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Slow switching in globally coupled oscillators: robustness
and occurrence through delayed coupling

Hiroshi Kori* and Yoshiki Kuramoto
Department of Physics, Graduate School of Sciences, Kyoto University, Kyoto 606-8502, Japan

~Received 19 September 2000; published 29 March 2001!

The phenomenon of slow switching in populations of globally coupled oscillators is discussed. This char-
acteristic collective dynamics, which was first discovered in a particular class of the phase oscillator model, is
a result of the formation of a heteroclinic loop connecting a pair of clustered states of the population. We argue
that the same behavior can arise in a wider class of oscillator models with the amplitude degree of freedom. We
also argue how such heteroclinic loops arise inevitably and persist robustly in a homogeneous population of
globally coupled oscillators. Although a heteroclinic loop might seem to arise only exceptionally, we find that
it appears rather easily by introducing time delay into a population which would otherwise exhibit perfect
phase synchrony. We argue that the appearance of the heteroclinic loop induced by the delayed coupling is
then characterized by transcritical and saddle-node bifurcations. Slow switching arises when a system with a
heteroclinic loop is weakly perturbed. This will be demonstrated with a vector model by applying weak noises.
Other types of weak symmetry-breaking perturbations can also cause slow switching.
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I. INTRODUCTION

Coupled limit-cycle oscillators appear in various conte
in physics@1–4#, chemistry@5,6#, and biology@7–9#. Vari-
ous types of collective behavior, which arise when they fo
large assemblies, have been studied extensively over the
few decades. Among the possible types of behavior, we
particularly be concerned withclustering and slow switch
ing, which was first studied by Hanselet al. @10# in a homo-
geneous population of globally coupled phase oscillato
Assuming a simple form for the coupling function, the
showed numerically that after a long transient the sys
approaches atwo-cluster state, i.e., the whole population
splits into two rigidly rotating subpopulations, each in pe
fect phase synchrony. However, the stability analysis of
two-cluster state revealed that it is linearly unstable, co
sponding to a saddle point if seen in a corotating frame
reference. The seeming contradiction here was interprete
terms of the formation of a heteroclinic loop connecting t
two-cluster state and another two-cluster state which was
tained simply by a constant phase shift of the former. In fa
when this heteroclinic loop is attracting, the trajectory sta
longer and longer near these saddle points, so that the
merical roundoff error finally forces the system to stay at o
of the saddles forever. This interpretation was supported
the fact that when small external noise is included the sys
is no longer fixed at a saddle point but starts to repeat s
switchings between the pair of saddles~see Fig. 1!. Although
these findings are important, explanations still needed a
why the heteroclinic loop arises inevitably and persists
bustly against our common belief in its structural instabili

In the next two sections, we restrict our consideration
the phase model. In Sec. II, we discuss in some detail
stability condition of the two-cluster state. Existing nume
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cal results obtained by a particular model suggest the app
ance of heteroclinic loops. Thus, in Sec. III, we argue
mechanism by which heteroclinic loops are necessa
formed. Specifically, a sufficient condition will be given fo
the existence of a heteroclinic loop, and how this condition
satisfied in the phase model will be discussed. In Sec. IV,
introduce a specific vector oscillator model for globa
coupled oscillators, and exhibit numerically that heteroclin
loops are formed in our vector model. We show there t
the phase-coupling function, derived numerically from t
vector model by the method of the phase reduction, satis
the above-mentioned condition, leading to the formation
heteroclinic loops. In Sec. V, we generalize the argumen
Sec. III to the vector model.

The formation of heteroclinic loops in globally couple

FIG. 1. Slow switching exhibited by the model in Ref.@10#. The
figure displays the time evolution of the number density of t
oscillators as a function of the phase. The whole population, wh
was initially almost uniform, splits into two subpopulations, ea
almost converging to a point cluster. After some time, however,
seeming convergence turns out to be unstable, and is followed
period of scattering, but this again is followed by a period of co
vergence, and so forth. This form of alternation between the
characteristic periods of the convergence and dispersion of the
ters is called slow switching. The phase-advanced and phase
tarded cluster at the end of one cycle becomes phase retarded
phase advanced at the end of the next cycle.
©2001 The American Physical Society14-1
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oscillators may seem to be a pathological phenome
which can occur only exceptionally. However, the time de
in coupling can easily cause a bifurcation from perfect s
chrony to the formation of a heteroclinic loop, and this w
be discussed in Sec. VI. The method of phase reduction
vides a clear understanding of why this is actually possib
Slow switching becomes persistent when oscillators are s
ject to weak external noise, which will be discussed in S
VII by using a vector model. There we will also show th
the same phenomenon can also be caused by other typ
randomness.

