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Slow switching in a population of delayed pulse-coupled oscillators
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We show that peculiar collective dynamics called slow switching arises in a population of leaky integrate-
and-fire oscillators with delayed, all-to-all pulse couplings. By considering the stability of cluster states and
symmetry possessed by our model, we argue that saddle connections between a pair of the two-cluster states
are formed under general conditions. Slow switching appears as a result of the system’s approach to the saddle
connections. It is also argued that such saddle connections are easy to arise near the bifurcation point where the
state of perfect synchrony loses stability. We develop an asymptotic theory to reduce the model into a simpler
form, with which an analytical study of the cluster states becomes possible.
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[. INTRODUCTION ics of each element is described by a single variabl€i
=1,2,...N), which corresponds to the membrane potential
Studies on collective motion of coupled oscillators haveof a neuron. The equation far;, is given by
attracted considerable attention over the past few decades
[1-3]. It is commonly seen that a population of autonomous d K
elements performs certain biological functions by behaving grliV=a-vit+ G (b—v)E(). (1)
collectively [4]. It has, in fact, been pointed out that collec-

tive motion is crucial to information processing and trans—.l.he parametea is the so-called resting potential to which

mission i I|\(|ng organisms5]. . relaxes when the coupling is absent. It is assumed that when
In the brain, the neurons are exclusively coupled through reaches a threshold value which is set to 1, it is instanta-
chemical synapses, i.e., the neurons communicate by pulsgs '

of transmitter{ 6]. Chemical synapses commonly form denseg\e/gﬁflynzzsgt ;grﬁﬁ:rso'i;_mise\égﬂéés thete[Féeb?/?\:rfaarfngrg]r?
and complex networks. For mathematical modeling of neu- ) y '

ronal networks, homogeneous all-to-r globa) coupling spikes, it emits a pulse toward_ each neuron coupled to it, an_d
: . ... _the latter receives the pulse with some delay called a synaptic
is often adopted. Although the global coupling may be a little elav. The counling is assumed to be homogeneous and all to
too idealistic, the corresponding networks share a lot ofj Y- ping 9

properties in common with systems with complex and densgg’lesg ;T\?ér:tzfﬁed can be represented by one global vari-

networks.
In the present paper, we consider a population of neural N
oscillators with delayed, all-to-all pulse coupling. The oscil- E(t)= 2 2 e(t—tsPkes_ 7). )

lator we use is called the leaky integrate-and-fitdF) i ]

model. There are a large number of papers concerning the .

LIF in physics and neuroscience, e.g., see Réfs9]. This  Here, tfp'kes represents a series of times at which fb

is because the LIF is a quite simple model still capturingneuron spikes and ges denotes a summation over the se-
some essential characteristics of neuronal dynamics, i.e., ifes of such spikesr is the synaptic delay, and(t) is a
represents an integrator with relaxation, and resets after fjulse functiorgiven by

fires. Though our population model is commonly used.,

see Refs[10]), its collective dynamics does not seem to ap

have been studied so carefully. We are particularly concerned e(t)= - (e"“'—e PHo(t), ()]
with peculiar collective dynamics called slow switching
[11,12. The study of collective dynamics in the original
form of the model is not easy to handle because the couplin
involves a long term memory. We thus develop an
asymptotic theory and reduce our model into a form withou
memory, by which an analytical study of collective dynamic
becomes possible.

1 spikes

where®(t) is the Heaviside functiony and 8 are constants
Hatisfying 8> . In the limit 8— «a, e(t) becomesy?te™ ™,
which is called the alpha functidi®]. b is called the reversal
tpotential to whichv; relaxes whenk(t) is positive, i.e.,
Swhile the neuron receives the pulssis a positive constant
characterizing the strength of the coupling. The coupling as-
sumed above is characteristic to the synaptic coupling. The
coupling becomes excitatolEPSB if b>1 and inhibitory
The population model we consider consistd\oflentical ~ (IPSP if b<0.
elements with delayed, all-to-all pulse coupling. The dynam- If a<1, the LIF becomes an excitable neuron, while if
a>1, it repeats periodic spikes, namely, it represents a neu-
ral oscillator. We assuma>1 throughout the present paper,
*Electronic address: kori@ton.scphys.kyoto-u.ac.jp and call each element asscillator. Then, we can define a

