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Taylor’s law (TL), the scaling relationship between mean and variance, has been observed in various
fields. However, the underlying reasons for the widespread occurrence of TL, the frequent appearance of
the TL exponent value close to 2, and the relationship between temporal and spatial TLs are not fully
understood. Here, using coupled oscillator models, we analytically and numerically demonstrate that
synchronization can induce TL. In particular, we show that strong synchronization leads to waveform
proportionality, resulting in temporal and spatial TLs with an exponent 2. Our results can help infer the
existence of synchronization solely from the correlation between mean and variance.
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Introduction—Taylor’s law [1,2] (TL), a power-law
relationship between mean and variance: logðvarianceÞ ¼
log αþ β × logðmeanÞ, has been observed in various fields,
such as population ecology [2], biophysics [3], and complex
networks [4–6], among others [7,8]. TL is also known as
fluctuation scaling in physics [7]. Especially, when β > 1,
this power-law relationship is sometimes called giant
number fluctuations, which have been investigated exper-
imentally [9,10] and theoretically [11–13], and have gar-
nered considerable attention in the field of active matter
[14–16]. TL has been extensively analyzed via theoretical
studies [3,4,6,17–35], and it is usually classified into two
types, i.e., temporal TL and spatial TL. For temporal TL, the
means and variances are computed from data recorded at
multiple time points at a specific location, whereas for
spatial TL, the means and variances are computed from data
recorded at multiple locations at a specified time point.
Various studies have been conducted to clarify the

mechanisms of TL. Although theories show that β can
take any real value [17–19], β ≃ 2 has been often observed
in ecosystems for both temporal and spatial TLs [20,21,36].
Cohen and Xu showed that when multiple independent
random variables follow the same distribution, a correlation
appears between mean and variance upon random sampling
if the distribution is skewed [22]. While their results shed
light on the ubiquity of TL, the reason for frequently
observing β ≃ 2 in ecosystems remains unclear because β
can take arbitrary values depending on the shape of the
distribution. By applying large deviations theory and finite-
sample arguments, Giometto et al. showed that, depending
on the sampling method, β ≃ 2 may be frequently observed

in spatial TL [23]. Reuman et al. showed that correlations
between random variables affect β of spatial TL [24]. In
particular, spatial TL with β ¼ 2 is observed when a
proportional relationship exists between time series [24].
As a mechanism for the emergence of TL with β ≃ 2, the
correlation between time series is considered crucial, and
synchronization is strongly implicated as the mechanism
that generates such correlations. Moreover, studies employ-
ing numerical simulations of dynamical systems have
shown that synchronization affects both temporal and
spatial TL exponents [21,25,26]. Notably, when the degree
of correlation between time series increases, the exponents
of temporal and spatial TLs approach 2 [20,27,37].
In this study, we showed that in a broad class of

dynamical system models, including ecological models,
synchronization generates a special correlation between
time series, which we call waveform proportionality, result-
ing in temporal and spatial TLs with β ¼ 2.
Model and results—First, we define TL for a given time-

series set xiðtÞ ði ¼ 1;…; NÞ. For temporal TL, we com-
pute the mean and variance of each site i as E½xiðtÞ�t ¼
hxiðtÞit and V½xiðtÞ�t ¼ hðxiðtÞ − E½xiðtÞ�tÞ2it, respectively,
where h·it denotes the long-time average or average over 1
cycle when xiðtÞ is periodic. A linear fitting toN data points
of ðlog E½xiðtÞ�t; logV½xiðtÞ�tÞ yields slope βt and intercept
logαt. For spatial TL, the mean and variance at time t
are expressed by E½xiðtÞ�i ¼ hxiðtÞii and V½xiðtÞ�i ¼
hðxiðtÞ − E½xiðtÞ�iÞ2ii, respectively, where h·ii denotes the
average over site i. A linear fitting to M data points of
ðlog E½xiðtÞ�i; logV½xiðtÞ�iÞ, where M is the number of
sample times, yields slope βs and intercept log αs. In either
case, R2 denotes the coefficient of determination for linear
fitting.
Our results are based on the coupled oscillator model,

where the oscillator i ði ¼ 1;…; NÞ obeys
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ẋi ¼ fxðxi; yi; ziÞ þDxðX − xiÞ; ð1aÞ