II. HETEROCLINIC LOOP IN THE PHASE MODEL

Populations of weakly coupled limit cycle oscillators c
be described by the phase model@5#. Suppose that the oscil
lators are identical, each interacting with all the others w
equal strength. Then the corresponding phase model is
pressed as

d

dt
c i~ t !5v1

K

N (
j 51

N

G@c i~ t !2c j~ t !#, ~1!

wherec i(t) (0<c i,2p) is the phase of thei th oscillator
( i 51, . . . ,N), v andK are positive constants, andG(x) is a
coupling function with 2p periodicity.

Hanselet al. @10# analyzed the case of a particular form
the coupling function

G~x!52sin~x11.25!10.25 sin~2x!. ~2!

They showed by numerical simulations that oscillators w
random initial distributions are assembled to form two su
groups each in perfect phase synchrony, but with a cons
mutual phase difference. The collective behavior of the s
tem can conveniently be described in terms of the order
rameter defined by

O~ t !5
1

NU(
j 51

N

exp@ ic j #U. ~3!

Its value is 1 for perfect synchrony, and 0 for perfect inc
herence. A time trace of the order parameter for the ab
model is displayed in Fig. 2. Oscillators belonging to t
respective groups are identical in phase, and this pair of p
clusters rotates rigidly at a constant angular frequency.
mutual phase difference is denoted byD. Hereafter we call
the phase-advanced and retarded clustersA and B clusters,
respectively. Let the fraction of the oscillators belonging
the A cluster bep. Such a two-cluster state may thus
specified by (p,D), whereD is within the region2p,D
<p by convention. This set of values may generally diff
for different initial conditions.

The existence and stability of the two-cluster states can
analyzed as follows. Consider a two-cluster state with pha
cA andcB . Equation~1! then becomes

d

dt
cA~ t !5v1K$pG~0!1~12p!G~x!%, ~4!
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d

dt
cB~ t !5v1K$~12p!G~0!1pG~2x!%, ~5!

wherex denotes the phase difference, i.e.,x[cA2cB . Sub-
tracting Eq.~5! from Eq. ~4!, we obtain

d

dt
x~ t !5K$~2p21!G~0!1~12p!G~x!2pG~2x!%.

~6!

Sincex is constant in the two-cluster state, we have

p~D!5
G~0!2G~D!

2G~0!2G~D!2G~2D!
. ~7!

(p,D) exists withp satisfying 0,p,1. Substituting Eq.~2!
into Eq. ~7!, we obtain the condition for the existence
(p,D), and this is displayed graphically in Fig. 3.D takes
three values for a givenp within the rangepmin,p,1
2pmin , wherepmin is defined by the minimum value ofp in
the range 0,D,p. These three states are denoted
(p,D8), (p,2D9)5(12p,D9), and (p,D-), whereD8 and
D9 are understood to be positive anduD-u to be larger than
D8 andD9.

The eigenvalues of the stability matrix are given by

l050, ~8!

FIG. 2. Long transient of the order parameter after which
whole population converges to a two-cluster state.

FIG. 3. Condition for the existence of two-cluster states.D takes
three values for a givenp within the rangepmin,p,12pmin .
4-2
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l15K$pG8~0!1~12p!G8~D!%, ~9!

l25K$~12p!G8~0!1pG8~2D!%, ~10!

l35K$~12p!G8~D!1pG8~2D!%, ~11!

with multiplicities 1, Np21, N(12p)21, and 1, respec
tively. G8(x) is defined as (d/dx)G(x). l0, which vanishes
identically, always exists due to the invariance of Eq.~4!
with respect to a constant shift ofcA andcB . l1 andl2 are
associated with the fluctuations of the individual oscillato
belonging to theA cluster and theB cluster, respectively.l3
corresponds to the fluctuation inD. Figure 4 displays the
eigenvalues versusD obtained using Eq.~2! with K51,
which shows that all two-cluster states are unstable. I
important to note that (p,D8) and (12p,D9) are saddles
which have negative eigenvalues ofl2 and l3 . (p,D-),
however, has a positivel3, which can be verified by the
propertyl3}(d/dD)p(D).

Paradoxically, the system converges to unstable soluti
This counterintuitive fact may be understood if we assu
that the pair of saddles (p,D8) and (12p,D9) are connected
heteroclinically @4,10#. All numerical results in Ref.@10#
support this assumption. Although the heteroclinicity is co
sidered structurally unstable, this does not seem to appl
the particular class of systems under consideration. In S
III it will be confirmed that (p,D8) and (12p,D9) are in
fact connected heteroclinically through aninvariant sub-
spaces, and it will be argued how this structure is stab
maintained.

III. STRUCTURE OF THE HETEROCLINIC LOOP

We first note a particular symmetry of our phase mo
given by Eq.~1!, which is expressed as

d

dt
$c i~ t !2c j~ t !%uc i (t)5c j (t)

50 for all i , j . ~12!

