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Slow switching in a population of delayed pulse-coupled oscillators

Hiroshi Kori*
Department of Physics, Graduate School of Sciences, Kyoto University, Kyoto 606-8502, Japan

~Received 22 January 2003; published 28 August 2003!

We show that peculiar collective dynamics called slow switching arises in a population of leaky integrate-
and-fire oscillators with delayed, all-to-all pulse couplings. By considering the stability of cluster states and
symmetry possessed by our model, we argue that saddle connections between a pair of the two-cluster states
are formed under general conditions. Slow switching appears as a result of the system’s approach to the saddle
connections. It is also argued that such saddle connections are easy to arise near the bifurcation point where the
state of perfect synchrony loses stability. We develop an asymptotic theory to reduce the model into a simpler
form, with which an analytical study of the cluster states becomes possible.
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I. INTRODUCTION

Studies on collective motion of coupled oscillators ha
attracted considerable attention over the past few dec
@1–3#. It is commonly seen that a population of autonomo
elements performs certain biological functions by behav
collectively @4#. It has, in fact, been pointed out that colle
tive motion is crucial to information processing and tran
mission in living organisms@5#.

In the brain, the neurons are exclusively coupled throu
chemical synapses, i.e., the neurons communicate by pu
of transmitter@6#. Chemical synapses commonly form den
and complex networks. For mathematical modeling of n
ronal networks, homogeneous all-to-all~or global! coupling
is often adopted. Although the global coupling may be a lit
too idealistic, the corresponding networks share a lot
properties in common with systems with complex and de
networks.

In the present paper, we consider a population of ne
oscillators with delayed, all-to-all pulse coupling. The osc
lator we use is called the leaky integrate-and-fire~LIF!
model. There are a large number of papers concerning
LIF in physics and neuroscience, e.g., see Refs.@7–9#. This
is because the LIF is a quite simple model still captur
some essential characteristics of neuronal dynamics, i.e
represents an integrator with relaxation, and resets afte
fires. Though our population model is commonly used~e.g.,
see Refs.@10#!, its collective dynamics does not seem
have been studied so carefully. We are particularly concer
with peculiar collective dynamics called slow switchin
@11,12#. The study of collective dynamics in the origin
form of the model is not easy to handle because the coup
involves a long term memory. We thus develop
asymptotic theory and reduce our model into a form with
memory, by which an analytical study of collective dynam
becomes possible.

II. MODEL

The population model we consider consists ofN identical
elements with delayed, all-to-all pulse coupling. The dyna
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ics of each element is described by a single variablev i ( i
51,2, . . . ,N), which corresponds to the membrane poten
of a neuron. The equation forv i is given by

d

dt
v i~ t !5a2v i1

K

N
~b2v i !E~ t !. ~1!

The parametera is the so-called resting potential to whichv i
relaxes when the coupling is absent. It is assumed that w
v i reaches a threshold value which is set to 1, it is instan
neously reset to zero. This event is interpreted as a spik
event. The dynamics is thus called the LIF. When a neu
spikes, it emits a pulse toward each neuron coupled to it,
the latter receives the pulse with some delay called a syna
delay. The coupling is assumed to be homogeneous and a
all, so that its effect can be represented by one global v
ableE given by

E~ t !5(
j 51

N

(
spikes

e~ t2t j
spikes2t!. ~2!

Here, t j
spikes represents a series of times at which thej th

neuron spikes and(spikes denotes a summation over the s
ries of such spikes;t is the synaptic delay, ande(t) is a
pulse functiongiven by

e~ t !5
ab

b2a
~e2at2e2bt!Q~ t !, ~3!

whereQ(t) is the Heaviside function;a andb are constants
satisfyingb.a. In the limit b→a, e(t) becomesa2te2at,
which is called the alpha function@6#. b is called the reversa
potential to whichv i relaxes whenE(t) is positive, i.e.,
while the neuron receives the pulses.K is a positive constan
characterizing the strength of the coupling. The coupling
sumed above is characteristic to the synaptic coupling.
coupling becomes excitatory~EPSP! if b.1 and inhibitory
~IPSP! if b<0.