ẏi ¼ fyðxi; yi; ziÞ þDyðY − yiÞ; ð1bÞ

żi ¼ fzðxi; yi; ziÞ þDzðZ − ziÞ: ð1cÞ

We consider a food chain model with global coupling
as our first example. Concretely, we consider fx ¼
aðxi − x�Þ − lxiyi; fy ¼ −biðyi − y�Þ þ lxiyi − kyizi; fz ¼
−cðzi − z�Þ þ kyizi; X ¼ hxiii; Y ¼ hyiii, and Z ¼ hziii,
where xi, yi, and zi denote the populations of the vegeta-
tion, herbivores, and predators at site i, respectively;
hwiii ¼ ð1=NÞPN

i¼1 wi is the average of population
wi ðwi ¼ xi; yi; ziÞ over site i; and a; bi; c; l; k; x�; y�,
and z� are parameters describing intrinsic dynamical
properties [38–40]. The second terms in Eq. (1) describe
diffusive coupling with strength Dx, Dy, and Dz. We
assume bi ¼ b0 þ μi, where b0 is the mean hbiii, and
μi is the deviation from b0. Note that hμiii ¼ 0; specifically,
μi is selected from a uniform distribution between −0.1 and
0.1, and sorted in ascending order. For convenience, we
introduced a reference oscillator, i ¼ 0, that obeys Eq. (1)
with bi ¼ b0 and Dx ¼ Dy ¼ Dz ¼ 0. This model dem-
onstrates synchronized oscillations for a wide range of
parameters when the coupling strength is comparable or
larger than maxfμig. Figure 1 illustrates the typical wave-
forms of xiðtÞ. As evident from Figs. 1(b)–1(d), the
oscillators are synchronized in frequency under sufficiently
strong coupling. Next, we verify temporal and spatial TLs
in Fig. 2. TL with β ≃ 2 is observed whenDy is sufficiently
large. Moreover, temporal TL becomes evident for
Dy ¼ 0.8, whereas spatial TL seems to require stronger
coupling. To determine the underlying mechanism of TL,

we carefully observed the waveforms shown in Fig. 1(d),
which yielded well-defined temporal and spatial TLs.
All waveforms were found to be considerably similar.

FIG. 1. Examples of xiðtÞ, ζiðtÞ, and ζiðtÞ of shifted xiðtÞ for each coupling strength. N ¼ 100; Dx ¼ 0; Dz ¼ 0; a ¼ 1;
c ¼ 9; k ¼ 0.6; l ¼ 0.1; x� ¼ 1.6; y� ¼ 0, and z� ¼ 0.01. bi is randomly selected from a uniform distribution between 4.9 and 5.1.
Data for i ¼ 1; 25; 50; 75, and 100 are shown. (a) Dy ¼ 0, (b) Dy ¼ 0.1, (c) Dy ¼ 0.8, and (d) Dy ¼ 100.

FIG. 2. Examples of TL for each coupling strength. N ¼
100; Dx ¼ 0; Dz ¼ 0; a ¼ 1; c ¼ 9; k ¼ 0.6; l ¼ 0.1; x� ¼
1.6; y� ¼ 0, and z� ¼ 0.01. bi is randomly selected from a uniform
distribution between 4.9 and 5.1. Temporal and spatial TLs are shown
in the left and right columns, respectively. The blue circles represent
the mean-variance relationships of the raw data, red crosses indicate
the spatial TL for the shifteddata, andblack lines are the reference line
with a slope 2. Temporal TL for (a) Dy ¼ 0, (b) Dy ¼ 0.1,
(c) Dy ¼ 0.8, and (d) Dy ¼ 100. Spatial TL for (e) Dy ¼ 0,
(f) Dy ¼ 0.1, (g) Dy ¼ 0.8, and (h) Dy ¼ 100.
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Furthermore, they were approximately proportional to x0ðtÞ
(data not shown). Thus, we hypothesized that the following
relation approximately holds true for all i and t:
xiðtÞ ¼ Cix0ðtÞ, where Ci is constant; this relation is
hereafter referred to as the waveform proportionality.
With such a relation, both temporal and spatial TLs are
evidently valid with βt;s ¼ 2, as shown below. First,
note that E½xiðtÞ�t ¼ CiE½x0ðtÞ�t, V½xiðtÞ�t ¼ C 2

i V½x0ðtÞ�t,
E½xiðtÞ�i ¼ E½Ci�ix0ðtÞ, and V½xiðtÞ�i ¼ V½Ci�i½x0ðtÞ�2. By
eliminating Ci and x0ðtÞ from these relations, we obtain the
following temporal and spatial TLs:

V½xiðtÞ�t ¼ αtE½xiðtÞ� βtt ; V½xiðtÞ�i ¼ αsE½xiðtÞ� βsi ; ð2Þ

where

αt ¼
V½x0ðtÞ�t
E½x0ðtÞ� 2t

; αs ¼
V½Ci�i
E½Ci� 2i

; ð3Þ

and βt;s ¼ 2. To verify this hypothesis, we plot the ratio
ζiðtÞ ¼ ½xiðtÞ=xjðtÞ�, where j is a reference oscillator, as
shown in the middle panels of Fig. 1. The choice of j may
be arbitrary; here, we selected j ¼ N=2 ¼ 50 because xN=2

is expected to be close to x0. Waveform proportionality is
visible only in the middle panel of Fig. 1(d), suggesting
that waveform proportionality spontaneously emerges
in strongly synchronized oscillators, and then, TL with
βt;s ¼ 2 naturally occurs.
Next, we quantitatively investigate the dependence of the

synchronization level and TL parameters on the coupling
strengthDy (Fig. 3). We introduce the order parameter χ for
synchronization as