The above equation shows that, when the phases of s
oscillators are found to be identical at some time, they w

FIG. 4. Eigenvalues about two-cluster states as a function oD.
All two-cluster states are unstable here. Note that the eigenva
l2 andl3 are negative for the states (p,D8) and (12p,D9).
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obey completely the same dynamics thereafter, namel
point cluster remains a point cluster forever. This prope
will turn out to be crucial to the formation of heteroclini
loops.

We now argue how phase model~1! can form heteroclinic
loops which are structurally stable. A generalization to t
vector model of the limit cycle oscillators will be given i
the subsequent sections. The existence of a heteroclinic
connecting (p,D8) and (12p,D9) is clear if the following
properties are satisfied:

~X!~p,D8! is a global attractor ofWu~12p,D9!,

~Y!~12p,D9! is a global attractor ofWu~p,D8!,

whereWu(p,D) represents the unstable manifold of (p,D).
We work with an (N21)-dimensional phase space throug
out, by which the degree of freedom associated with a ri
rotation of the entire system is ignored. For an aid to
understanding of a slightly complicated situation, it would
appropriate to display in advance a schematic picture of
heteroclinic loop under consideration in Fig. 5, wherel i8 ,
l i9 , andl i- ( i 51, 2, and 3! are the eigenvalues of (p,D8),
(12p,D9), and (p,D-), respectively. The definition ofEX
(X5A, B, andAB) will be given later.

Our argument will be based on the assumptions that th
are three two-cluster states in the rangepmin,p,12pmin and
that the eigenvalues associated with these solutions sa
certain stability properties. Specifically, the assumptions m
be summarized as follows:

~a! ~p,D8!, ~12p,D9!,and ~p,D-! exist,

~b! l18.0,

~c! l28,0 and l38,0,

~d! l19.0,

~e! l29,0 and l39,0,

~ f! l3-.0,

es

FIG. 5. Schematic representation of the structure of a het
clinic loop. (p,D8) and (12p,D9) are the attractors of the invarian
subspaceEAøEAB andEBøEAB , respectively.
4-3
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HIROSHI KORI AND YOSHIKI KURAMOTO PHYSICAL REVIEW E 63 046214
~g! l1 of all two-cluster states are positive,

~h! G8~x50!.0.

Here we assumed that bothNp andN(12p) are larger than
1, so that three independent eigenvaluesl i ( i 51, 2, and 3!
exist. Note that all the assumptions are satisfied by Eq.~1!
with the coupling function given by Eq.~2!, as stated in Sec
II.

Consider the tangent space around (p,D8). (p,D8) has
Np21 degenerate eigenvalues given byl18 . Thus the corre-
sponding eigenvectors span an (Np21)-dimensional un-
stable eigenspace which is denoted byEB . Similarly, the
eigenvectors corresponding to l28 span an
@N(12p)21#-dimensional stable eigenspace which is d
noted byEA . An eigenvector corresponding tol3 spans the
one-dimensional stable eigenspaceEAB . In particular, the
following statements hold:

~b8! EB is an unstable subspace of~p,D8!.

l18 corresponds to the fluctuations which occur in theA
cluster ~i.e., the phase-advanced cluster!. Thus the eigens-
paceEB is associated with the disintegration of theA cluster,
while theB cluster remains a point cluster. Similarly, theB
cluster is disintegrated in the eigenspaceEA , while the A
cluster remains a point cluster there. In the spaceEAB , in
contrast, these clusters remain point clusters while their
tual distance changes. Since a point cluster must rema
point cluster at any time, as noted at the beginning of t
section, the spaceEBøEAB , on which theB cluster is a
point cluster, gives aninvariant subspaceof dimensionNp.
Similarly, EAøEAB , on which theA cluster is a point clus-
ter, is an invariant subspace of dimensionN(12p). Note
that the unstable manifoldWu(p,D8) must coincide withEB
in the vicinity of (p,D8). This fact, combined with the ob
vious fact thatEB is included in the invariant subspac
EBøEAB , leads to the following statements which hold gl
bally.

~x1! Wu~p,D8! is included by the invariant subspace

EBøEAB .

Arguments parallel to the above can be developed aro
(12p,D9), i.e., the state where theB cluster is phase ad
vanced byD9. From the assumed property~e!, EBøEAB is
the stable subspace of (12p,D9), which can be restated a

~e8! ~12p,D9! is an attractor ofEBøEAB .

Therefore, if

~x2! ~12p,D9! is a unique attractor of EBøEAB ,

then we may assume

~x3! ~12p,D9! is a global attractor ofEBøEAB .
04621
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~x1! and~x3! give the sufficient conditions for~X! to hold. A
similar discussion can be developed to derive~Y! via the
assumption

~y2! ~p,D8! is a unique attractor of EAøEAB .

