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We have developed an engineering framework which utilizes experiment-based phase models to tune complex
dynamic structures to desired states; weak, nondestructive signals are employed to alter interactions among
nonlinear rhythmic elements. In this manuscript, we present an integrated overview and discussion of our
recent studies in this area. Experiments on electrochemical reactions were conducted using multielectrode
arrays to demonstrate the use of mild model-engineered feedback to achieve a desirable system response.
Application is made to the tuning of phase difference between two oscillators, generation of sequentially
visited dynamic cluster patterns, engineering dynamically differentiated cluster states, and to the design of a
nonlinear antipacemaker for the destruction of synchronization of a population of interacting oscillators.

I. Introduction

Organized dynamical behavior spontaneously emerges in
many complex chemical and biological systems due to interac-
tions between discrete subunits. Examples of such behavior
include coherent light emissions from lasers,1 propagating
electrochemical waves in cardiac systems, and synchronization
of biological neurons.2 The properties of these large-scale
emergent behaviors depend on the behavior of the constituent
parts as well as the type and extent of their interactions.3,4 The
efficient description and design of a complex dynamic structure
is a formidable task that requires simple yet accurate models
incorporating integrative experimental and mathematical ap-
proaches that can handle hierarchical complexities and predict
emergent, system-level properties. Such approaches include
phase models5-7 and pulse-coupled models8 which have been
used to describe mutual entrainment of weakly interacting
neuronal assemblies.9-11

A major question of both theoretical and practical importance
is how to bring the collective behavior of a rhythmic system to
a desired condition or, equivalently, how to avoid a deleterious
condition without destroying the inherent behavior of its
constituent parts.12 For example, neurological diseases such as
epilepsy and essential tremors are characterized by pathological
synchronization of a group of neurons within the brain of a
patient.13 Since the neural oscillators are synchronized, the mean
signal produced by the collective behavior of the population
(EEG) is also oscillatory. In these medical applications, it is
desirable to disrupt the overall oscillatory signal, terminating
its associated physiological effect.14 Collective oscillations can
be eliminated by either stopping the rhythmic activity of the
individual oscillators or by desynchronizing the population of
oscillators such that the individual oscillators become disorga-
nized, causing a steady mean (overall) signal. While the former
typically requires a sizable input such as the introduction of
large, rapid voltage pulses (such as those used in current deep

brain stimulation therapies15), desynchronization can be effected
with the use of mild input signals which have minimal effect
on the individual elements in the population. Thus, the objective
in this case is to determine an effective yet mild external signal
which will steer a system toward the desired dynamic state.

This contribution provides an integrated overview and discus-
sion of our recent studies16-18 on the development of a general
methodology for controlling the collective behavior of a
population of rhythmic units. We use as an experimental model
system the electrodissolution of nickel on electrode arrays, which
are held under conditions (electrolyte concentration and applied
potential) such that the rate of dissolution is oscillatory in time.
We demonstrate that nonlinear feedback loops can be rigorously
designed using experiment-based phase models3,5-7,19 to “dial
up” a desired collective behavior without requiring detailed
knowledge of the underlying physiochemical properties of the
target system. Weak feedback signals are designed so as to have
a minimal impact on the dynamics of the individual electrodes
while producing a collective behavior of the population that is
both qualitatively and quantitatively different than the dynamic
behavior of an uncontrolled system.

We demonstrate the utility of the methodology with the
systematic design of a variety of dynamical behaviors: phase
locking with a preset phase difference with two oscillators,
sequentially visited dynamic cluster patterns with a small set
of four oscillators, and various types of stable clusters with a
population of sixty-four oscillators. We also show the power
of noninvasive, model-engineered feedback in effectively
achieving desynchronization and order reduction in populations
of synchronized oscillators; the experiment-based phase model
is an essential component in obtaining the optimal nonlinear
antipacemaker design.

II. Methodology

Our framework is based on phase models, in which the state
of the individual rhythmic elements of a system is approximated
by their position along their respective limit cycle trajectories.5,6

Under this approximation, a population of oscillators with weak
heterogeneities and weak, global (all-to-all) interactions can be
described by5
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where φi and ωi are the phase and the natural frequency of the
ith oscillator, K is the global coupling strength, and H is the
interaction function. Equation 1 shows that the phase of an
element increases at a rate equal to its inherent frequency (ωi),
slightly modified by slowing down or speeding up due to
interactions with other elements. The interaction function H(∆φ)
characterizes the extent of phase advance or delay as a result
of interaction between oscillators. For a desired target state (i.e.,
time variation of the phases of the oscillators), an optimal target
interaction function H(∆φ) is determined through analytical and
numerical investigations of the phase model (eq 1). The
manipulation of the harmonics of the interaction function
provides flexibility in developing a stimulation which produces
a desired state. While this methodology is demonstrated here
with global coupling, other coupling topologies can also be used.

