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ABSTRACT In various kinds of cultured cells, it has been reported that the membrane potential exhibits fluctuations with long-
term correlations, although the underlying mechanism remains to be elucidated. A cardiac muscle cell culture serves as an
excellent experimental system to investigate this phenomenon because timings of excitations can be determined over an
extended time period in a noninvasive manner through visualization of contractions, although the properties of beat-timing fluc-
tuations of cardiac muscle cells at the single-cell level remains to be fully clarified. In this article, we report on our investigation of
spontaneous contractions of cultured rat cardiac muscle cells at the single-cell level. It was found that single cells exhibit several
typical temporal patterns of contractions and spontaneous transitions among them. Detrended fluctuation analysis on the time
series of interbeat intervals revealed the presence of 1/fb noise at sufficiently large timescales. Furthermore, multifractality
was also found in the time series of interbeat intervals. These experimental trends were successfully explained using a simple
mathematical model, incorporating correlated noise into ionic currents. From these findings, it was established that singular
fluctuations accompanying 1/fb noise and multifractality are intrinsic properties of single cardiac muscle cells.
INTRODUCTION

Power-law correlated fluctuations with long-term correla-

tions are known to present in various types of physiological

signals, and characteristics of these fluctuations provide im-

portant information on the internal state of an organism (1,2).

Such fluctuations are found in complex systems in which

many regulatory mechanisms interact, including the cardio-

vascular system (1,3,4), the auditory nervous system (5),

and the motion control system (6,7). It is thus supposed

that interactions between multiple regulatory systems are es-

sential to generate the abovementioned fluctuations. In con-

trast, it has also been established that isolated cells exhibit

power-law correlated fluctuations at large timescales without

extrinsic control systems. Examples include spontaneous

contractions of cardiac muscle cells (8–11), and membrane

currents associated with exocytosis in nerve cells and fibro-

blasts (12). Because this phenomenon has been observed in

multiple cell types, power-law correlated fluctuations at large

timescales might be a generic property over various types

of cells. However, little of the mechanism underlying the

generation of such fluctuations has been established so far.

A cardiac muscle cell culture is an excellent model system

for studying the characteristics of power-law correlated

fluctuations. This is because of several unique properties of

cultured cardiac muscle cells. Firstly, the timing of electric

excitations of a cell can be estimated by visualizing its contrac-

tion, because a depolarization of the membrane potential is

associated with a contraction of muscle fibrils in a well-

established manner (13). This enables us to perform long-

term noninvasive measurement of excitation timings (14,15).
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Secondly, one can continuously measure the activity of

a cell without the measurement being disrupted by the cell

cycle, because these cells are terminally differentiated. Thirdly,

the molecular mechanism of excitation-contraction coupling

has been extensively investigated in past studies, and consider-

able knowledge about this process has been accumulated (16).

For cultured cardiac muscle cells, the existence of power-

law correlated fluctuations in the spontaneous beat rate has

been reported in earlier studies (9–11). However, because

the former studies were mainly performed on a monolayer

culture in which a number of cells interacted with each other

through a gap junction, the characteristics of isolated single

cells are not fully understood. In particular, it is not clear

whether 1/fb noise and multifractality, both of which have

been identified in the interbeat interval time series of the

human heartbeat (3,17,18), are also intrinsic properties of

single cardiac muscle cells.

To clarify the origin of the power-law correlated fluctua-

tions and to provide a basis for further studies of fluctuations

observed at higher levels of organization, i.e., in tissues,

organs, and organ systems, it is of fundamental importance

to clarify the properties of single cells that have no physical

and electric interactions with other cells. In this study, we

examined the statistical properties of the spontaneous beat

timings of single cardiac muscle cells derived from neonatal

rat ventricles over an extended timescale. As a consequence,

we were able to make the following observations.

Firstly, several typical temporal patterns were identified in

the spontaneous contractions of isolated single cardiac muscle

cells. These patterns included steady beating, termed pattern A,

and intermittent bursts, termed pattern B. Under the same en-

vironmental conditions, the temporal pattern of contractions

differs from cell to cell. Furthermore, spontaneous transitions

doi: 10.1529/biophysj.108.139691

mailto:harada@life.ne.his.fukui-u.ac.jp


256 Harada et al.
between patterns were found in the same single cell during

a long-term observation. We studied the statistical properties

of the above-mentioned temporal patterns. For pattern A, the

distribution of interbeat intervals (IBIs) formed a g-like

unimodal distribution. 1/f b noise (b z 1) was identified in

the IBI time series at sufficiently large timescales. As for pat-

tern B, the IBIs followed a bimodal distribution. 1/f b noise

was also identified in the IBI time series of pattern B at suffi-

ciently large timescales. Furthermore, both patterns possessed

multifractality, i.e., the local Hölder exponents possessed

a broad spectrum exhibiting a peak at ~0. These experimental

trends were successfully explained by an integrate-and-fire-

type mathematical model, which was originally described

by Izhikevich (19), in which we additionally incorporated

a long-term-correlated noise. These findings strongly suggest

that 1/f b noise and multifractality in IBI time series are intrin-

sic properties of isolated single cardiac muscle cells.