If a<1, the LIF becomes an excitable neuron, while
a.1, it repeats periodic spikes, namely, it represents a n
ral oscillator. We assumea.1 throughout the present pape
and call each element anoscillator. Then, we can define a
©2003 The American Physical Society19-1
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variablec i varying smoothly with time, which turns out use
ful in the following discussion. We callc i the phaseof the
i th oscillator, and define it by

c i5E
0

v i dv
a2v

5 lnS a

a2v i
D , ~4!

which varies between 0 and the intrinsic period of oscillat
T given by

T5 lnS a

a21D . ~5!

Note thatc i satisfiesdc i /dt51 in the absence of coupling

III. NUMERICAL RESULTS

By numerically integrating our model under random in
tial distributions ofv i , we find various types of collective
behavior. Among them, we are particularly interested in
slow switching phenomenon, which can arise whenb.a and
N>4. As displayed in Fig. 1, the whole population, whic
was initially distributed almost uniformly, splits into tw
subpopulations, each of which converges almost to a p
cluster. However, after some time, the phase-advanced c
ter starts to scatter. Then, this scattered group starts to
verge again as it comes behind the preexisting cluster. In
way, the preexisting cluster becomes a phase-advanced
ter. After some time, again, this phase-advanced cluster
gins to scatter, and a similar process repeats again and a
In other words, the system switches back and forth betw
a pair of two-cluster states. For larger times, the sys
comes closer to each of the well-defined two-cluster sta
and stays near the state longer. Theoretically, these sw
ings repeat indefinitely, although in numerical integratio
the system converges at one of the two-cluster states
finite time and stops switching due to numerical round-
errors@12#.

The slow switching phenomenon occurs within a bro

FIG. 1. Slow switching phenomenon viewed through the nu
ber density of the oscillators as a function of phase. In order to
a better view, we work with a comoving frame of reference. T
parameter values area51.03 (T.3.5), b52.0, a2150.3, b
→a, t50.2, K50.1, andN5100.
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range of parameter values provided thatK is small, and the
time constantsa21, b21, andt are sufficiently small com-
pared withT. For largera21, b21, andt, the slow switch-
ing phenomenon becomes less probable, and the appea
of steady multicluster states becomes more probable inst
For b,a, we find no two-cluster states involving slow
switching, while steady multicluster states are observed
most cases. The corresponding phase diagram will be
sented in Sec. VII~see Fig. 7!.

IV. WEAK COUPLING LIMIT

Our model given by Eq.~1! is relatively simple, still it
would be difficult to get some insight into its collective dy
namics analytically. Fortunately, however, our main resu
given in Sec. III do not change qualitatively in the wea
coupling limit, i.e.,K→0. In this limit, our model is reduced
to a much simpler form with which we can study the ex
tence and stability of various cluster states analytically. De
vation of the reduced model is given as follows.

Substitutingv i5a(12e2c i) into Eq. ~1!, we obtain

d

dt
c i~ t !511

K

N (
j 51

N

(
spikes

Z~c i !e~ t2t j
spikes2t!, ~6!

where

Z~c i !5
b2a

a
ec i11. ~7!

It is convenient in the following calculation to redefineZ as
a T-periodic function, or, Z(c i1nT)5Z(c i) (n561,
62, . . . ). Note that the sudden drop ofZ(x) at x50 is due
to our rule employed, i.e., the membrane potential is inst
taneously reset atv i51. We also define a residual phaseC i
by

C i5c i2t. ~8!

Substituting Eq.~8! into Eq. ~6!, we obtain

d

dt
C i~ t !5

K

N (
j 51

N

(
spikes

Z~C i1t !e~ t2t j
spikes2t!. ~9!