Description of Method. The general methodology for
producing a desired collective behavior16-18 within a target
system follows the scheme shown in Figure 1. The flexibility
in obtaining phase model interaction functions can be exploited
to derive specific feedback schemes capable of obtaining desired
dynamic complex states. This is done as follows:

0. Pick a Desired Dynamic State for a Set or Population
of Rhythmic Elements. For example, say that we are dealing
with a synchronized population of oscillators. One important
goal could be to disrupt the synchronization leading to a
desynchronized system. Or, in other cases starting from a

disordered state, the desired dynamic state could be a
synchronized population or a population with stable or
intermittent clustering. Each of these examples will be
considered below.

1. Find a Phase Model That Reproduces the Target
Dynamics. Once a target collective behavior has been identified,
the shape of the corresponding interaction function must be
determined; this is an active area mathematical research.5,12,20-23

For example, the existence of balanced cluster states can be
determined by examining the transversal eigenvalues of these
states as derived by Okuda.24 As demonstrated below, we find
a target interaction function and a coupling strength and topology
that will produce the desired dynamic behavior.

2. Determine the Canonical Properties of the Oscilla-
tions (Waveform, Frequency, Response Function). As it is
shown below, the procedure requires the measurement of the
response function and the waveform of the oscillators. The
waveform of oscillation can usually be directly measured with
standard data acquisition equipment. The response function
Z(φ), proportional to the phase response curve (defined for
weak stimuli) commonly used in circadian rhythms to
interpret external entrainment, shows the phase advance per
unit perturbation as a function of the phase of the oscillator.
The response function can be obtained directly from experi-
ments by perturbing a single oscillator with weak pulses and
measuring the associated phase response.7,9,25 The response
function may also be obtained indirectly by measuring the
interaction function between two oscillators. In this case, the
period of two weakly interacting oscillators is measured as
a function of their phase difference, P(∆φ); the interaction
function can then be determined

where Pbase ) 1/ω.26 The response function can then be
calculated from the relation:5

where h(φ) is the coupling function, representing the physical
interaction between the elements. Equation 3 can be analyti-
cally solved for Z(φ) in the Fourier space, yielding the linear
system

where An and Bn are the even and odd Fourier coefficients of
Z(φ), respectively, Cn and Dn are the even and odd Fourier
coefficients of h(φ), respectively, and Rn and Sn are the even
and odd Fourier coefficients of H(∆φ), respectively. This
method was utilized to determine the response function of
the electrochemical oscillators used in this work.

3. Design a Feedback Stimulation to Reproduce the
Target Interaction Function. We engineer the desired behavior
of a population of N oscillators through the imposition of
nonlinear, time-delayed feedback. A time-dependent system
parameter perturbation, δp(t), is chosen to be a nonlinear
function of the measured variables xk(t) summed over the
population

dφi

dt
) ωi +

K
N ∑

j)1

N

H(φj - φi) (1)

Figure 1. General methodology for designing complex dynamical structures
using phase model description.

Figure 2. Schematic diagram of the experimental apparatus. Rp represents
a set of 650 Ω resistors. The computer is a real time data acquisition
computer, which calculates the feedback signal, δV.

H(∆φ) ) -2π
K (P(∆φ) - Pbase

Pbase
2 ) (2)

H(∆φ) ) 1
2π ∫0

2π
Z(φ)h(φ + ∆φ) dφ (3)

[Cn Dn

Dn -Cn
][An

Bn
] ) 2[Rn

Sn
] (4)

δp(t) ) K
N ∑

k)1

N

h(xk(t)) (5)
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K is the overall gain; here, we choose the nonlinear feedback
to be a polynomial:

where kn and τn are the gain and the delay of the nth order
feedback, respectively; S is the overall order of the feedback.