METHODS

Preparation of cell culture

The experimental procedures were approved by the Animal Use and Care

Committee of the University of Fukui (Fukui, Japan). Primary cultures of

ventricular cells were prepared from one-day-old neonatal rats according

to methods described elsewhere (20,21). Briefly, ventricles isolated from

hearts of one-day-old rats were minced and were treated with collagenase

(0.2% dissolved in phosphate-buffered saline) at 37�C for 10 min. The treat-

ment was repeated four times, and the supernatant from the second to the

fourth treatments were collected. The selective plating method (22) was

adopted to reduce the population of nonmuscle cells; the cells were supplied

with plating medium (90% Dulbecco-modified Eagle medium, 10% fatal

bovine serum, 0.1 mM 5-bromo-20-deoxyuridine (BrdU) and 1% penicillin/

streptomycin solution) and plated on a petri dish. After a 90-min incubation

at 37�C and 5% CO2, the supernatant was collected. Cells were further

purified by Percoll-density-gradient centrifugation (22); the cells were

dispersed in a suspension buffer (116 mM NaCl, 20 mM 4-(2-hydrox-

yethyl)-1-piperazineethanesulfonic acid (HEPES), 1 mM NaH2PO4,

5.5 mM D-glucose, 5.4 mM KCL, and 0.8 mM MgSO4) and were overlaid

on a Percoll suspension forming a discontinuous density gradient (35% and

45%). Thirty-minute centrifugation at 3000 rpm resulted in the formation

of a band between 35% and 45% Percoll suspension. The cells were

collected and again suspended in a plating medium to achieve a density of

1.3 � 104 cell/ml. Two milliliters of cell suspension were plated on

a type-I-collagen-coated f 35-mm petri dish. After 24-h incubation at

37�C and 5% CO2, the medium was replaced with a contraction medium

(90% modified Eagle medium, 10% calf serum, 0.1 mM BrdU, 1% penicil-

lin-streptomycin solution). This was followed by incubation at 37�C and 5%

CO2 for 1–3 days.

Measurement of spontaneous beating activity

Cells cultivated for 2–4 days were used in the measurement of spontaneous

activity. First, the medium in a culture dish was exchanged with a fresh con-

traction medium (see above for the composition of the medium). It was then

placed on a homemade on-stage cultivating chamber mounted on an inverted

phase-contrast microscope (IMT-2, Olympus, Tokyo, Japan). The interior of

this cultivating chamber was maintained at 37 5 0.5�C, 5% CO2, and in

a humidified condition. By using this chamber, we were able to keep the iso-

lated cells vital for several days. In this study, to avoid the possible effect of

medium exchange, the medium was not exchanged during the measurement,

and the duration of a single measurement did not exceed 12 h. Although
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a small fraction of nonmuscle cells contaminated the primary culture, we

were able to identify vital muscle cells with ease because they exhibited

spontaneous contractions. We chose ~10 isolated cells at random in a single

field of view of the microscope, whose size was ~900 � 680 mm2. Although

many cells were isolated, in some cases, a few cells were clustered, forming

a small aggregate. The phase-contrast microscopic images of cells were

obtained via a 4 � objective lens and a charge-coupled-device camera

(WAT-902H2, Watec, Yamagata, Japan) at a frame rate of 30 frames/s.

The data were continuously stored on a hard-disk drive for later analysis.

Data processing

Detection of spontaneous contractions

The timings of spontaneous contractions were determined from a sequence

of the phase-contrast microscopic images (30 frames/s). Contractions of

a cell are associated with a sequential change in the brightness of pixels,

in particular those located near the cellular boundary (Fig. 1 a). The pixel

that exhibited the largest frequency of sufficiently large peaks in the time

series of brightness was then automatically selected, and the time series of

the brightness associated with this pixel was analyzed. To remove slow

modulation of a baseline of brightness, the local averages of brightness cal-

culated for each 10 s were subtracted from the original data. Furthermore,

a moving-average filter over three or five frames was applied to reduce

shot noise in the time series (Fig. 1 a). The positions of the peaks whose

maximal values exceeded a prescribed threshold were associated with the

timings of contractions.

Next, to remove fictitious spikes due to shot noise that were not removed

by the filtering we have discussed, spikes whose interval from the preceding

spike was less than a prescribed threshold value were removed (Fig. 1 a).

This threshold was determined as follows. First, a histogram of IBIs was

constructed, which usually had a peak ~1 s. Second, a secondary peak some-

times appeared at a much smaller interval (typically <0.2 s). These IBIs are

due to the shot noise mentioned above, as exemplified in Fig. 1 a. Third, the

threshold value was set to the value of IBI that gave a minimum between

these two peaks. The value of the threshold was typically<0.3 s (the average

was 0.2 s). This procedure resulted in the removal of 8.8% of spikes on

average. Afterwards, by inspection of the profile of the fluctuation function

in the detrended fluctuation analysis, it was confirmed that this spike

removal had a negligible effect on the long-term behavior of the IBI time

series, including the scaling exponent, a, of large timescales in the detrended

fluctuation analysis.

By accounting for the drift of the microscope stage and a slight gradual

deformation of the cell, the position of the analyzed pixel and the threshold

value for peak detection were updated every 1200 s. The above-mentioned

semiautomatic method of spike detection enabled us to reduce the probabil-

ity of misdetection of spikes down to 0.5%, compared to the case where

spikes were fully manually identified. In the following, statistical data are

represented as mean 5 SE, if not otherwise indicated.

Construction of a contraction-time map

Spatial distribution of the timings of contraction was determined as follows.

First, contraction events were detected for each cell or small cluster using the

same method as described above. Second, the time difference of the se-

quence of phase-contrast images was calculated. In this analysis, the length

of the time series was set to 1000 frames (z33.3 s) for every cell. Around

the timing of every contraction event, a peak was identified for each pixel in

the time-difference images. In this process, to remove the effect of measure-

ment noise, peaks whose absolute value was less than a certain threshold

were eliminated. The value of the threshold was manually determined. If

multiple peaks were found around a single contraction event, the preceding

peak was selected because the earlier one corresponds to the timing of con-

traction and the later one corresponds to the timing of relaxation. Third, the

time delays of the peaks in each pixel from the earliest peak in the cell were

calculated for every contraction event. The delay values were averaged over
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FIGURE 1 (a) An example of a trace of brightness of a pixel on the cell

indicated by the arrow in panel c. The upper trace in the upper panel repre-

sents raw data. The lower trace represents filtered data, which was generated

by taking a moving average over three video frames. The value of brightness

is expressed at the eight-bit resolution, and the baselines of the traces are ar-

bitrarily shifted so that they can be seen easier. The lower panel represents
the entire set of contraction events for each pixel on the cell. Fourth, the map

of the averaged delays was constructed by expressing their values using

a grayscale (see Fig. 1 b).