We now assume thatK is sufficiently small so that the right
hand side of Eq.~9! is sufficiently smaller than the intrinsic
frequencyT21. This allows us to take an average of the r
of Eq. ~9! over the periodT. The zeroth-order approximatio
with respect to the smallness ofK, which corresponds to the
free oscillations, is given by

C i~ t !5const ~10!

and

t j
spikes5t j2nT ~n50,1,2, . . . !, ~11!

wheret j is the latest time at which thej th neuron spikes. In
the first-order approximation, we may time average Eq.~9!
over the range betweent2T and t using Eqs.~10! and~11!:

-
et
9-2
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d

dt
C i~ t !5

K

N (
j 51

N
1

TEt2T

t

(
n50

`

Z„C i~ t !1l…e~l2t j1nT2t!dl ~12!

5
K

N (
j 51

N
1

TE0

`

Z„C i~ t !1t j1t1l8…e~l8!dl8 ~13!

5
K

T
1

K~b2a!

Na (
j 51

N

G„C i~ t !1t j1t…, ~14!

where

G~x!5
ab

b2a
$Ha,T~x!2Hb,T~x!%, ~15!

Ha,T~x!5
1

TE0

`

exp@~x1l!modT#exp@2al#dl5
~eT21!exp@a~x modT!#2~eaT21!exp@x modT#

T~12a!~eaT21!
. ~16!
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Note thatG(x) andHa,T(x) areT-periodic functions. Figure
2 illustrates a typical shape of the coupling function given
Eq. ~15!. Furthermore, using the identity

C j~ t j !5c j~ t j !2t j52t j , ~17!

and the zeroth-order approximationC j (t j )5C j (t), we may
replacet j by 2C j (t) in Eq. ~14! in the first-order approxi-
mation. Thus, we finally obtain

d

dt
c i~ t !5v1

K8

N (
j 51

N

G„c i~ t !2c j~ t !1t…, ~18!

where v511K/T and K85K(b2a)/a. Equation ~18! is
the standard form of the phase model. Note that the e
involved in Eq.~11! may look to diverge asn→`, still the
final error vanishes in the first-order approximation due
the decay ofe(t). It should be noted that the reduced mod
is free from memory effects, but the effect of delay has be
converted to a phase shift in the coupling function. Simi

FIG. 2. The solid line shows the coupling functionG(x) for a
51.05 (T.3.0), a2150.2, andb→a. The minimum appears a
x5tc which is a small negative. For comparison, the shape ofZ(x)
is also displayed with the broken line.
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form of the phase model is generally obtained in delay
coupled oscillators when the coupling is sufficiently we
@12#. Hereafter, we ignore the degree of freedom associa
with the dynamics of the center of mass~or mean phase!
which can be decoupled in the phase model.

Important parameters of our phase model given by
~18! with Eq. ~15! areT,a,b,t, and the sign ofK8 ~i.e., the
sign of b2a). The reason is the following. We may tak
uK8u51 by properly rescalingt andv, while its sign is cru-
cial because the local stability of any solution depends on
v gives the frequency of steady rotation of the whole syste
which is irrelevant to collective dynamics. We chooseT as an
independent parameter by whicha becomes dependen
through Eq.~5!. It is remarkable that our coupling function i
independent ofb. In fact, change inb causes no qualitative
change in our result as far as the sign ofb2a remains the
same. Interestingly, even if we replace the termb2v i by a
constantc in Eq. ~1!, i.e.,

d

dt
v i~ t !5a2v i1

Kc

N
E~ t !, ~19!

we can reduce this model similarly and obtain the same c
pling function as in Eq.~15!. We have checked that Eq.~19!
actually reproduces qualitatively the same results as th
given in Sec. III. In that case, negativec corresponds to the
caseb,a in Eq. ~1!.

In the following section, we assumeb.a andb→a un-
less stated otherwise.

V. TWO-OSCILLATOR SYSTEM

In this section, we study a two-oscillator system, or,N
52. Although the two-oscillator system is not directly r
lated to the main subject of the present paper, one may le
some basic properties of our phase model from this sim
case. DefiningD5c12c2, we obtain
9-3
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dD

dt
5

K8

2
@G~D1t!2G~2D1t!#[Gt~D!. ~20!