Il. MODEL
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range of parameter values provided tKais small, and the

time constantsy 1, 871, andr are sufficiently small com-
pared withT. For largera™, g1, andr, the slow switch-

ing phenomenon becomes less probable, and the appearance
of steady multicluster states becomes more probable instead.
For b<<a, we find no two-cluster states involving slow
switching, while steady multicluster states are observed in
most cases. The corresponding phase diagram will be pre-
sented in Sec. Vl(see Fig. 7.

T number density

IV. WEAK COUPLING LIMIT

. ; Our model given by Eq(1) is relatively simple, still it
phase 0 would be difficult to get some insight into its collective dy-
namics analytically. Fortunately, however, our main results
FIG. 1. Slow switching phenomenon viewed through the num-given in Sec. Il do not change qualitatively in the weak
ber density of the oscillators as a function of phase. In order to getoupling limit, i.e.,K—0. In this limit, our model is reduced
a better view, we work with a comoving frame of reference. Theto a much simpler form with which we can study the exis-
parameter values ar@=1.03 (T=35), b=2.0,a '=0.3,8 tence and stability of various cluster states analytically. Deri-
—a, 7=0.2,K=0.1, andN=100. vation of the reduced model is given as follows.
Substitutingv;=a(1—e~ %) into Eq. (1), we obtain
variableys; varying smoothly with time, which turns out use-

ful in the following discussion. We call; the phaseof the d KN chikes

ith oscillator, and define it by —H(D)=1+= > > Z(p)e(t—tP*-1),  (6)
dt N =1 spikes
—fvi dv = a 4 where
wi_ Oa_v_na_Ui ’ ()
b—a
which varies between 0 and the intrinsic period of oscillation Z() = Te‘/’”r 1. ()
T given by

It is convenient in the following calculation to redefideas
T=Inl —|. (5) @ T-periodic function, or, Z(;+nT)=Z(¢;) (n==1,
a-1 +2,...).Note that the sudden drop d{x) atx=0 is due

to our rule employed, i.e., the membrane potential is instan-
taneously reset at;=1. We also define a residual phase
by

Note thaty, satisfiesdy;/dt=1 in the absence of coupling.

Ill. NUMERICAL RESULTS

By numerically integrating our model under random ini- Vi=di—t ®
tial distributions ofv;, we find vario_us types of coIIect.ive Substituting Eq(8) into Eq. (6), we obtain
behavior. Among them, we are particularly interested in the
slow switching phenomenon, which can arise whena and d K N _
N=4. As displayed in Fig. 1, the whole population, which allfi(t)= N 2 Z(\Ifi+t)e(t—tfp'kes— 7. (9
was initially distributed almost uniformly, splits into two J=1 spikes

i:ﬁiﬁgﬁﬂ?ﬁg\z rGZ?tZ rO;OVIVﬂh;thiln::é)nt\;]irgehsa:érj’;%itafcg dp;::\}\_/e now assume that is sufficiently small so that the right-
' ' ' P Rand side of Eq(9) is sufficiently smaller than the intrinsic

ter starts to scatter. Then, this scattered group starts to €Ol quencyT L. This allows us to take an average of the rhs

verge again as it comes behind the preexisting cluster. In this d i : ge ot the
i of Eq. (9) over the periodl. The zeroth-order approximation

way, the preexisting cluster becomes a phase-advanced clus: .