Note that (p,D-) gives a source point lying between (p,D8)
and (12p,D9) in the phase space, as displayed in Fig. 5

There still remains a problem about the validity of a
sumptions~x2! and ~y2!. It is sufficient to consider assump
tion ~x2! only. If the type of attractor is limited to the two
cluster state, then it is obvious that (12p,D9) is a unique
attractor ofEBøEAB , as can be confirmed by property~g!.
How about the possibility for a one-cluster state, name
perfect synchrony, to become an attractor? The eigenva
of the one-cluster state are (N21)-fold degenerate, and
given by KG8(x50), which is positive by the assumptio
~h! so that there is no stable manifold of one-cluster sta
How about the stability structure ofn(>3)-cluster states?
They could be attractors of the invariant subspaces for
same reason as the two-cluster states, even if they are
stable solutions. In the case of three or more clusters, h
ever, the resulting heteroclinicity would be even more co
plicated. Numerical simulations in Sec. II, howeve
displayed the simple heteroclinicity between pairs of tw
cluster solutions, implying the validity of the assumptio
~x2! and ~y2! in Eq. ~1! with Eq. ~2!.

Convergenceto the heteroclinic loop can be discuss
similarly to the case of a heteroclinic orbit in a two
dimensional phase space, which was discussed in Ref.@10#.
The result is that the system which is initially close to
heteroclinic loop converges to it provided

l18l19

l28l29
,1. ~13!

If this condition is satisfied, the heteroclinic loop is attrac
ing. In numerical simulations, this convergence is establis
in a finite time due to the roundoff errors.

Although we have assumed conditions~a!–~h! so far, our
discussion is expected not to rely so heavily on the spec
form of G(x). In fact, these conditions may be satisfied fo
broader class of the coupling function. For instance, they
satisfied if we assume a simple shape of the coupling fu
tion such thatG(x) decreases in the range2p,x,0, while
it increases otherwise~see Fig. 6!. The reason is the follow-
ing. The corresponding shape ofp(D) turns out similar to
the curve in Fig. 3, so that we can definepmin similarly. For
a givenp satisfyingpmin,p,12pmin , we obtain three state
(p,D8), (p,2D9)5(12p,D9), and (p,D-). l1 of each
(p,D.0) is positive becauseG8(0<x<p).0. We can
verify l38,0, l39,0 andl3-.0 through the property thatl3

is proportional to (d/dD)p(D). The one-cluster state turn
out to be unstable sinceG8(0).0. Hence we have con
firmed assumptions~a!–~h! except forl28 ,l29,0. For the last
properties to be satisfied, we need one more assumption,
is, G8(0) is not so large as to admit a region ofp where both
l28 and l29 are negative. Such a region is expressed byp*
,p,12p* , where p* satisfiespmin<p*,0.5. Then, via
4-4
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assumptions~x2! and ~y2!, we obtain sufficient conditions
for the existence of a heteroclinic loop between (p,D8) and
(12p,D9) within the rangep* ,p,12p* .

In previous works@4,10#, the shape of the employed cou
pling functions satisfied this property. Our model, discus
in Sec. IV, also fulfills this condition in the weak-couplin
limit where the phase description is valid. Thus we may
gard the coupling function with this property of the shape
a typical class which admits heteroclinic loops.

The existence of a phase space structure yielding a
eroclinic loop has thus been confirmed, which can be su
marized as follows. For a given coupling functionG(x), we
can easily verify whether conditions~a!–~h! are satisfied.
Among these conditions,~a!–~f! constitute a necessary con
dition for the existence of a heteroclinic loop betwe
(p,D8) and (12p,D9), while conditions~g! and~h! support
assumptions~x2! and ~y2!. One may also consider the ca
where the roles ofl1 andl2 are reversed. The saddle co
nections are stably formed through the invariant subsp
which exists for the symmetry of equations of motion, or E
~12!. Thus we conclude that the heteroclinic loop is rob
under such small perturbations that maintain the homoge
ity of the population and the symmetry of the global co
pling.

IV. COUPLED LIMIT CYCLE OSCILLATORS

Our argument on the existence and structural stability
the heteroclinic loop developed in Sec. III was based on
phase model, with some assumed properties of the ph
coupling function. In this section, we discuss a spec
coupled oscillator model in which heteroclinic loops a
formed. From the model, a phase-coupling function of
desired properties for the existence of heteroclinic loop
derived through the method of phase reduction. To
knowledge, the existence of a heteroclinic loop associa
with slow switching has never been reported for vector m
els of oscillators.

Consider a general system of coupled oscillators wh
are identical and all to all coupled:

d

dt
Xi~ t !5F~Xi !1

K

N (
j 51

N

G~Xi ,Xj !. ~14!