Phase locking solutions are obtained by puttingdD/dt50,
and the associated eigenvalues are given bydGt /dD. Figure
3 shows a bifurcation diagram of the phase locking solutio
in which we taket as a control parameter. We find that f
smallt the trivial solutionsD50 ~in-phase locking! andT/2
~antiphase locking! are unstable, while there are a pair
stable branches of nontrivial solutions. The pointt50 is
close to the bifurcation point where the in-phase state lo
stability. The bifurcation occurs att5tc , wheretc corre-
sponds to the minimum ofG(x) ~see Fig. 2!. Becausetc is
negative, the in-phase state cannot be stable for sma
vanishing delays~while it can be stable for delays comp
rable toT due to theT-periodic nature of our phase mode!.
tc is extremely small, which is due to the sudden drop
Z(x) at x50 and the particular rule employed in our mod
i.e., a neuron is assumed to spike and reset simultaneo
The width of the stable branches of the trivial solutions is
same as that of the decreasing part ofG(x). Owing to the
peculiar shape ofZ(x), the width is of the same order as th
width of e(t), which is O(a21). The stability of the in-
phase state is identical with that of the state of perf
synchrony.

In terms of the original model, we now present a quali
tive interpretation of why the in-phase locking state is u
stable for small or vanishing delays. We consider the dyna
ics of two neurons which are initially very close in phas
The effect of a pulse on the phasec i is larger for smaller
dv i /dt. dv i /dt is monotonously decreasing except when
is reset@which reflects on the property ofZ(x) that it is
increasing except atx50]. Thus, the neuron with largerv i
makes a larger jump in phase when it receives a pulse
which the phase difference between the two neurons
comes larger when they receive a pulse. On the other h
the situation becomes different if the two neurons lie bef
and after the resetting point, i.e., if the phase-advanced
ron has smallerv i . In that case, the phase difference b
comes smaller when they receive a pulse. According to
dynamical rule, however, resetting and spiking occur sim

FIG. 3. Bifurcation diagram of a two-oscillator system. So
and dotted lines, respectively, represent stable and uns
branches, whereb.a is assumed. The stability property is revers
if b,a.
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taneously, so that they receive pulses when the ph
advanced neuron has largerv i . Therefore, the in-phase sta
becomes inevitably unstable even without delay. If we w
to obtain a stable in-phase state for small delays, we sho
employ a rule such that a neuron spikes before it is re
which would be more physiologically plausible than the ru
employed here.

VI. LOCAL STABILITY ANALYSIS FOR A LARGE
POPULATION

The trivial in-phase solution and the nontrivial solutio
of the two-oscillator system correspond, respectively, to
state of perfect synchrony and the two-cluster states when
go over to a large population. In this section, we study lo
stability of the two-cluster states. Although nontrivial sol
tions are stable for small or vanishing delays in the tw
oscillator system, the corresponding two-cluster states
out unstable.

We consider a steadily oscillating two-cluster state
which the two clusters consist ofNp and N(12p) oscilla-
tors, respectively. The oscillators inside each cluster are c
pletely phase synchronized, and the phase difference
tween the clusters is constant in time, which is denoted byD.
From Eq.~18!, the phase difference obeys the equation

dD

dt
5K8$~2p21!G~t!1~12p!G~D1t!1pG~2D1t!%.

~21!

WhenD is constant, we obtain a relation betweenp andD as

~2p21!G~t!1~12p!G~D1t!1pG~2D1t!50.
~22!

We designate a two-cluster state satisfying Eq.~22! as
(p,D). The eigenvalues of the stability matrix are calculat
as

l15K8$pG8~t!1~12p!G8~D1t!%, ~23!

l25K8$~12p!G8~t!1pG8~2D1t!%, ~24!

l35K8$~12p!G8~D1t!1pG8~2D1t!%, ~25!

where G8(x) means (d/dx)G(x). The multiplicities of
l1 ,l2, andl3 areNp21, N(12p)21, and 1, respectively
l1 and l2 correspond to fluctuations in phase of the tw
oscillators inside the phase-advanced and phase-reta
clusters, respectively.l3 corresponds to fluctuations in th
phase differenceD between the clusters.