Detrended fluctuation analysis (DFA)

In this study, we used detrended fluctuation analysis (DFA) (23), which is

a widely utilized method for analysis of autocorrelation of nonstationary

time series, to examine the autocorrelation inherent in the time series of

IBIs. First, letting xi be the IBI between the ith and (i þ 1)th beats, we

constructed an integrated IBI time series, yi ¼
Pi

j¼1 xj . The integrated IBI

time series was divided into bins of size n. In the jth bin, a linear local trend,

{y j
i }, which was determined by least-squares fitting, was subtracted from the

original time series. The root mean-square of the deviations from local

trends, represented by

FðnÞh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mn

Xm

j¼ 1

Xðjþ 1Þn

i¼ jnþ 1

�
yi � y j

i

�2

vuut ; (1)

depends on the bin size, n, and is termed a fluctuation function. In the above

expression, m represents the number of bins of size n, and {y j
i } represents the

linear local trend in the jth bin. If the original IBI time series, {xi}, possesses

scale-invariance, the fluctuation function, F(n), will exhibit a scaling of the

form FðnÞxna. The scaling exponent, a, is related to the scaling exponent,

b, of the power spectrum density of the original IBI time series, assuming the

form Sðf Þxf�b, as 2a ¼ b þ 1.

Multifractal analysis

To assess the multifractality in the IBI time series, we adopted the wavelet-

transform modulus-maxima (WTMM) method, originally proposed by

Muzy et al. (24). Let us describe this method briefly; the local Hölder expo-

nent, hi, is a quantity locally characterizing the deviation of the IBI time series,

{xi}, as

jxi � xiþ ljxlhi : (2)

a raster plot constructed from the filtered data. Each vertical line indicates the

occurrence of a beat. In a raster plot, fictitious spikes were sometimes

generated due to noise in the raw trace. An example of these fictitious spikes

is indicated by an arrow above the raster plot. These fictitious spikes were

identified by the procedure described in the text and were removed. (b) Con-

traction-time map. The left panels exemplify phase-contrast images of cells.

The scale bar represents 50 mm. In the right panel, a map of the delay in the

timings of contraction (sharp changes in the brightness) from the earliest tim-

ing in each contraction, averaged over 1000 frames (~30 contractions), was

represented. The gray level represents the magnitude of delay as indicated in

the right bar. The top row displays an example of a map for an isolated single

cell. The middle row exemplifies the case of a small cluster. In these cases,

the delays were typically within one frame (33 ms). The average of delays

over 25 cells was 0.44 5 0.11 frames. For comparison, the contraction-

time map for a small cluster at 27�C in the absence of bicarbonate buffer sys-

tem, which displays propagation of contraction waves within a cell, is shown

at the bottom. In this case, significant delays were observed. (c) (Left) A

phase-contrast image of several cardiac muscle cells in the same field of

view. The solid boxes indicate the cells whose spontaneous contractions

have been analyzed. The scale bar represents 100 mm. (Right) Pairwise cor-

relations of the time series of beat rates for five cells shown in the left panel.

Each circle with a number corresponds to the same-numbered cell in the left

panel. A line connecting two circles represents the correlation coefficient, r,

of the beat rate; the thickness of the line is proportional to the magnitude of r,

and the solid and dashed lines mean positive and negative signs for r, respec-

tively. The value of r is also indicated on each line. The average of r for these

five cells was �0.055 5 0.066.
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Let D(h) represent the Hausdorff dimension of the subset where the local

Hölder exponent coincides with h. According to Muzy et al. (24), D(h)

can be determined as follows. First, the integrated IBI time series {yi} was

trimmed to a size of N ¼ 214 or 215, depending on the length of the original

time series. The time series was then discrete-wavelet-transformed using

a fast Fourier transform as

TiðsÞh
1

s

XN

j¼ 1

yjj

�
i� j

s

�
: (3)

The fourth derivative of a Gaussian function, j(t), was adopted as an analyz-

ing wavelet. With this choice of analyzing wavelet, we were able to remove

up to third-order polynomial trends in the time series (24).

Next, the wavelet coefficient Ti(s) was linearly interpolated at three inter-

mediate points for each i. Letting the interpolated time series be denoted by
~TiðsÞ (i ¼ 1, 2, $$$, 4N), modulus-maxima curves were determined from

maxima of j~TiðsÞj with respect to i for every s. Let Lðs0Þ express the set

of modulus-maxima curves, [, satisfying (i, s) ˛ [ 0 s % s0, and cs <

s0, d(i, s) ˛ [. Using this notation, a partition function can be defined as

ZqðsÞh
X

[˛LðsÞ

h
sup
ði;s0 Þ˛[

j~Tiðs
0 Þj
iq

: (4)

Then, if the time series possess scale-invariance, the partition function, Zq(s),

behaves like

ZqðsÞxstIðqÞ: (5)

In this article, we utilize the integrated IBI time series, {yi}, for analysis, for

the sake of numerical stability. The scaling exponent, t(q), of the partition

function for the original time series, {xi}, is determined from the exponent,

tI(q), for the integrated time series using the relation

tðqÞ ¼ tIðqÞ � q: (6)

The value of t(q) has a simple physical meaning in some special cases. In

particular, t(2) is related to the scaling exponent of the power spectrum den-

sity, b, as b ¼ t(2) þ 2. The spectrum of the local Hölder exponents for the

original time series is obtained by the Legendre transform of t(q) as

DðhÞ ¼ qh� tðqÞ: (7)

Numerical simulation

We adopted the Euler method for numerical simulations of the mathematical

model. The size of the time step, Dt, was set to 0.05. The timing of firings,

i.e., the timings at which the excitation variable exceeded a threshold, were

determined by interpolating the orbit obtained using the finite time step Dt,

by extending the method used in Hansel et al. (25).