. . . with respect to the smallness I§f which corresponds to the

ter. After some time, again, this phase-advanced cluster b?fee oscillations. is diven b

gins to scatter, and a similar process repeats again and again: 159 y

In other words, the system switches back and forth between W (t)=const (10)

a pair of two-cluster states. For larger times, the system '

comes closer to each of the well-defined two-cluster stategn(

and stays near the state longer. Theoretically, these switch- _

ings repeat indefinitely, although in numerical integrations tjsp'kesztj_n-r (n=0,1,2...), (12)

the system converges at one of the two-cluster states in a

finite time and stops switching due to numerical round-offwheret; is the latest time at which thigh neuron spikes. In

errors[12]. the first-order approximation, we may time average €.

The slow switching phenomenon occurs within a broadover the range betwedn-T andt using Eqs(10) and(11):
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d Kol &
Y=y ;1 = ano Z(¥;(t)+N)e(\—t;+nT—7r)dA (12)
Ko 1=
=N 121 ?fo Z(Wi(t)+tj+ 7N )e(N)d\’ (13
=5+M % T(Pi(t)+t;+7), (14)
T Na =1 !
where
I'(x)= Ba_—'ga{Ha,T(X) —Hpg ()}, (15

(e"—1)exd a(x modT)]— (e*T—1)ex x modT]

T(1-a)(e*T—1) (18

H,1(x)= %f:exmxﬂL N)modT]exd —aN]d\=

Note thatl’(x) andH, +(x) are T-periodic functions. Figure form of the phase model is generally obtained in delayed
2 illustrates a typical shape of the coupling function given bycoupled oscillators when the coupling is sufficiently weak

Eq. (15). Furthermore, using the identity [12]. Hereafter, we ignore the degree of freedom associated
with the dynamics of the center of mag&sr mean phase
Wi(t) = ¢;(t) —tj=—t;, (17 which can be decoupled in the phase model.

Important parameters of our phase model given by Eg.
(18) with Eq. (15) areT,a,B,7, and the sign oK’ (i.e., the
sign of b—a). The reason is the following. We may take
|[K'|=1 by properly rescaling and w, while its sign is cru-

and the zeroth-order approximatidn;(t;) ="V;(t), we may
replacet; by —W;(t) in Eqg. (14) in the first-order approxi-
mation. Thus, we finally obtain

d ;N cial because the local stability of any solution depends on it.
It s =w+ N Z L (i) — (D) + 1), (18 o gives t_he frequency of stgady rotation of the whole system,
=1 which is irrelevant to collective dynamics. We chodsas an

h _ , . . independent parameter by whica becomes dependent
where 0=1+K/T and K’=K(b-a)/a. Equation(18) is through Eq.(5). It is remarkable that our coupling function is
the standard form of the phase model. Note that the erropjenendent ob. In fact, change ib causes no qualitative

i!‘VO'Ved in Eq._(ll) may Iool§ to diverge as—c, S.ti” the change in our result as far as the signbefa remains the
final error vanishes in the first-order approximation due to,

same. Interestingly, even if we replace the tdsmuv; by a
the decay of(t). It should be noted that the reduced model .qciant in Eq ?1))/ ie P vi By
is free from memory effects, but the effect of delay has been e
converted to a phase shift in the coupling function. Similar

d Kc
&vi(t)Za—vﬁ- WE(t)v (19)

we can reduce this model similarly and obtain the same cou-
pling function as in Eq(15). We have checked that E(L9)
actually reproduces qualitatively the same results as those
given in Sec. lll. In that case, negatigecorresponds to the

caseb<a in Eq. (1).
In the following section, we assunte>a and 83— « un-

less stated otherwise.

001 G0

172 0 T2 V. TWO-OSCILLATOR SYSTEM

x In this section, we study a two-oscillator system, Wr,

FIG. 2. The solid line shows the coupling functidifx) fora = 2. Although the two-oscillator system is not directly re-
=1.05 (T=3.0), a~1=0.2, andB— «. The minimum appears at lated to the main subject of the present paper, one may learn
x= 7, which is a small negative. For comparison, the shape(zj some basic properties of our phase model from this simple
is also displayed with the broken line. case. Defining\ = ¢, — ,, we obtain
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taneously, so that they receive pulses when the phase-

/3 \ ------------------- advanced neuron has larger. Therefore, the in-phase state
becomes inevitably unstable even without delay. If we want
to obtain a stable in-phase state for small delays, we should
employ a rule such that a neuron spikes before it is reset,

which would be more physiologically plausible than the rule
employed here.