Substituting Eq.~15! into Eq. ~22!, we obtain a relation
betweenp and D, the corresponding curve being shown
Fig. 4~a!. By using this relation, the eigenvalues of (p,D)
can be obtained, which are displayed in Fig. 4~b! as a func-
tion of D. It is found that no two-cluster states are stable, a
there is a set of (p,D) for which l1.0 andl2 ,l3,0. Posi-
tive l1 means that the two-cluster state is unstable with
spect to perturbations inside a phase advanced cluster. O
other hand,l2 ,l3,0 means that it isstableagainst pertur-

le
9-4



r

te

SLOW SWITCHING IN A POPULATION OF DELAYED . . . PHYSICAL REVIEW E68, 021919 ~2003!
FIG. 4. ~a! Relation betweenp
andD associated with two-cluste
states. ~b! Eigenvalues of two-
cluster states as a function ofD.
In ~a!, the solid and dotted lines
correspond to the two-cluster sta
of negative and positivel3, re-
spectively.
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bations inside a phase-retarded cluster as far as the pe
phase synchrony of the phase-advanced cluster is m
tained. Within a certain range ofp, there are pairs of two-
cluster states represented by (p,D) and (p,D8) with the
same stability property, and they appear as the solid line
Fig. 4~a!. In the following section, we explain how ahetero-
clinic loop between (p,D) and (p,D8) is stably formed in
our model.

Similarly to the discussion in Sec. V, the stability prope
mentioned above can also be understood in terms of
original model. Every neuron inside the phase advan
cluster always receives pulses when its membrane pote
is increasing. Then, the phase difference between two n
rons inside the cluster, if any, always increases, so that
phase-advanced cluster is inevitably unstable. On the o
hand, the neurons inside the phase-retarded cluster ca
ceive pulses~emitted by the phase-advanced cluster! during
their resetting. Then, the phase differences between neu
inside the phase-retarded cluster, if any, become smalle
that the phase-retarded cluster can be stable.

VII. HETEROCLINIC LOOP

We first note that there is a particular symmetry of o
model which turns out crucial to the persistent formation
the heteroclinic loop. The symmetry is given by

d

dt
$v i~ t !2v j~ t !%uv i (t)5v j (t)

50 for anyi and j . ~26!

Due to this symmetry, the units which have the same me
brane potential at a given time behave identically therea
In other words, once a point cluster is formed, it remain
point cluster forever.

We assume that a pair of two-cluster states~calledA and
B) exists and has the same stability property as that
cussed in Sec. VI, i.e., the phase-advanced cluster is uns
and the phase-retarded cluster is stable. Suppose tha
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system is in a two-cluster stateA initially. When the oscilla-
tors inside the phase-advanced cluster are perturbed w
the phase-retarded cluster is kept unperturbed@see Fig. 5~a!#,
the former begins to disintegrate while the latter remain
point cluster. Then, the group of dispersed oscillators and
point cluster coexist in the system@see Fig. 5~b!#. We know,
however, that in the presence of a point cluster, there exis
stable two-cluster state in which the existing point cluste
phase advanced. From this fact, the dispersed oscillators
expected to converge to form a point cluster coming beh
the preexisting point cluster. In this way, the system rela
to another two-cluster stateB @see Fig. 5~c!#. From the above
statement, it is implied that in our high-dimensional pha
space, there exists a saddle connection from the stateA to the
stateB. The existence of a saddle connection from the statB
to the state A can be argued similarly. A heteroclinic loop
thus formed between the pair of the two-cluster statesA
andB.

In terms of the phase model, the above argument can
reinterpreted in a little more precise language@12#. In the
phase model given by Eq.~18!, a symmetry property similar
to Eq. ~26! also holds:

d

dt
$c i~ t !2c j~ t !%uc i (t)5c j (t)

50 for anyi and j . ~27!