RESULTS

Spontaneous activity of single cells

Ventricular muscle cells derived from neonatal rats were

plated on a collagen-coated petri dish at a low density. After

one day from the onset of cultivation, the cells were found to

adhere to the substratum and to exhibit spontaneous contrac-

tions. At a cellular density of ~30 cells/mm2, which was

adopted in this study, many cells were physically isolated

although in some cases cells occasionally coupled to form

a small cluster of cells, as can be seen in Fig. 1 c. In the

digital images obtained through phase-contrast video

microscopy, pixels on these cells exhibit cyclic changes of
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brightness as exemplified in Fig. 1 a. The timings of sponta-

neous contractions can be estimated from the time series of

brightness for each pixel.

In this experimental setup, in which pH of the culture me-

dium was regulated by a bicarbonate buffer system and the

temperature was kept at 37�C, the timing of every contrac-

tion was almost simultaneous either within single cells or

small clusters of cells, as depicted in Fig. 1 b (the mean delay

was 0.44 5 0.11 video frames). This was a clear contrast to

the case where the cells were left at the room temperature and

pH of the medium was controlled by HEPES buffer (pH 7.3).

In this case, slow propagation of contraction was frequently

observed within a single cell (see the bottom panels in

Fig. 1 b). This is considered as a manifestation of Ca2þ

waves, because the velocity of propagation of contraction

is consistent with the velocity of a Ca2þ wave, which is

~100 mm/s (26). In contrast, in our experimental setup,

a propagation of contraction occurs within one video frame

for a cell whose diameter is ~100 mm. This is therefore too

fast to be explained by Ca2þ waves. This finding led us to

conclude that every contraction is accompanied by an action

potential in our experimental setup.

In addition, it was confirmed through this analysis that

wave propagation is absent even for small clusters consisting

of a few cells. We thus assumed that network effects are

absent for small clusters in this study (confirmed later),

and, in the following, we analyzed spontaneous contractions

of isolated single cells and small clusters containing up to

three or four cells by regarding them as a single unit. The fol-

lowing analysis involves 23 isolated single cells, 18 clusters

consisting of two cells, four clusters consisting of three cells,

and two clusters consisting of four cells. As mentioned later,

significant difference was not observed in the statistical

properties of spontaneous contractions for different sizes of

clusters.

As for pairs of cells distant from each other, in contrast,

correlations in the activity of spontaneous contractions

were not observed. As depicted in Fig. 1 c, consistent corre-

lations were not observed in the beat rates among distant

cells in the same field of view. The absolute value of the

average of correlation coefficients of the beat rate was <0.1.

This finding indicates that fluctuations in the beat timings

were dominantly generated by fluctuations of the internal

states of the cells, rather than fluctuations of environmental

conditions such as temperature and pH.

In the spontaneous contractions of isolated cardiac mus-

cle cells, several typical temporal patterns were identified.

First, a state in which steady contractions continued over

several hours was often observed. This pattern was termed

pattern A. An example of this pattern is displayed in Fig. 2

a as a raster plot. In another case, alternate occurrences of

burst phases and quiescent periods were also often ob-

served. This pattern, termed pattern B, is depicted in

Fig. 2 b. Each burst phase typically involves several tens

of beats with IBIs at ~1.0 s. The duration of a quiescent
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FIGURE 2 Typical temporal patterns in the spontaneous contractions of

single cardiac cells. (a) Raster plot of a segment of pattern A: beats occur

with relatively regular timings. (b) Raster plot of a segment of pattern B:

an intermittent burst pattern. Bursts, each involving several tens of beats,

are separated by quiescent periods of several tens of seconds. (c) The time

series of the interbeat intervals (IBIs) in pattern B. Vertical lines are drawn

to emphasize very long IBIs (quiescent periods); the eight long vertical lines

in the figure correspond to quiescent periods, which are longer than 5 s. The

IBIs become gradually longer in advance of the occurrence of a quiescent

period (type I burst). (d) An example of spontaneous transitions between

patterns. The time series of IBIs are displayed for an extended duration.

On the bottom of the plot, the annotations of the patterns associated with

each part of the IBI time series are represented. The raster plots presented

in panels a and b were constructed from the portion of the time series marked

by arrows.
period typically ranges from several seconds to several tens

of seconds. As displayed in Fig. 2 c, it was sometimes

observed that IBIs became gradually larger before an inci-

dence of a quiescent period. This observation implies that

the burst behavior found here can be classified as bursts

of Type I (27). Although similar bursting activity was

observed in a network of cultured cardiac muscle cells in

earlier studies (28,29), this was caused by spontaneous ini-

tiation and annihilation of rotating waves. By contrast,

since network effect is absent in our experimental setup

as discussed above, the bursting activity observed here

should has a different origin from those observed in a net-

work of cells.

Although the experimental conditions were the same for

all cells, the observed patterns varied from cell to cell.

Furthermore, in some cases, spontaneous transitions from

one pattern to the other were observed over a long experi-

mental period, as exemplified in Fig. 2 d. This observation

implies the presence of a slowly fluctuating variable control-

ling the appearance of patterns and involved in the mecha-

nism that determines the temporal patterns of spontaneous

contractions.

Statistical properties of interbeat intervals

To characterize the statistical properties of beat timings, var-

iation over time of beat rates, probability distribution of IBIs,

and autocorrelation of the time series of IBIs, were examined

for every contraction pattern. First, in the time series of beat

rates, i.e., the numbers of beats in 1 min, rapid fluctuations

were superimposed on slow modulations for both patterns

(see Fig. 3, c and d). The magnitude of the rapid fluctuations

was larger in pattern B. As depicted in Fig. 3 e, the histogram

of IBIs for pattern A exhibits a g-like unimodal distribution

whose peak was located at ~1 s. In contrast, for pattern B, the

histogram of IBIs typically possesses two peaks, one peak

at <1 s and the other at several tens of seconds. In some

cases, a fat tail appears instead of the second peak for large

IBIs.