VI. LOCAL STABILITY ANALYSIS FOR A LARGE
e AR POPULATION

-
~3

The trivial in-phase solution and the nontrivial solutions
T of the two-oscillator system correspond, respectively, to the
FIG. 3. Bifurcation diagram of a two-oscillator system. Solid State of perfect synchrony and the two-cluster states when we
and dotted lines, respectively, represent stable and unstab@O OVer to alarge population. In this section, we study local
branches, wherb>a is assumed. The stability property is reversed Stability of the two-cluster states. Although nontrivial solu-

if b<a. tions are stable for small or vanishing delays in the two-
oscillator system, the corresponding two-cluster states turn

dA K’ out unstable.
E:7[F(A+ 7—I(—A+7)]=G(4). (20 We consider a steadily oscillating two-cluster state in

which the two clusters consist ®fp and N(1—p) oscilla-
Phase locking solutions are obtained by puttihy/dt=0, tors, respectively. The ogcillators inside each cluster are com-
and the associated eigenvalues are gived ®y/dA. Figure  Pletely phase synchronized, and the phase difference be-
3 shows a bifurcation diagram of the phase locking solutionstWeen the clusters is constant in time, which is denoted by
in which we taker as a control parameter. We find that for From Eq.(18), the phase difference obeys the equation
small 7 the trivial solutionsA =0 (in-phase lockingandT/2
(antiphase lockingare unstable, while there are a pair of “— —k’{(2p—1)I'(7)+(1—p)[(A+7)+pl[(—A+7)}.
stable branches of nontrivial solutions. The point0 is dt
close to the bifurcation point where the in-phase state loses (21)
stability. The bifurcation occurs at= 1., where 7, corre-
sponds to the minimum df (x) (see Fig. 2 Becauser, is
negatiye, the in—pha_lse. state cannot be stable for small or (2p—1)T(7)+(1—p)[(A+7)+pl(—A+7r)=0.
vanishing delaygwhile it can be stable for delays compa- (22)
rable toT due to theT-periodic nature of our phase mogel
7. is extremely small, which is due to the sudden drop ofWe designate a two-cluster state satisfying E2) as
Z(x) atx=0 and the particular rule employed in our model, (p,A). The eigenvalues of the stability matrix are calculated
i.e., a neuron is assumed to spike and reset simultaneouskys
The width of the stable branches of the trivial solutions is the

WhenA is constant, we obtain a relation betwgeandA as

same as that of the decreasing partlgk). Owing to the N =K'{pl'"(7)+(1-p)'"(A+7)}, (23
peculiar shape oZ(x), the width is of the same order as the

width of e(t), which is O(a™1). The stability of the in- A=K {(1-p)""(7)+pl''(—A+17)}, (24
phase state is identical with that of the state of perfect

synchrony. A=K {(1-p)I""(A+7)+pl''(=A+7)}, (25

In terms of the original model, we now present a qualita-
tive interpretation of why the in-phase locking state is un-where I'’(x) means @/dx)T'(x). The multiplicities of
stable for small or vanishing delays. We consider the dynamA1,\,, andhzareNp—1, N(1—p)—1, and 1, respectively.
ics of two neurons which are initially very close in phase.A; and \, correspond to fluctuations in phase of the two
The effect of a pulse on the phage is larger for smaller oscillators inside the phase-advanced and phase-retarded
dv;/dt. dv;/dt is monotonously decreasing except when itclusters, respectively\; corresponds to fluctuations in the
is reset[which reflects on the property d(x) that it is  phase differencé& between the clusters.
increasing except at=0]. Thus, the neuron with larger, Substituting Eq(15) into Eq. (22), we obtain a relation
makes a larger jump in phase when it receives a pulse, byetweenp and A, the corresponding curve being shown in
which the phase difference between the two neurons berig. 4@. By using this relation, the eigenvalues qf,{)
comes larger when they receive a pulse. On the other handan be obtained, which are displayed in Figo)das a func-
the situation becomes different if the two neurons lie befordion of A. It is found that no two-cluster states are stable, and
and after the resetting point, i.e., if the phase-advanced nethere is a set off{,A) for whichA;>0 and\,,\3<0. Posi-
ron has smallew;. In that case, the phase difference be-tive A\; means that the two-cluster state is unstable with re-
comes smaller when they receive a pulse. According to ouspect to perturbations inside a phase advanced cluster. On the
dynamical rule, however, resetting and spiking occur simul-other hand\,,\3<0 means that it istableagainst pertur-
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(@)