The challenge is obtaining the best form of the feedback,
that is, obtaining the order and time delays best suited for the
desired complex structure through the phase model eq 1. The
feedback parameters for use in the experiments (eqs 5 and 6)
can be obtained from eq 3. Given a feedback δp(t) and a
response function Z(φ) we could obtain the interaction function
Η(∆φ) for use in the phase model. However, we proceed in
the opposite manner and choose a target interaction function
which produces desired states, and then design a feedback loop
δp(t) with optimized feedback gains kn and delays τn to give
the desired Η(∆φ). The parameters kn and τn are found with
standard optimization techniques.16,17 It can be shown analyti-
cally that in weakly nonlinear oscillators the order of feedback
enhances the corresponding harmonic in the interaction function
and the delay time produces an offset in the phase difference.16,17

Thus, if we need an interaction function with predominantly
first and second order harmonics, linear and quadratic feedback
shall be applied and the delays of the feedback used to tune the
ratio of the cosine and sine terms of H. The optimized feedback
is expected then to produce the target dynamics through
imposing the proper interaction function in the phase model
description.

4. Apply the Feedback to Populations. A real-time data
acquisition and control system can be used to implement the
nonlinear, time-delayed feedback procedure developed in
step 3.

Limitations of Method. There are limits on how well this
methodology can be applied to rhythmic systems. It is well-
known that the phase approximation does not account for
amplitude effects5 and the method eventually breaks down as
the interaction strength increases. Feedback stimulation must
be weak so as to not disturb the shape of the waveform of the
oscillator. Moreover, when the time-delay is not small (com-
pared to K-1 in eq 1), the effect of delay cannot be approximated
by a phase offset in the interaction function27 and the feedback
parameters cannot be accurately determined. The method can
be applied to both smooth and relaxational oscillators. The
experiments described below are done with a mildly heteroge-

Figure 3. Tuning the phase difference between two oscillators with nonlinear feedback:18 time series of the electrode potential (A-C) and phase difference
(D-F) of a system of two elements with second order global feedback, [K ) 0.03, k0 ) 0.03 V, k1 ) 1.72, k2 ) -4.6816 V-1, τ1 ) 0.012 rad/2π, τ2 ) 0.143
rad/2π]. (left column) In-phase synchronization (∆τ ) 0 rad/2π). (middle column) Out-of-phase synchronization with phase difference of π/2 (∆τ ) 0.23
rad/2π). (right column) Antiphase synchronization (∆τ ) 0.5 rad/2π). The phase loop diagrams indicate the relative position of the elements in the system
and the direction of rotation.

Figure 4. (A) Stationary phase difference values of a system of two rhythmic elements under second-order feedback [K ) 0.03, k0 ) 0.03 V, k1 ) 1.72, k2

) -4.6816 V-1, τ1 ) 0.012 rad/2π, τ2 ) 0.143 rad/2π].18 Lines represent phase model predictions of the stable (solid) and unstable (dotted) stationary
states. Experimental measurements using positive feedback (circles) and negative feedback (triangles) are superimposed. (B) Parity plot of phase model
predictions versus experimental measurements.

h(x) ) ∑
n)0

s

knx(t - τn)
n (6)

9418 Ind. Eng. Chem. Res., Vol. 48, No. 21, 2009



neous population and in the presence of unavoidable noise;
nevertheless the method was successfully used in engineering
desired collective behavior. However, it is unknown where the
method will break down in the presence of severe noise and
levels of heterogeneities (such as chaotic systems or systems
composed of heterogeneous oscillator types). General methods
for obtaining the phase model description are not available for
experimental systems consisting of large populations of coupled
oscillators. In order to apply nonlinear feedback, the time series
from each oscillator must be measured; extensions to the method
which require only a mean signal have been proposed for the
case of linear feedback.28 This discussion is limited to globally
coupled systems; other factors come into play for more complex
coupling topologies. Current research is underway on investigat-
ing and overcoming these limitations.