Next, to study the autocorrelation of the time series of

IBIs, we performed a detrended fluctuation analysis (DFA)

(23). Fig. 3, g and h, displays the fluctuation function,

F(n), calculated for patterns A and B, respectively. As seen

in these plots, F(n) is found to be a monotonically increasing

function of bin size, n. From Fig. 3 g, two scaling regions

were identified for pattern A. In the scaling region for small

n (n < 102), the scaling exponent a was ~0.5, indicating that

the fluctuations of beat timings are uncorrelated for short

timescales. In the scaling region for large n (n > 102.5), the

slope of the F(n) in the logarithmic plot significantly deviates

from 0.5, and the scaling exponent in this region was close to

unity (for the example displayed in Fig. 3 g, a ¼ 0.89 5

0.03). As for pattern B, three distinct scaling regions were

identified, in contrast to the case of pattern A. First, pattern

B also exhibits a scaling region for small n, where the

Biophysical Journal 96(1) 255–267
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patterns A and B. The left columns (a, c, e, and g) represent

data for pattern A, and the right columns (b, d, f, and h) dis-

play data for pattern B. Data for typical cells are displayed.

(a and b) Raster plots of a portion of the time series for pat-

tern A and pattern B. (c and d) Time series of the beat rate,

represented as the number of beats per minute. (e and f)

Histograms of the IBIs. (g and h) Detrended fluctuation

analysis (DFA). The fluctuation function for the detrended

IBI time series, F(n), is plotted as a function of the bin size

for detrending, n, in a logarithmic plot. The solid circles

represent data constructed from the original IBI time series.

The open triangles represent data constructed from

randomly shuffled IBI time series. The solid lines are

the least-squares fits to the original data in the range

[102.5, 104.5] in g and [103.2, 104.5] in h, respectively.

The scaling exponents a in these regions are 0.89 5 0.03

in g and 0.78 5 0.03 in h, respectively.
exponent was ~0.5. In the case of pattern B, the fluctuation

function, F(n), exhibits a plateau in the intermediate scale

(102 < n < 103). For larger n, F(n) exhibits a scaling expo-

nent >>0.5 (in Fig. 3 h, a ¼ 0.78 5 0.03), as was the case

for pattern A.

Fig. 4 a displays a histogram of the scaling exponents of

F(n) for each cell in the scaling region for large n. Because

classification of the patterns is not clear in some cases, the

histogram is represented with both patterns unified. As

clearly observed in this figure, the scaling exponent, a,

has a distribution with a peak at ~0.9. The value of the

scaling exponent, a, averaged over all the cells analyzed

here (n ¼ 47) yielded the value 0.91 5 0.03. Averaging

over pattern A (n ¼ 29) gives the value 0.93 5 0.03, and av-

eraging over pattern B (n¼ 18) yields the value 0.87 5 0.04.

The number of coupled cells has no effect on the scaling

exponent, a. Fig. 4 b displays the exponent a averaged

over clusters that contain the specified number of cells. As

seen in this figure, no significant variation in the value of
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a was observed for different sizes of clusters (p ¼ 0.83,

one-way ANOVA test).

From the above observations, it became clear that the fluc-

tuations of beat timings of single cells possessed a long-term

correlation, and can be characterized as 1/fb noise, with b z 1,

at timescales larger than 103 events.

Multifractality

Next, we performed multifractal analysis to gain further

information about the correlation of IBIs. Multifractality is

a concept developed to characterize geometrical objects

where the scaling exponent of its measure is not unique

but has a spectrum (24,30,31). Time series can also possess

multifractality. In particular, the time series of IBIs in the

heart rate of a healthy young human is a well-known exam-

ple of a time series possessing multifractality (18,32). Here,

to assess multifractality in the time series of IBIs for single

cells, we adopted the wavelet-transform modulus-maxima

(WTMM) method, presented by Muzy et al. (24,31). Fig. 5
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exemplifies the wavelet coefficients of the integrated IBI

time series, {yi}, for pattern A and B. In this study, we adop-

ted the fourth derivative of a Gaussian function as an analyz-

ing wavelet. According to Muzy et al. (24), this allows us to

remove polynomial trends with orders less than four. This

figure graphically demonstrates the fractal nature of the

time series of IBIs.

Fig. 6, a and b, display the partition functions, Zq(s),

which are calculated according to Eq. 4, for the same cells

displayed in Fig. 5, a and b, respectively. This figure shows

that the profile of the partition function varies as the value of

q changes. Similarly to the case of DFA (see Fig. 3 g), two

scaling regions were found in the partition function for

pattern A, one for small scales (s < 102) and the other for

large scales (s > 102). As for pattern B, three scaling regions,

one for small scales (s < 101.5), one for intermediate scales

(101.5 < s < 102.5), and the third for large scales (s > 102.5),
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DFA. The number of samples is indicated on the top of each bar. Note

that there is no significant difference in the value of a over different sizes

of clusters.
were identified in the profiles of partition functions, as

occurred with DFA (see Fig. 3 h).

Because we are interested in the property of the time series

for the large scales, we determined the scaling exponents in

the region [102.5, 104], by least-squares fitting of the logarith-

mic plots of the partition functions to linear functions. From

these exponents, through the conversion given by Eq. 6, the

spectra of t(q) were obtained (Fig. 6, c and d). As observed

in the figure, the spectra of t(q) deviate from straight lines for

both patterns A and B, implying the presence of multifractal-

ity. This finding also suggests that the time series of IBIs are

nonuniform, and that the local Hölder exponent h in the time

series is not unique. The spectrum of the local Hölder expo-

nents, D(h), can be obtained by the Legendre transform of

t(q). Fig. 6, e and f, displays the spectra, D(h), for patterns

A and B, respectively. From these plots, it is obvious that

the local Hölder exponent, h, possesses a broad spectrum.

