10.1103/PhysRevLett.75.3560
https://doi.org/10.1103/PhysRevLett.75.3560
https://doi.org/10.1371/journal.pbio.1002381
https://doi.org/10.1371/journal.pbio.1002381
https://doi.org/10.1371/journal.pbio.1002381
https://doi.org/10.1006/jtbi.1996.0030
https://doi.org/10.1006/jtbi.1996.0030
https://doi.org/10.1006/jtbi.1996.0030
https://doi.org/10.1529/biophysj.107.113050
https://doi.org/10.1529/biophysj.107.113050
https://doi.org/10.1529/biophysj.107.113050
https://doi.org/10.1006/jcph.2001.6936
https://doi.org/10.1006/jcph.2001.6936
https://doi.org/10.1006/jcph.2001.6936
https://doi.org/10.1093/imammb/dqr010
https://doi.org/10.1093/imammb/dqr010
https://doi.org/10.1093/imammb/dqr010
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1002/(SICI)1097-0169(1999)42:1<27::AID-CM3>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1097-0169(1999)42:1<27::AID-CM3>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1097-0169(1999)42:1<27::AID-CM3>3.0.CO;2-L
https://doi.org/10.1080/19420889.2015.1059007
https://doi.org/10.1080/19420889.2015.1059007
https://doi.org/10.1080/19420889.2015.1059007