§ FIG. 4. (a) Relation betweeip

T andA associated with two-cluster
states. (b) Eigenvalues of two-

) // cluster states as a function af.

. /’ In (a), the solid and dotted lines

..... F o —— correspond to the two-cluster state

j Ag wmemeneen of negative and positive.;, re-

i P spectively.

0 1
-172 0 772 0 m

-~

o

P

o

(3,
eigenvalues

bations inside a phase-retarded cluster as far as the perfentstem is in a two-cluster stageinitially. When the oscilla-
phase synchrony of the phase-advanced cluster is mainers inside the phase-advanced cluster are perturbed while
tained. Within a certain range @, there are pairs of two- the phase-retarded cluster is kept unpertuflseé Fig. %a)],
cluster states represented bg,4) and (p,A’) with the the former begins to disintegrate while the latter remains a
same stability property, and they appear as the solid lines ipoint cluster. Then, the group of dispersed oscillators and the
Fig. 4(a). In the following section, we explain howlreetero-  point cluster coexist in the systefmee Fig. B)]. We know,
clinic loop between p,A) and (p,A’) is stably formed in  however, that in the presence of a point cluster, there exists a
our model. stable two-cluster state in which the existing point cluster is
Similarly to the discussion in Sec. V, the stability property phase advanced. From this fact, the dispersed oscillators are
mentioned above can also be understood in terms of thexpected to converge to form a point cluster coming behind
original model. Every neuron inside the phase advancethe preexisting point cluster. In this way, the system relaxes
cluster always receives pulses when its membrane potenti&d another two-cluster stai[see Fig. bc)]. From the above
is increasing. Then, the phase difference between two newstatement, it is implied that in our high-dimensional phase
rons inside the cluster, if any, always increases, so that thgpace, there exists a saddle connection from the Atai¢he
phase-advanced cluster is inevitably unstable. On the othetateB. The existence of a saddle connection from the d3ate
hand, the neurons inside the phase-retarded cluster can r®-the state A can be argued similarly. A heteroclinic loop is
ceive pulsegemitted by the phase-advanced clustiuring  thus formed between the pair of the two-cluster staies
their resetting. Then, the phase differences between neuroasd B.
inside the phase-retarded cluster, if any, become smaller, so In terms of the phase model, the above argument can be

that the phase-retarded cluster can be stable. reinterpreted in a little more precise langudde]. In the
phase model given by EL8), a symmetry property similar
VII. HETEROCLINIC LOOP to Eq. (26) also holds:

We first note that there is a particular symmetry of our
model which turns out crucial to the persistent formation of a{tpi(t)— l//j(t)}|¢i(t)=¢.(t)=0 for anyi andj. (27)
the heteroclinic loop. The symmetry is given by :

d _ _ Our argument will be based on the following assumptions:
a{vi(t)_vj(t)}|ui(t):uj(t):0 foranyi andj. (26) (g (p,A) with A\;>0 andX,,\3<0 exits,(b) (p,A’) with
A5>0 and\j,\3<0 exits, where we defind>0 andA’
Due to this symmetry, the units which have the same mem<=0, and\; and\/ (i=1,2,3) are the eigenvalues gf,(\)
brane potential at a given time behave identically thereafteand (p,A"), respectively. Note that ip=0.5, the two clus-
In other words, once a point cluster is formed, it remains aers in question are identical, &’ =A, so that(a) and (b)
point cluster forever. are identical. Figure 6 illustrates a schematic presentation of
We assume that a pair of two-cluster stafealledA and the N—1 dimensional phase space structure, where we ig-
B) exists and has the same stability property as that disrore the degree of freedom associated with the dynamics of
cussed in Sec. VI, i.e., the phase-advanced cluster is unstalitee center of mass, and E, are identical with the sub-
and the phase-retarded cluster is stable. Suppose that ogpaces where the phase-advanced and phase-retarded clusters