FIG. 6. Typical shape of the coupling function which adm
heteroclinic loops. This shape lead to conditions~a!–~h! except for
l28 ,l29,0. The last property also holds ifG8(0) is not too large.
04621
d

-
s

t-
-

ce
.
t
e-
-

f
e

se-
c

e
is
r
d
-

h

HereXi , F, andG arem-dimensional real vectors, andK is
a positive constant. Note that Eq.~14! satisfies the condition

d

dt
$Xi~ t !2Xj~ t !%uXi (t)5Xj (t)

50 for all i , j , ~15!

which is similar to Eq.~12!. Suppose that the local dynamic
is two dimensional, i.e.,X5(x,y), and the specific forms o
F andG are given by

F~Xi !5S Fx

Fy
D 5S 3xi

22xi
31yi2m

125xi
22yi

D , ~16!

G~Xi ,Xj !5S Gx

Gy
D 5S xj2xi

0 D . ~17!

The corresponding equationẊ5F is called the Hindmarsh-
Rose model@11#, which was originally proposed for a neura
oscillator. Without coupling, i.e.K50, each unit becomes
oscillatory if 211.5,m,0.8 @12#. The coupling is assumed
to be diffusive, and in terms of neurophysiology this corr
sponds to the electrical synapse formed by gap juncti
@13#.

The parameter values are set toK50.1, N5100, andm
521. The intrinsic frequency then becomesv.1.0. We
choose random initial conditions. Some numerical results
tained are summarized as follows. The system converge
ter a long transient to a two-cluster state which is periodic
time. Figure 7 displays a time series of the order parame
The relative population of the clusters generally depends
the initial condition. Convergence to the two-cluster sta

FIG. 7. Time series of the order parameter. The order param
O is conveniently defined in the following way. Lett j

( j 50,1,2, . . . ) denote the time at which the representative point
the j th oscillator crosses a given sectionS in the one-oscillator
phase space. The order parameter at timet5tN is defined as

O~t5tN!5
1

NU(j51

N

expFi2p~tj2t0!

tN2t0
GU

as a generalization of Eq.~3!. Since the oscillators crossS again
and again, the order parameter at discrete timest5tkN (k
51,2, . . . ) may bedefined similarly. Note thatO(t)51 when the
oscillators are synchronized perfectly, andO(t)50 when their
phases are uniformly distributed.
4-5
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does not imply its stability, and is rather due to numeri
artifacts. Actually, when very small perturbations are giv
to the oscillators independently, the clusters start to disin
grate, implying their linear instability. Such a behavior
very similar to that of the phase model when heterocli
loops exist. We now show that the phase reduction of
above model produces a phase-coupling function which
mits, based on the argument of Sec. III, heteroclinic loop

Coupled oscillators can be reduced to the phase m
@Eq. ~1!# when the coupling is sufficiently weak@5#. There is
a general formula for the phase-coupling function, and fo
given dynamical-system model, this can be computed
merically. We did this for Eqs.~14!, ~16! and~17!. The cou-
pling function G(x) obtained is displayed in Fig. 8, whic
shows a typical shape admitting heteroclinic loops~see Fig.
6!. Two-cluster solutions were sought, and their stabi
analysis was done through Eqs.~7!–~11!. Then we confirmed
that the reduced model satisfies conditions~a!–~h! for the
existence of a heteroclinic loop and also condition~13! for
its stability.

V. STRUCTURE OF THE HETEROCLINIC LOOP IN
VECTOR MODELS

The preceding arguments clarify the nature of the hete
clinic loop in the framework of the phase model. In th
section, we show that such arguments can be generalize
the original model for coupled limit-cycle oscillators in ve
tor form.

It would be appropriate to start to reconsider the mo
given by Eqs.~14!, ~16! and~17!. Under suitable initial con-
ditions, we obtain various two-cluster states. They cor
spond to the solutions (p,D) with l3,0 in the phase-
coupling limit, and these two-cluster states will be deno
by p states. Also, clusters corresponding to the pha
advanced and -retarded clusters will be called theA and B
clusters, respectively. For a givenp state,mN Lyapunov
eigenvalues can be computed numerically, wherem52 for
the model under consideration. They can be classified
four groupsL0 , L1s, L2s andL3s, and they will degener-
ate respectively intol i ( i 50, 1, 2, and 3! in the phase-
coupling limit. Note that each ofL1s andL2s is composed
of m eigenvalues, whileL3s is composed of 2m21 eigen-

FIG. 8. Coupling function of the reduced model. The minimu
of G(x) appears at a negativex. Such a shape ofG is typical when
heteroclinic loops exist.
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values.L1s corresponds to fluctuations within theA cluster,
and each eigenvalue of this group is (Np21)-fold degener-
ate. Similarly,L2s corresponds to fluctuations within theB
cluster, and each eigenvalue there is@N(12p)21#-fold de-
generate.L3s is associated with the relative motion betwe
the clusters.L0 is identical to 0, resulting from the time
periodicity of the solutions. The maximum value ofL is ( i
51, 2, and 3! is denoted byL i

max, and their numerical val-
ues are displayed in Fig. 9.