III. Experimental Setup

A standard electrochemical cell consisting of an array of
nickel working electrodes, a Hg/Hg2SO4/K2SO4 reference
electrode, and a platinum mesh counter electrode was used.
Experiments were carried out in 3.0 M H2SO4 solution at a
temperature of 11 °C. (A constant low temperature reduces the
dissolution rate and improves reproducibility.) A schematic of
the apparatus is shown in Figure 2. The 64-electrode array in
an 8 × 8 geometry is shown; for experiments with a single
oscillators the array is replaced with one electrode. The working
electrodes (1 mm diameter) are embedded in epoxy; the
dissolution reaction takes place only at the exposed ends. The
current produced by each electrode is independently measured

Figure 5. Engineering a system of four nonidentical oscillators to generate sequential cluster patterns.16 (A) Target [solid line, H(∆φ) ) sin(∆φ - 1.32) -
0.25sin(2∆φ)] and optimized (dashed line) interaction function with feedback parameters k0 ) -0.0526 V, k1 ) 8.7376, k2 ) 16.3696 V-1, τ1 ) 0.21, τ2 )
0.68, K ) 0.0494 (V ) 1.165 V, Rtot ) 162.5 Ω). (B) Theoretical (black line) and experimentally observed (red line) heteroclinic orbits and its associated
unstable cluster states. (C) Time series of the order parameter [Rk ) 1/N|∑j)1

N exp(ikφj)|, k ) 1], and associated cluster configurations.

Figure 6. Engineering cluster patterns.17 (A) Time series of the R1 order parameter, using feedback optimized to produce a one cluster state. Arrows indicate
the application and termination of the feedback signal. (B) Time series of the R2 order parameter using feedback optimized to produce a two cluster state
and time series of the R3 order parameter using feedback optimized to produce a three cluster state. (D) Time series of the R4 order parameter using
feedback optimized to produce a four cluster state.
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and sampled at 250 Hz, allowing the rate of reaction to be
determined as a function of position and time.

In the feedback experiments, the measured observable is the
current from which the electrode potential can be calculated;
the control system parameter is the circuit potential (V).
Additional details on the experiments can be found in the
original papers.16-18

IV. Results

Tuning the Phase Difference between Two Oscillators. We
first demonstrate the method with a conceptually simple, yet
nontrivial example: tuning the (phase-locked) phase difference
between two electrochemical oscillators with different inherent
frequencies. The electrode potential E(t) in the experimental
chemical system is oscillatory (Figure 3A). The phase difference
between two noninteracting electrodes with different frequencies
increases linearly over time. We choose here, for illustration,
three special target states of in-phase, out-of-phase, and an-
tiphase entrainment which correspond to phase differences of
∆φ* ) 0, π/2, and π, respectively. Each of these states can be
obtained with an interaction function consisting of first- and
second-order harmonics of the form H(∆φ) ) sin(∆φ - ∆τ) +
1/2sin(2∆φ - 2∆τ), with ∆τ ) 0, 0.5π, and π rad, for in-phase,
out-of-phase, and antiphase entrainments, respectively. (Ad-
ditional details on the derivation of the target interaction function
are given in ref 18.) Because the target interaction function is
composed of first- and second-order harmonics, a feedback
composed of linear and quadratic terms is chosen; the design
requires that the waveform and the response function of the
oscillators can be readily obtained.16-18 Applying the designed

feedback to the experimental system produced the desired phase
locked states (Figures 3A-F). Furthermore, by experimentally
measuring the locked phase difference as a function of ∆τ, we
can see that it is possible to produce any phase difference
between 0 and 2π. The phase model accurately predicts all
experimental observations (Figure 4A and B). Negative feedback
was used to stabilize previously unstable states.

Generation of Sequential Dynamical States. We now
consider the generation of sequential dynamical states.29,30 The
mathematical concept of slow switching21,22 predicts an alterna-
tion between unstable synchronized cluster states in a population
of (at least) four oscillators with, for example, H(∆φ) ) sin(∆φ

- 1.32) - 0.25sin(2∆φ) in eq 1. Because heteroclinic orbits
connect the unstable dynamic states and these orbits are typically
not robust against heterogeneities and noise caused by their
structural instabilities, their demonstration in an experimental
system is a challenging task.

We designed a quadratic feedback signal to produce an
interaction function which has been proposed for slow switching
(Figure 5A) in a population of four oscillators. The feedback
signal caused the experimental system to sequentially visit
multiple (unstable) two-cluster states, consisting of two oscil-
lators in each cluster; Figure 5B shows two (saddle type) cluster
states in state space. In the experiments, we observed switching
between the cluster states (red line) along the theoretically
predicted orbit (black line). We observed many switches along
the heteroclinic orbits in a long time series. These switches can
be seen as a fluctuation of the system order (Figure 5C). The
time scale of the cluster switching is 60 s, much greater than
the 2.2 s period of the individual oscillating elements.