Our argument will be based on the following assumptio
~a! (p,D) with l1.0 andl2 ,l3,0 exits, ~b! (p,D8) with
l28.0 andl18 ,l38,0 exits, where we defineD.0 andD8
,0, andl i andl i8 ( i 51,2,3) are the eigenvalues of (p,D)
and (p,D8), respectively. Note that ifp50.5, the two clus-
ters in question are identical, orD85D, so that~a! and ~b!
are identical. Figure 6 illustrates a schematic presentatio
the N21 dimensional phase space structure, where we
nore the degree of freedom associated with the dynamic
the center of mass.Ea and Er are identical with the sub-
spaces where the phase-advanced and phase-retarded c
-
-
,

FIG. 5. Schematic representa
tion of a saddle connection be
tween a pair of two-cluster states
starting with the two-cluster state
A ~a! ending up with the other
two-cluster stateB ~c!.
9-5
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HIROSHI KORI PHYSICAL REVIEW E68, 021919 ~2003!
of (p,D) remain point clusters, respectively. By consideri
the direction of eigenvectors, one can easily confirm thatEa
andEr are identical with the stable subspaces of (p,D) and
(p,D8), respectively. Furthermore, becauseEa and Er are
invariant subspaces due to the symmetry given by Eq.~27!,
(p,D) and (p,D8) are attractors withinEa and Er , respec-
tively. Thus, a heteroclinic loop between (p,D) and (p,D8)
should necessarily exist. The saddle connections in ques
are stably formed through the invariant subspaces which
ist for the symmetry of equations of motion given by E
~27!. The heteroclinic loop is thus robust against small p
turbations to the system unless the symmetry is broken.

Whether the resulting heteroclinic loop is attracting or n
depends on the following quantity:

g[
l2l18

l1l28
. ~28!

It was argued in Ref.@11# that if g.1, the system can ap
proach the heteroclinic loop and come to move along it.
that case, the time interval during which the system
trapped in the vicinity of one of the two-cluster states
creases exponentially with time. Substituting the eigenval
obtained from Eqs.~23! and ~24! using Eq.~15! into Eq.
~28!, we find that the heteroclinic loops within a certa
range ofp are in fact attracting for smalla21, b21, andt.

FIG. 6. Schematic representation of the structure of a het
clinic loop. (p,D) and (p,D8) become attractors in the invarian
subspacesEa andEr , respectively.
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Phase diagrams of the heteroclinic loops and symmetric m
ticluster states are shown in Fig. 7, where we chooset as a
control parameter~see the Appendix for the stability of th
symmetric multicluster states!.

VIII. NEAR THE BIFURCATION POINT

In this section, we concentrate on the vicinity of the b
furcation point where the state of perfect synchrony lo
stability. As noted in Sec. V, the bifurcation occurs att
5tc . Then, for smallx2tc , the coupling function can be
expanded as

G~x!5c01c2~x2tc!
22c3~x2tc!

31O„~x2tc!
4
….

~29!

Suppose thatc2 andc3 are positive. We further putc351 by
properly rescalingK8 in Eq. ~18!. In order to find the pos-
sible two-cluster states, we solve Eq.~22! using Eq.~29!. We
then obtain three solutions forD as a function ofp and t.
One is the trivial solutionD50 ~the perfect synchrony!, and
the others are given by

D5
~122p!~c223t̃ !

2
6A~122p!2~c223t̃ !2

4
12c2t̃,

~30!

where t̃[t2tc . Note that the expression above using t
approximateG given by Eq.~29! is valid only for smallD,
which is actually the case ifp is close to 1/2 andt̃ is small.
Substituting the expressions in Eq.~30! into Eqs.~23!–~25!,
we obtain eigenvalues associated with the two-cluster sta
The resulting bifurcation diagram for givenp is shown in
Fig. 8. The solid and broken lines give the branches of ne
tive and positivel3, respectively. Two solid branches exi
for t.0, which are represented by (p,D) and (p,D8) with
D.0 andD8,0. One can easily confirm that the eigenva
ues of these states satisfyl1 ,l28.0 and l2 ,l3 ,l18 ,l38,0

for arbitraryp and smallt̃, which agree with the condition
for the existence of a heteroclinic loop. The quantityg de-
fined by Eq.~28! can also be calculated and turns out to
larger than 1. Thus, all the local stability conditions for t

o-
f

-
g.