The argument on the structure of a heteroclinic loop c
necting thep state and (12p) state can be developed qui
similar to that in Sec. III. We now have to work with th
(mN21)-dimensional phase space, whereby we emplo
surface of section to remove the irrelevant degrees of fr
dom corresponding to a steady rotation of the whole popu
tion. The eigenspacesEA andEB , associated withL1s of the
p state and the (12p) state, are nowm$(N(12p)21% di-
mensional andm(Np21) dimensional, respectively, while
the eigenspaceEAB associated withL3s is (2m21) dimen-
sional. Then the argument in Sec. III still holds if we repla
l i with L i

max. Note that we assume the existence of an u
stable state corresponding to (p,D-) which is hard to obtain
numerically.

The eigenvaluesL i
max are the ones which should coincid

with l i in the phase-oscillator limit. As the coupling be
comes stronger, the heteroclinic loop can persist as far as
existence and stability properties of the two point clusters
unchanged. Generally speaking, stronger coupling ma
point clusters more stable. In Fig. 9, this effect is alrea
sizable for K50.1. As K becomesO(1), the two-cluster
state gives way to a one-cluster state by which the het
clinic loop disappears. We expect in general that the hete
clinic loop disappears when the coupling is so strong that
phase description completely breaks down.

VI. APPEARANCE OF HETEROCLINIC LOOPS
THROUGH DELAY-INDUCED BIFURCATIONS

In globally coupled identical oscillators, a one-clust
state is the easiest state to appear. This can be illustrate

FIG. 9. Lyapunov spectrum plotted againstp. From the figure, it
can be seen thatpmin.0.42. Solid lines show the eigenvalues o
tained by the phase reduction, with excellent agreement with
spectrum of the original system.
4-6
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the following form of coupling:

G~Xi ,Xj !5Xj~ t !2Xi~ t !. ~18!

Assuming Eqs.~14!, ~16!, and~18!, we obtain a stable one
cluster state even ifK is very small. We may generally ex
pect that heteroclinic loops cannot exist when the one-clu
state is stable. In the above model, it can be shown
time-delayed coupling causes an instability of the one-clu
state, which at the same time is accompanied by the app
ance of the heteroclinic loop. The corresponding bifurcat
is a so-called transcritical bifurcation.

Consider uniformly delayed coupling

G~Xi ,Xj !5Xj~ t2t!2Xi~ t ! ~19!

wheret denotes the delay. Note that the symmetry prope
@Eq. ~15!# still holds when the coupling involves a uniform
delay of the form of Eq.~19!. We will show some numerica
results obtained for the system given by Eqs.~14!, ~16!, and
~19!, where the parameter values are the same as in Sec
Without delay, the system under various initial conditio
immediately converges to a one-cluster state. Ast is in-
creased, the one-cluster state persists up to a critical v
tc , beyond which the cluster splits in two and at the sa
time heteroclinic loops are formed. In this case of the para
eters, this critical value is about 0.18.

This result can be understood by a phase reduction of
model which is applicable when the coupling is weak. T
reduced model takes the form

d

dt
c i~ t !5v1

K

N (
j 51

N

G@c i~ t !2c j~ t2t!#, ~20!

wherev.1.0 atm521. Since the second term on the righ
hand side is much smaller than the first term by assumpt
Eq. ~20! is further reduced to the form

d

dt
c i~ t !5v1

K

N (
j 51

N

G@c i~ t !2c j~ t !1vt#. ~21!

Thus there is no explicit delay in coupling, while its effe
has now been converted to a phase shift of the coup
function by vt. The situation is illustrated in Fig. 10. Th
stability of a one-cluster state depends entirely on the sig
G8(vt). Thus the one-cluster state is stable for smallt,
which admitsG8(vt),0. As t is increased, the one-cluste
state becomes less stable, and, att5x0 /v, it becomes un-
stable wherex0 is defined as the value ofx which minimizes
G(x). Note thattc , obtained numerically, would agree wit
x0 /v(.0.13) for sufficiently smallK. For t.x0 /v, the
coupling function assumes a typical shape under whic
heteroclinic loop exists. Att50.3, for example, conditions
~a!–~h! and ~13! are satisfied in this reduced model. Th
transition occurs through a transcritical bifurcation.

Let x denote the mutual phase difference between
clusters. The equation obeyed byx can be derived similarly
to the derivation of Eq.~6!, and takes the form
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dt
x~ t !5K$~2p21!G~vt!1~12p!G~x1vt!

2pG~2x1vt!%. ~22!