In the case exemplified in Fig. 6, e and f, the spectra, D(h),

exhibit maxima at h ¼ �0.04 and h ¼ �0.15 for patterns

A and B, respectively. The fact that the local Hölder expo-

nents exhibit a maximum at ~h ¼ hmax z 0 provides an in-

dependent confirmation of the result of DFA, confirming the

presence of 1/fb noise in the time series of IBIs. The maximal
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FIGURE 6 Multifractal analysis of the IBI time series.

The left columns (a, c, and e) represent data for pattern

A, and the right columns (b, d, and f) display data for pat-

tern B. (a and b) Partition functions, Zq(s), of integrated IBI

time series. Zq(s) for several values of q are represented as

functions of wavelet scales in logarithmic plots. Vertical

crosses, tilted crosses, asterisks, open squares, solid

squares, open circles, solid circles, open upward triangles,

solid upward triangles, open downward triangles, and solid

downward triangles represent the partition functions for

q ¼ �5, �4, �3, �2, �1, 0, 1, 2, 3, 4, and 5, respectively.

Thin solid lines are the least-squares fits to the data in the

range [102.5, 104]. (c and d) The spectrum of the scaling

exponent, t(q), for the original IBI time series. (e and f)
The spectrum of the local Hölder exponents, D(h), for

the original IBI time series.
value, D(hmax), was approximately unity, indicating that the

time series were almost everywhere singular. These features

were consistently observed in most of the cells analyzed here

(n ¼ 13: eight cells with pattern A, five cells with pattern B).

However, the value of hmax was different from cell to cell,

ranging from �0.30 to 0.17. The average was �0.033 5

0.043. In addition, the range of h for the spectrum of D(h),

denoted by Rh, also varied from cell to cell, ranging from

0.06 to 0.84. The average was 0.41 5 0.07. No significant

correlation has been found in the multifractal properties,

including the values of hmax and Rh, and the number of cells

in a single cluster (p ¼ 0.60 for hmax and p ¼ 0.56 for Rh,

one-way ANOVA test).

Model

We next analyzed experimental data by constructing a simple

mathematical model. The outstanding feature observed in the

behavior of single cells is the presence of several character-

istic temporal patterns (A and B). In particular, the character-

istic of a type-I burst (27) was found in pattern B, as depicted

in Fig. 2 c. We thus adopted an integrate-and-fire model orig-

inally proposed by Izhikevich (19) in this study, because this

Biophysical Journal 96(1) 255–267
is the simplest model that exhibits a type-I burst. Although

the originally proposed model is deterministic, we added

white Gaussian noise to the dynamics of an excitation vari-

able, which could represent the membrane potential, because

thermal noise is expected to contribute to ionic currents at the

single-cell level. We further added another noise component

with a long-term correlation to the ionic currents, by assum-

ing that this component reflects an internal state of the cell.

Since no network effect was observed in the experiment, spa-

tial degrees of freedom are not considered here. By including

these modifications, we prepared the model as follows. First,

the continuous dynamics are described as

t _x ¼ I þ x2 � y þ z þ x; (8)

t _y ¼ �my; (9)

where x(t) and y(t) represent an excitation variable and a slow

recovery variable, respectively. In addition, when x(t)
reaches a prescribed threshold xth, x(t) is reset and y(t) is

increased as

x/1; (10)
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y/y þ d: (11)

The term x(t) that occurs in Eq. 8 is white Gaussian noise

satisfying hxðtÞi ¼ 0 and hxðtÞxð0Þi ¼ 2DdðtÞ. The term z(t)
is long-term correlated Gaussian noise, constructed as

zðtÞh 1ffiffiffiffiffi
Nz

p
XNz

i¼ 1

ziðtÞ; (12)

_zi ¼ �kizi þ zi for i ¼ 1; 2;/;Nz: (13)

The relaxation rate ki was selected from a uniform probabil-

ity density over the range [3, 1]. The term zi(t) is

white Gaussian noise that satisfies hziðtÞi ¼ 0 and

hziðtÞzjð0Þi ¼ 2MdijdðtÞ. In this study, we set 3 ¼ 0.0003

and Nz ¼ 3000, although change of these parameters has

minor effects on the results described below, provided that

3 is sufficiently small and Nz is sufficiently large.

The other parameter values were determined on the basis

of experimental data given in Fig. 3 in the following manner.

As observed in Fig. 3 f, two peaks appear in the histogram of

IBIs for pattern B. The parameters t, I, and d were deter-

mined so that the outputs of the model match the experimen-

tal data in terms of the position and the magnitude of each

peak. The main influence of white noise, x(t), was found to

broaden the peaks in the histogram. Therefore, we deter-

mined the intensity of white noise, D, by matching the

widths around the peaks in the histogram. By contrast, noise

with long-term correlation, z(t), controls the magnitude of the

DFA fluctuation function, F(n), in the scaling region of

large n. Using this fact, we estimated the intensity of corre-

lated noise, M. Finally, the parameter m was determined so

that the model can generate a profile of F(n) similar to that

obtained in the experiments. We found that this model suc-

cessfully explains pattern A using the same parameter values

except for m. According to this procedure, the parameters

were set as follows: t ¼ 0.7, I ¼ 4.2, d ¼ 0.06, xth ¼ 5,ffiffiffiffiffiffi
2D
p

¼ 0:07,
ffiffiffiffiffiffiffi
2M
p

¼ 0:3, and m ¼ 0.0182 (pattern A) or

0.01 (pattern B).