d

FIG. 7. Phase diagrams o
cluster states, wheret is chosen as
a control parameter. The param
eter values are the same as in Fi
2 with ~a! b.a and ~b! b,a, re-
spectively. For givenp and t in-
side the gray region,g is larger
than 1, i.e., the heteroclinic loop
between (p,D) and (p,2D8) is
attracting. Each rectangle place
at n indicates the region oft
within which the symmetric
n-cluster state is stable. In~b!,
stable symmetricn-cluster states
with n.10 also exist~not shown!.
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existence of an attracting heteroclinic loop are generally
isfied just above the bifurcation point providedc3.0.

It is also possible that a heteroclinic loop is formed wh
c3,0. In that case, it is expected to arisesubcritically, so
that both the heteroclinic loop and the state of perfect s
chrony may be stable over some region of negativet̃. In
fact, we found that such bistability arises in a population
the Morris-Lecar oscillators@13# with the same coupling
form as in Eq.~1!, and an analysis by means of the pha
dynamics actually shows thatc3 is negative. To confirm the
corresponding bifurcation structure, we have to consi
higher orders ofx2tc in the coupling function. The detail
of this issue are omitted here.

IX. CONCLUSIONS AND DISCUSSION

We have discussed the slow switching phenomenon
population of delayed pulse-coupled oscillators. We fou
that the phenomenon is caused by the formation of an attr
ing heteroclinic loop between a pair of two-cluster states
particular stability property of the two-cluster states and
certain symmetry of our model are responsible for its form
tion. Our original model given by Eq.~1! is reduced to the
standard phase model in the weak coupling limit, by wh
we succeeded in studying the stability of the two-clus
states analytically, and confirming the structure of the hete
clinic loop. It was also argued that under the mild conditi
of the coupling function, all the local stability conditions fo
the existence of an attracting heteroclinic loop are gener
satisfied just above the bifurcation point.

The physical mechanism of the formation of a hete
clinic loop we describe in Sec. VII does not depend on

FIG. 8. Bifurcation diagram aroundt5tc . A heteroclinic loop
is formed between a pair of the solid branches fort.tc .
ce

2

02191
t-

-

f

e

r

a
d
ct-
A
a
-

h
r
o-

ly

-
e

nature of elements~e.g., phase oscillator, limit-cycle oscilla
tor, excitable elements, chaotic elements! and couplings
~e.g., diffusive coupling, pulse coupling!. It is expected,
therefore, that a heteroclinic loop arises in a wide class
models of coupled elements.
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APPENDIX

According to Ref.@14#, we summarize here the existenc
and the stability analysis ofsymmetric multicluster statesin
the phase model given by Eq.~18!. In the symmetric
n-cluster state, it is assumed that each cluster consists ofN/n
oscillators. We denote the phase of clusterk as fk (k
50,1, . . . ,n21). There always exists the following solu
tion:

fk5Vt1
Tk

n
, ~A1!

with

V5
K8

n (
k50

n21

GS Tk

n
1t D , ~A2!

which corresponds to the state in which then clusters are
equally separated in phase and rotate at a constant frequ
V. The associated eigenvalues are calculated as

l intra5
K8

n (
k50

n21

G8S Tk

n
1t D , ~A3!

l inter
p 5

K8

n (
k50

n21

G8S Tk

n
1t D ~12exp@2 iTkp/n# !.

~A4!

l intra is an intracluster eigenvalue with multiplicity ofN
2n. l inter

p (p51, . . . ,n21) are associated with inter cluste
fluctuations. If all of these eigenvalues have negative r
part, the symmetricn-cluster state is stable.
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