The above equation has a trivial solutionx50. For smallx,
the right-hand side can be expanded in powers ofx. We find
that, providedpÞ0.5 the right-hand side involves anx2 term
as the lowest nonlinearity. This means that the trivial so
tion loses stability via a transcritical bifurcation. This occu
at t5x0 /v. We also find that ast is increased a saddle-nod
bifurcation occurs slightly before the transcritical bifurc
tion. For t.x0 /v, the stable manifolds associated with th
saddle-node and transcritical bifurcations connect smoo
and form a heteroclinic loop. Lety ~z! denote a certain di-
rection taken onEB (EA). How the bifurcation in question
occurs is explained schematically in Fig. 11. The same st
ture of bifurcation leading to the formation of heteroclin
loops holds for some range ofp wherel28 and l29 are both
negative. Note that atp50.5 the term ofx2 vanishes so tha
a pitchfork bifurcation occurs att5x0 /v and no saddle-

FIG. 10. Coupling functions. The solid line is obtained fro
Eqs. ~14!, ~16!, and ~19! with t50, while the dotted line is ob-
tained just by a phase shift of solid line by2vt. The effect of the
delay is equivalent to a simple modification of the coupling functi
in the weak-coupling limit. The modified coupling function is
typical shape admitting heteroclinic loops, provided the condit
t.x0 /v is satisfied.

FIG. 11. Schematic representation of the bifurcation structu
The trivial solutionx50 loses its stability att5tc via a transcriti-
cal bifurcation. Two solid lines existing fort.tc correspond to
(p,D8) and (12p,D9), respectively, each being unstable with r
spect to they or z direction alternately. A heteroclinic loop is
formed between these two solutions, as explained in Sec. III.
4-7
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node bifurcation occurs before. A heteroclinic loop is form
similarly to the case ofpÞ0.5.

In coupled oscillators, the appearance of the heterocl
loop may seem to be pathological. The results in this sect
however, imply that the heteroclinic loop appears in a bro
class of weakly coupled oscillators, including those stud
so far, provided a uniformly delayed coupling is introduce
Assuming a simple coupling such as Eq.~18!, we find that
when the assemblies are composed of relaxation oscilla
their phase coupling function is often characterized by
curve which sharply decreases in a small region while
gradually increases otherwise. Thus heteroclinic loops
expected to arise in homogeneous assemblies of relaxa
oscillators.

VII. SLOW SWITCHING

When the system involves heteroclinic loops, it exhibit
remarkable dynamics when perturbed weakly. In the anal
of a model of the form of Eq.~1!, Hanselet al. @10# applied
week noise independently to individual oscillators, and o
served the appearance of a very long time scale dependin
the noise intensity~see Fig. 1!. Since the time scale here
associated with an alternation between two collective st
~i.e., a pair of two-cluster states!, they called this character
istic behavior of the systemslow switching, and gave a suc
cessful explanation for it in terms of a weakly perturb
heteroclinic loop. Their explanation may be summarized
follows. If a heteroclinic loop is attracting, i.e., if Eq.~13! is
satisfied, then the system approaches one saddle and
other alternately. Without noise, the minimal distance fro
each saddle should decrease exponentially in time. W
noise, however, this distance will fluctuate but remain fin
typically within the orders, the square root of the varianc
of the noise. In any case, the system for the most part s
close to one saddle or the other, so that the dynamics c
be characterized dominantly by the local properties aro
the saddles. The time intervalT for a stay near a saddle ma
be estimated as

T;2
1

lu
ln s, ~23!

wherelu is the eigenvalue of the most unstable directio
Thus the period of the switching is logarithmically depe
dent on the noise intensity.

By including noise, Eq.~14! is generalized as

d

dt
Xi~ t !5F~Xi !1K(

j 51

N

G~Xi ,Xj !1sji~ t !, ~24!

where ji is Gaussian white noise with variance 1 and t
parameters, assumed to be small below, indicates the int
sity of noise. Let us now consider specific forms forF andG
given by Eqs.~16! and ~19!, respectively, where the param
eter values are the same as before. Some results obta
numerically are the following. For 0<t,tc , the oscillators
localize in a small phase range, which we call a noisy o
cluster state. Figure 12 displays a time trace of the or
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parameterO, wheret50.1 andr51027. It is seen thatO
stays near 1. Fort.tc , this highly coherent cluster be
comes unstable, andO begins to oscillate. After a long tran
sient, the system comes to exhibit a slow switching betw
a pair of two-cluster states. For the most part the sys
stays close to one of the noisy two-cluster states, which
followed by a short period of cluster disintegration, then
convergence to another two-cluster state. This is dem
strated in Fig. 14 fort50.3. It is clear that the collective
dynamics is then characterized by a new time scale co
sponding to this slow switching. We define the period
switchingT as the average time between the two succes
local minima ofO sufficiently after the transient. The loga
rithmic dependence ofT on the noise intensity is clear from
Fig. 13. The steepness of theT versus the lns curve after
linear fitting is estimated asuT/ ln su.20, which suggests tha
L1

max of this delayed coupling model is about 0.05.L1
max can

be easily estimated by Eq.~9! with the phase-shifted cou
pling function displayed in Fig. 10. We obtainl1.0.065 at
p50.5, which is close to the above estimation ofL1

max

.0.05. Note that the amplitude effect makesL1
max smaller

thanl1 similarly to the case of Fig. 9.
Slow switching is thus the fate of the system when t

heteroclinic loop is perturbed weakly. Besides external no
a slight violation of the symmetry property@Eq. ~15!# is ex-
pected to cause the same effect. Imagine a particular
where a heteroclinic loop is present under symmetry con

FIG. 12. Time series of the order parameter for a noisy syst
The solid line shows slow switching, where a new time scale
dynamics appears.