We found that the abovementioned mathematical model

successfully explains the experimental data in a semiquantita-

tive manner. Fig. 7, a and b, display the raster plots, which

were extracted from the time series of x(t), when m ¼
0.0182 and m ¼ 0.01, respectively. As can be clearly seen,

a seemingly regular spike train, reminiscent of pattern A, is

generated when m ¼ 0.0182, while a burst pattern, reminis-

cent of pattern B, is obtained when m ¼ 0.01. Fig. 7, c–h,

displays the statistical properties of these temporal patterns:

the time series of beat rates (Fig. 7, c and d), the histogram of

IBIs (Fig. 7, e and f), and DFA (Fig. 7, g and h). Despite the

fact that only a single parameter, m, was changed, the model

satisfactorily captures the essential features of the experi-

mental data (Fig. 3), in terms of these statistical properties.

Fig. 8 displays the results of multifractal analysis of the

time series of IBIs for this model using the WTMM method.
By using the same parameter sets as those used in Fig. 7, the

outputs of the model reasonably coincide with the experi-

mental data with respect to the profiles of the partition func-

tions (Fig. 7, a and b), the spectra of t(q) (Fig. 7, c and d),

and the spectra of D(h) together with the positions of their

maxima (Fig. 7, e and f).

DISCUSSION

In this study, several interesting characteristics were found in

the spontaneous contractions of isolated single cardiac muscle

cells. First, typical temporal patterns A and B were identified

in the spontaneous contractions of single cells (Fig. 2,

a and b). The temporal patterns of contraction varied from

cell to cell under the same environmental conditions, and

spontaneous transitions between these patterns were also

found during a long experimental period (Fig. 2 d). By study-

ing statistical properties of the time series of IBIs, the exis-

tence of 1/fb noise (b z 1) at large timescales over 102 or

103 events was confirmed (see Figs. 3 and 4). Furthermore,

the WTMM method applied to the IBI time series revealed

multifractality at large timescales, i.e., the local Hölder expo-

nents exhibited a broad spectrum at ~h z 0 (Fig. 6). These

characteristics were independent of the size of clusters, at least

for small clusters that consist of a few cells. These experimen-

tal findings were reasonably explained by a modified Izhike-

vich model, in which white and long-term-correlated Gauss-

ian noise was incorporated, in a semiquantitative manner

(Figs. 7 and 8).

Fluctuations in the beat timings of cultured cardiac muscle

cells have also been investigated in several earlier studies.

Soen and Braun (10) and Yoneyama and Kawahara (11)

studied fluctuations of single cardiac cells under similar

experimental conditions to those of this study, and found

power-law correlated fluctuations. However, in their studies,

the presence of 1/f b noise at large timescales was not ad-

dressed. Kucera et al. (9) performed a similar measurement

on a monolayer of cultured muscle cells. They reported that

in some cases, beat-rate fluctuations exhibit 1/f b noise for

frequencies <1 Hz. Since they studied a monolayer culture

of cells in which a number of cells interacted with each other,

it was not clear whether 1/f b noise is an intrinsic property of

each muscle cell or intercellular interactions are necessary

to generate such noise. To address this question, we studied

the statistical properties of single cells without interactions

with other cells. Our experimental results indicate that 1/f b

noise is an intrinsic property of a single cardiac muscle cell.

In addition, none of the earlier studies addressed the presence

of multifractality at the single-cell level. In this study, multi-

fractality was also identified at the single-cell level.

For mathematical examination, we introduced a stochastic

integrate-and-fire model. The main features of the proposed

model are the presence of a slow recovery variable y, which

controls appearances of bursts, the presence of weak white

Gaussian noise, and the presence of long-term correlated
Biophysical Journal 96(1) 255–267
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FIGURE 7 Statistical properties of the IBI time

series generated by the mathematical model. The left

columns (a, c, e, and g) represent the results obtained

by setting m ¼ 0.0182. The right columns (b, d, f,

and h) display the results obtained by setting m ¼
0.01. (a and b) Raster plots of a portion of the time se-

ries. (c and d) Time series of the beat rate (number of

beats per minute). (e and f) Histograms of the IBIs.

(g and h) Detrended fluctuation analysis. The meanings

of the symbols are the same as those in Fig. 3. The error

bars in panels g and h represent the root mean-square

deviations calculated from 20 independent runs. The

solid lines are the least-squares fits to the original

data in the range [102.5, 104.5] in g and [103.2, 104.5]

in h, respectively. The scaling exponents a in these

regions are 0.85 5 0.01 in g and 0.75 5 0.01 in h,

respectively.
noise. Two kinds of noise, white noise and correlated noise,

possess different roles in the behavior of the model. White

noise increases the dispersion of IBIs and mainly contributes

to the short-term fluctuations of IBIs. By contrast, correlated

noise dominates the correlation of IBI fluctuations in the

large timescales: The long-term correlation disappears in

the absence of this noise. In this case, since the intensity of

white noise was set small, the effects of correlated noise

on the overall numerical results were much larger that those

of white noise. Despite having only a small set of parameters,

the model agrees extremely well with the experimental

results. In our preliminary study, we found that other models,

including ordinary differential equation models (33), can

also reproduce the results, provided that the above-men-

tioned features are incorporated (not shown).