\ (a) (o) y ()

FIG. 5. Schematic representa-
tion of a saddle connection be-
tween a pair of two-cluster states,

starting with the two-cluster state
% g A (@ ending up with the other

two-cluster stateB (c).

units

phase phase phase
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Phase diagrams of the heteroclinic loops and symmetric mul-
ticluster states are shown in Fig. 7, where we chooss a
control parametefsee the Appendix for the stability of the
symmetric multicluster statgs

(p, A"), attractor of Ep

VIIl. NEAR THE BIFURCATION POINT

In this section, we concentrate on the vicinity of the bi-
furcation point where the state of perfect synchrony loses

Er stability. As noted in Sec. V, the bifurcation occurs at
— =1.. Then, for smallx— 7, the coupling function can be
g (p,4), attractor of Eg expanded as

FIG. 6. Schematic representation of the structure of a hetero-  I'(X)=Cg+ Co(X— 7¢)2— Ca(X— 7¢) 3+ O((X— 7¢)%).
clinic loop. (p,A) and (p,A’) become attractors in the invariant (29
subspaceg&, andE, , respectively.

Suppose that, andc; are positive. We further put;=1 by
of (p,A) remain point clusters, respectively. By consideringproperly rescaling’ in Eq. (18). In order to find the pos-
the direction of eigenvectors, one can easily confirm Eiat  sible two-cluster states, we solve Eg2) using Eq.(29). We
andE, are identical with the stable subspaces pfX) and  then obtain three solutions fax as a function ofp and .
(p,A"), respectively. Furthermore, becausg and E; are  One is the trivial solutiom\ =0 (the perfect synchronyand
invariant subspaces due to the symmetry given by €7), the others are given by
(p,A) and (p,A’) are attractors withire, andE,, respec-
tively. Thus, a heteroclinic loop betweep,() and (p,A") ~ 2 ~ 5
should necessarily exist. The saddle connections in question — (1-2p)(c,—37) N \/(1—2p) (C2—37) L2
are stably formed through the invariant subspaces which ex- 2 4 '
ist for the symmetry of equations of motion given by Eq. (30
(27). The heteroclinic loop is thus robust against small per- ~
turbations to the system unless the symmetry is broken. where r=7—7.. Note that the expression above using the

Whether the resulting heteroclinic loop is attracting or notapproximatel” given by Eq.(29) is valid only for smallA,

depends on the following quantity: which is actually the case ff is close to 1/2 and is small.
Substituting the expressions in E§O) into Egs.(23)—(25),
Aohg 28) we obtain eigenvalues associated with the two-cluster states.
Y=

The resulting bifurcation diagram for givemis shown in
Fig. 8. The solid and broken lines give the branches of nega-
It was argued in Ref[11] that if y>1, the system can ap- tive and pos?tive)\g, respectively. Two solid branches_ exist
proach the heteroclinic loop and come to move along it. Ifor 7>0, which are represented bp,() and (p,A") with

that case, the time interval during which the system is2>0 andA’<0. One can easily confirm that the eigenval-
trapped in the vicinity of one of the two-cluster states in-ues of these states sa’gsm,)\é>0 and Xy, A3, 1,A3<0
creases exponentially with time. Substituting the eigenvaluefor arbitraryp and smallr, which agree with the condition
obtained from Eqgs(23) and (24) using Eq.(15) into Eq.  for the existence of a heteroclinic loop. The quantityde-
(28), we find that the heteroclinic loops within a certain fined by Eq.(28) can also be calculated and turns out to be