FIG. 13. Switching period vs noise intensity. The line is a line
fitting of the data.
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SLOW SWITCHING IN GLOBALLY COUPLED . . . PHYSICAL REVIEW E63 046214
tion ~15!. The system is now perturbed slightly so that co
dition ~15! is slightly violated. Assume that a pair of saddle
between which a heteroclinic loop is formed in the symm
ric case, still exists. Although a genuine heteroclinic lo
could no longer exist in the asymmetric system, the unsta
manifold of one saddle will come close to the other saddle
they are sufficiently close in phase space, the situatio
quite similar to the case of applied weak noise, leading
slow switching.

As an example, letm in Eq. ~16! be Gaussian distributed
with variancer2. Numerical simulations actually show slo
switching without noise. Figure 14, displaying the peri
versusr, shows again a logarithmic law. The steepness
uT/ ln ru is estimated to be 20, which implies that the gape is
now the order ofr. Similar results are obtained when oth
parameters, e.g., the delayt, are randomly distributed. We
can also break the uniformity in the coupling, and conside
slightly random oscillator network.

VIII. CONCLUDING REMARKS

Slow switching arises when a system with heterocli
loops is weakly perturbed. The structure of heteroclinic loo
in coupled oscillators has been confirmed in the present
per, which is summarized as follows. A pair of unstable tw
cluster states can be attracting since their unstable manif
closed into a heteroclinic loop. Such heteroclinic loops
formed stably. Although we commonly consider heteroc
nicity structurely unstable, the present heteroclinic loo
arise stably in coupled oscillator models, provided that
symmetry condition@Eq. ~15!# is satisfied. It can be under
stood from our argument that the conclusions do not rely
heavily on the specific form of coupled oscillator models.
particular, with delayed coupling, we expect that heterocli
loops appear in a much broader class of coupled oscill
models. We found that some models, in which unstable
lutions had not been considered important, actually form h
eroclinic loops by introducing delay in coupling.

As we stated briefly in Sec. VI, heteroclinic loops appe

FIG. 14. Switching period vs the square root of the variance
the parameter. The line is a linear fitting of the data.
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rather easily in an assembly of relaxation oscillators, so t
something similar may be expected for homogeneous n
ronal assemblies subject to a constant external current. I
associate slow switching with biological rhythms, the pro
erty of this phenomenon yields many suggestive ideas. O
remarkable feature of slow switching is that a system
volved a much longer time scale of dynamics, with whi
collective order periodically varies, in regard to the intrins
period of oscillation. This fact is reminiscent of circadia
rhythms. One of the intriguing subjects there would
rhythm splitting@14#. A more physiological model should b
considered for the study of biological rhythms, and a study
this direction is now in progress.

It may appear that the heteroclinic loop in question
something which could not go beyond some mathemat
curiosity, because the symmetry property@Eq. ~15!# on
which it crucially relies would be more or less violated
real systems. However, the associated phenomenon of
switching seems to be of much greater physical relevan
because strict symmetry need not be required there. S
noise, heterogeneity, and delay are commonplace in ma
scopic systems, some indication of slow switching cou
well be detected in the real world. In the case of mechan
oscillators, for instance, it would not be difficult to obta
oscillators which are almost identical. Global couplin
might also be realized through an electric circuit@15#, a vi-
brating board@16#, the surface motion of water@17#, and
so on. A certain class of surface chemical reactions un
oscillatory conditions may provide globally coupled identic
oscillators.

The characteristic frequency of slow switching will b
come shorter when symmetry breaking perturbations bec
stronger. At the same time, the amplitude of the oscillat
order parameter become smaller as the perturbations bec
stronger. The switching phenomenon is expected to van
when the strength of the perturbation exceeds a critical va
after which the order parameter of the system becomes
tionary. Realistic examples of slow switching, if any, wou
correspond to the case of strong perturbations. If sl
switching survives the strong perturbation, and its freque
becomes comparable to the intrinsic frequency of the os
lators, the dynamics would become even more complica
due to the nonlinear coupling between these modes of
tion of comparable time scales. A statistical mechanical
proach to this problem would be interesting. As far as
have analyzed, however, slow switching vanishes well
fore its frequency comes close to the intrinsic frequency
would also be interesting to find coupled-oscillator mod
which have more robust structures of slow switching w
respect to the symmetry-breaking perturbations.
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