Figure 7. Desynchronization of a system of 64 coupled relaxation oscillators:16 V ) 1.250 V, Rtot ) 10.1 Ω. (A) Time series of the order parameters R1 and
R3 before, during (61 s < t < 445 s), and after the application of linear time-delayed (K ) 1, k1 ) -1, τ1 ) 0.016) feedback to a coupled (ε ) 0.3)
population. (B) Time series of order parameters before, during (60 s < t < 440 s), and after the application of nonlinear feedback (k0 ) 1.41 V, k1 ) -1.09,
k2 ) -5.35 V-1, τ1 ) 0.01, τ2 ) 0.09, K ) 0.55).

Figure 8. (top) Mean global signal of coupled relaxational oscillator population before, during, and after application of nonlinear feedback. Arrows indicate
the application and removal of feedback. (bottom) Time trace of a representative individual oscillator at the indicated times (A, B, and C).
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Engineering Dynamically Differentiated Clusters. In each
of the previous applications, there has been a single preselected
target interaction function which corresponds to the desired
dynamical behavior. However, many dynamical behaviors often
have a family of associated interaction functions; it is often
difficult to determine a priori which function is optimal. An
example is the generation of phase clusters. It can be shown17

that nearly balanced M-cluster solutions can be stable, if the
following conditions are satisfied for the interaction function
H(∆φ) ) ∑Ak sin(k∆φ) + Bk cos(k∆φ):

(i) for any k, Bk ≈ 0
(ii) for k ) M, Ak is a large positive number
(iii) for k * M, Ak are small negative numbers
These general rules follow from the calculation of the

transversal eigenvalues of balanced cluster states as derived by
Okuda.24 Mild feedback implies that the feedback gains, kn,
should be small. In this case, a multiobjective feedback
optimization is constructed to select the target interaction
function in which the strength of the feedback signal (e.g., ∑kn)
is minimized on the family of interaction functions that produces
an M-cluster state. The result of the application of optimized
feedbacks to a 64-oscillator system are shown in Figure 6.
Predominantly linear feedback causes one cluster, quadratic
feedback two-cluster, cubic feedback three-cluster, and quartic
feedback four-cluster states.17

Desynchronization. Our proposed phase model methodology
provides an efficient design of mild nonlinear feedback anti-
pacemakers for weakly interacting systems. A system of 64
weakly relaxation oscillators, synchronized with global coupling
through a common resistor7 in a synchronized (one-cluster) state
with large order parameter (left part of Figure 7A). Although
the one-cluster state can be broken with linear feedback,31 in
some cases, synchronized cluster states may appear (here a three
cluster as seen in Figure 7A) instead of a desynchronized state.
The occurrence of spurious clusters is caused by the presence
of higher harmonics within the net interaction function which
is a superposition of the individual interaction functions due to
coupling and linear feedback.

A desynchronized state without any stable cluster states can
be obtained with nonlinear feedback. Mild, effective desyn-
chronization can be achieved by minimizing the power of the
feedback signal under the condition that the feedback produces
a family of target interaction functions with negative odd
components, e.g., H ) -sin(∆φ) - ∑k)2

M εk sin(k∆φ). A linear
programming optimization16 resulted in a mild, second-order
feedback that produces an interaction function with negative
odd harmonics. This quadratic feedback successfully desyn-
chronized the system as seen in Figure 7B. The initially
synchronized state (t < 60 s) is desynchronized upon the
application of the designed nonlinear feedback (60 s < t < 440 s);
the elements almost uniformly populate the cycle and all order
parameters drop to low values. When the feedback is turned
off (t ) 440 s), the system returns to its original synchronized
state. When actively desynchronizing the system using feedback,
the global mean signal of the population was dramatically
reduced, while the rhythmic behavior of the individual elements
of the population remained undisturbed (Figure 8A and B).

V. Concluding Remarks

We have reviewed our recent studies16-18 on developing
an effective method of designing complex dynamic structure
and tuning a wide spectrum of emergent collective behavior
in systems composed of rhythmic elements. The method is
precise enough to engineer delicate synchronization features

of nonlinear systems and can be applied to both small sets
and large populations. Since the method does not require
detailed a priori physical, chemical, and biological models,
it may find applications in pacemaker and antipacemaker
design in systems where there is a need for tuning complex
dynamical rhythmic structures but where such detailed models
are difficult to obtain.
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