ANg

range ofp are in fact attracting for smatk~*, g1, andr. larger than 1. Thus, all the local stability conditions for the
(a) b>a (b) b<a FIG. 7. Phase diagrams of
n 7t cluster states, whereis chosen as
1 10 =—10 a control parameter. The param-
19 ! = 19 eter values are the same as in Fig.
18 = {8 2 with (@) b>a and(b) b<a, re-
o o 17 1 = 47 spectively. For giverp and 7 in-
{6 o ' 1 ] = {6 side the gray regiony is larger
0.5 o = = 15 =] = o o — 45 than 1, i.e., the heteroclinic loop
-;/ — 14 =] — =] — {4 between p,A) and (p,—A’) is
g = {3 I 13 attracting. Each rectangle placed
—_ {2 {12 at n indicates the region ofr
1 11 within  which the symmetric
0 . . . . n-cluster state is stable. liib),
0 1 2 3 0 1 2 3 stable symmetricn-cluster states
T T with n>10 also existnot shown.
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A nature of elementée.g., phase oscillator, limit-cycle oscilla-
4 tor, excitable elements, chaotic elementnd couplings
(e.g., diffusive coupling, pulse couplinglt is expected,
therefore, that a heteroclinic loop arises in a wide class of
models of coupled elements.
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FIG. 8. Bifurcation diagram around= 7. . A heteroclinic loop
is formed between a pair of the solid branchesforr, .

APPENDIX
g);!s;cjence oLan at:]racgl_?g he.‘ef"c"f"c Ioop.greggnerally sat- According to Ref[14], we summarize here the existence
isfied just above the bifurcation point provideg>0. and the stability analysis afymmetric multicluster states

It is also possible t_hgtaheterochmc Iqop |s_f9rmed when,[he phase model given by Eq18). In the symmetric
€3<0. In that case, It s expected to ansabcritically, so n-cluster state, it is assumed that each cluster consistgrof
that both the heteroclinic loop and the state of peNrfect SYNoscillators. We denote the phase of clusteras &, (K
chrony may be stable over some region of negativdn =0 1 ... n—1). There always exists the following solu-
fact, we found that such bistability arises in a population oftjgn:
the Morris-Lecar oscillatorg13] with the same coupling
form as in Eq.(1), and an analysis by means of the phase Tk

dynamics actually shows thag is negative. To confirm the d=Qt+ e (A1)
corresponding bifurcation structure, we have to consider
higher orders ok— 7. in the coupling function. The details with
of this issue are omitted here. .
K" Tk
Q=— > T|—+7|, (A2)
IX. CONCLUSIONS AND DISCUSSION n =o n

We have discussed the slow switching phenomenon in ghich corresponds to the state in which theslusters are
population of delayed pulse-coupled oscillators. We foundsqually separated in phase and rotate at a constant frequency
that the phenomenon is caused by the formation of an attracty  The associated eigenvalues are calculated as
ing heteroclinic loop between a pair of two-cluster states. A
particular stability property of the two-cluster states and a K’ "1
certain symmetry of our model are responsible for its forma- Nintra="— Z I’
tion. Our original model given by Ed1) is reduced to the K
standard phase model in the weak coupling limit, by which -1
we succeeded in studying the stability of the two-cluster _ , .
states analytically, and confirming the structure of the hetero- Mieer™ .Z‘o r (1=exgd —iTkp/n]).
clinic loop. It was also argued that under the mild condition (Ad)
of the coupling function, all the local stability conditions for
the existence of an attracting heteroclinic loop are generalljtinga IS an intracluster eigenvalue with multiplicity dfi
satisfied just above the bifurcation point. —n. Ner (P=1, ... n—1) are associated with inter cluster

The physical mechanism of the formation of a hetero-fluctuations. If all of these eigenvalues have negative real
clinic loop we describe in Sec. VIl does not depend on thepart, the symmetrio-cluster state is stable.

, (A3)

—+rT
n
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