Possible molecular mechanism

The precise mechanism of 1/fb noise present in the beat

timings of single cardiac muscle cells is currently unclear,
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although a working hypothesis can be made on the basis of

experimental findings of this study. As depicted in Fig. 2 d,

spontaneous switching of patterns occurs at large timescales,

even in a single cell. This implies that a variable that controls

the appearance of patterns is fluctuating very slowly. We can

speculate about a physical realization of this variable as

follows. Firing patterns similar to the burst pattern observed

in this study (pattern B) are already well known in pancreatic

b-cells (34), various types of neurons (35), and embryonic-

stem-cell-derived cardiac muscle cells (36). In these cases,

adenosine-triphosphate (ATP)-dependent potassium current

plays an important role in the occurrence of a burst activity

(36–39). In this system (primary culture of neonatal ventric-

ular muscle cells), we have confirmed that pattern B can be

reversibly induced from pattern A by activating an ATP-

dependent potassium channel (KATP). When sarcolemmal

KATP of regularly beating cell (pattern A) was activated by

adding several tens micromolar pinacidil, which is known

as an activator of sarcolemmal KATP (40), to the culture
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data obtained by setting m ¼ 0.01. (a and b) Partition

functions, Zq(s), of integrated IBI time series. The mean-

ings of the symbols are the same as those in Fig. 6. Thin

solid lines are the least-squares fits to the data in the

range [102.5, 104]. (c and d) The spectrum of the scaling

exponent, t(q), for the original IBI time series. (e and f)
The spectrum of the local Hölder exponents, D(h), for

the original IBI time series.
medium, bursting activity similar to pattern B arose depend-

ing on the concentration of pinacidil, and pattern A resumes

upon washout of pinacidil (T. Harada, unpublished data).

This observation raises a possibility that the fluctuations in

the intracellular ATP concentration causes the spontaneous

switching between patterns A and B, and slow modulation

in the metabolic state of the cell (41) might be a cause of

slow modulation of the beat rate found in this study. To eval-

uate this hypothesis, however, requires much more examina-

tion of the role of such channels, the behavior over time of

metabolic rates of a cell, and the correlation between the fluc-

tuations of beat rates and metabolic rates.

Relation to heart rate variability

We noticed several differences between the characteristics of

the fluctuations of beat timings at the single-cell level in vitro

and those of heart-rate variability (HRV) observed in vivo.

First of all, the burst pattern B does not appear in the heart-

beats of healthy adults in vivo, although it was also observed

in embryonic stem-cell-derived (36) and neonatal (10) cardiac

muscle cells. Hence, the burst pattern in the spontaneous ac-

tivity of cells is specific to in vitro systems of immature cells.
This is possibly because of the difference in the intracellular

ionic composition and the channel density (42,43).

In addition to the differences in temporal patterns, a differ-

ence in statistical properties was also found. In the earlier

studies on the HRV using DFA, almost uniform scaling

over extended timescales were observed for the heartbeat

of healthy adult subjects (44). In contrast, at the cellular

level, the presence of several distinct scaling regions and

crossovers among them has been observed in this and earlier

studies (5,9,10). Even in the apparently uniform pattern A,

a crossover scaling was observed in DFA; fluctuations are

uncorrelated at small timescales (a z 0.5 for n < 102),

and 1/f b noise becomes significant at large timescales (see

Fig. 3 g). A similar crossover scaling was observed in the re-

sults of numerical simulation of the mathematical model

(Fig. 7). In the model studied here, one cause for the scaling

exponent a z 0.5 at small timescales is the presence of

white noise. This is because this scaling region was found

to shrink when the intensity of white noise, D, is decreased.

However, it was found that the statistical properties of the

model exhibit only slight changes when white noise was

turned off, and that the crossover scaling was retained in

the absence of white noise (not shown). Another reason for

Biophysical Journal 96(1) 255–267
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the crossover scaling might be nonlinearity in the model, in

particular that related to bursting behavior. As seen in Fig. 7

h, nonlinearity related to generation of bursting tends to sup-

press the correlation in IBI fluctuations at small and medium

timescales, possibly because bursting interferes with corre-

lated noise. This effect becomes evident when the parameters

are set to induce pattern B, while the inherent nonlinearity

might cause a similar effect when the parameter values are

changed to induce pattern A. The outcomes of interactions

between nonlinearity and noise in a bursting oscillator are

to be studied in further detail.

In this study, we adopted ventricular cells derived from

neonatal rats as a model system to study general features

of the slow dynamics of membrane potential, because exci-

tation of the membrane potential and contraction is coupled

in this type of cell and because we are able to observe spon-

taneous contractions. Consequently, long-term correlation of

the beat timings, which partly resembles the HRV, was

found at the single-cell level, although several differences

were also found as mentioned above. In addition, when we

attempt to correlate the current experimental findings to the

HRV, we have to be careful of the special nature of the ex-

perimental model adopted here. As is well known from the

literature (42,43), ventricular cells derived from neonatal

rats exhibit spontaneous contractions under physiological

salt concentration, which this study also adopted. This fea-

ture does not appear in mature ventricular cells (43), and

the autonomy is due to sinoatrial nodal cells in a healthy

heart. Although the basic mechanisms of excitation and con-

traction are expected to be common to both neonatal ventric-

ular cells and nodal cells, it is possible that these two types of

cells have different characteristics in terms of long-term

properties of fluctuations because of differences in system

parameters, including the expression pattern of key proteins

such as ion channels, signal transducing proteins, and motor

proteins. Therefore, we have to extend this study to the case

of sinoatrial nodal cells as a next step.

In addition to the cellular-level properties observed in this

study, it is needless to state the importance of the contribu-

tions from other extracardiac control systems, including the

autonomic nervous system, the hormonal system, and the

pressure in the blood vessels, to the HRV in vivo (45). In par-

ticular, the autonomic nervous system is believed to be a key

factor to generate the HRV (4,46,47). It is thus an interesting

problem to examine the effect of external fluctuating input

from neurons on the statistical properties of spontaneous

activity of cells.

FUTURE PERSPECTIVES

In this study, the presence of 1/f b noise and multifractality

was established for the beat timings of single cardiac muscle

cells. Further studies of the molecular mechanism generating

such singular fluctuations should lead to insights into the

mechanism maintaining the homeostasis of cellular activity

Biophysical Journal 96(1) 255–267
at the single-cell level. In addition, it is also an important

issue to study to what extent the properties observed in this

case extend to other types of cells from various types of

organisms, because this would reveal the general properties

of fluctuations of cellular activities at large timescales.
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