χ ¼ CV½XðtÞ�
max

i
fCV½xiðtÞ�g

; ð4Þ

where CV represents the coefficient of variation. Namely,
χ is the CV of the mean field of xiðtÞ normalized by
the maximum CV of xiðtÞ. χ ≃ 1 when the oscillators
are strongly synchronized; χ ≃ 0 when the oscillators are
desynchronized. Moreover, log αt;s is illustrated in Fig. S1.
Depending on theDy value, quenching may occur, rendering
it impossible to define χ. Thus, we judged that quenching
occurred when ð1=NÞPN

i¼1hðxi − hxiitÞ2it was less than a
certain threshold value, and such cases were excluded. The
number of times we judged quenching occurred is shown in
Fig. S2. We confirmed that qualitatively the same results
could be obtained for several different threshold values. This
process was applied to all systems described later.
Simulations were performed up to t ¼ 3500, and TL was
computed using the time series from t ¼ 3000 to t ¼ 3500.
The error bars represent the standard deviation of ten
calculations with different initial conditions and bi.
Unless otherwise noted, initial conditions for numerical

simulations were randomly chosen from a uniform distri-
bution between 15 and 15.1.
Figures 3(a) and 3(b) reveal that βt approaches a value

close to 2 with large R2 values as Dy increases. Around
Dy ¼ 0.5, R2 ≃ 1, and βt ≃ 2. Thus, temporal TL with
βt ≃ 2 was observed around Dy ¼ 0.5. In contrast, accord-
ing to χ, synchronization began at approximately
Dy ¼ 0.05, significantly earlier than the onset of temporal
TL. These results suggest that in addition to synchroniza-
tion, there exists an unidentified condition responsible for
the emergence of temporal TL. Furthermore, the onset of
spatial TL was significantly slower than that of temporal
TL. To identify the cause of this phenomenon, we focused
on the waveform ofDy ¼ 0.8, where only temporal TL was
observed [Figs. 2(c) and 2(g)]. Here, waveform proportion-
ality was not well realized [Fig. 1(c), middle]; however,
when the waveforms were shifted such that their peak
positions coincided, the ratio ζiðtÞ became almost constant,
as shown in the bottom panel of Fig. 1(c). This result
indicates that the hypothesis xiðtÞ ¼ Cix0ðtÞ should be
replaced with xiðtÞ ¼ Cix0ðt − tiÞ. ti is obtained by com-
puting the difference between the time when xi reaches its
local maximum value and the time when x50 reaches its
local maximum value. Further, the shift ti was approx-
imately proportional to μi and 1=Dy as illustrated in
Figs. S3 and S4, respectively. These results suggest that
waveform proportionality occurs with a lag ti, which
decreases with increasing Dy. Because the first relation of
Eq. (2) holds true even when xiðtÞ ¼ Cix0ðtÞ is replaced
with xiðtÞ ¼ Cix0ðt − tiÞ, temporal TL emerges at small

FIG. 3. Dy dependence of TL parameters and synchronization
degree of the food chain model. N ¼ 100; Dx ¼ 0; Dz ¼ 0;
a ¼ 1; c ¼ 9; k ¼ 0.6; l ¼ 0.1; x� ¼ 1.6; y� ¼ 0, and z� ¼ 0.01.
bi is randomly selected from a uniform distribution between
4.9 and 5.1. In (a) and (c), the same χ (purple dot) and maxfμig
(orange solid line) are plotted. (a) R2 of temporal TL. (b)
Exponents of temporal TL. (c) R2 of spatial TL. (d) Exponents
of spatial TL.
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Dy. In contrast, the second relation of Eq. (2) is violated in
the presence of lag; thus, spatial TL may appear only when
the lag is vanishingly small, i.e., Dy is considerably large.
Accordingly, we found that spatial TL is observed for a
wide range of Dy upon using shifted waveforms xiðtþ tiÞ,
as shown in Figs. 2(g) and 2(h) using the red crosses,
and Fig. S5.
To theoretically clarify the mechanism underlying the

emergence of TL, we performed a perturbative analysis.
Motivated by our numerical results, we considered the
following ansatzes:

xiðtÞ ¼ x0ðt − εiτÞ þ εipðt − εiτÞ þOðε̂2Þ; ð5aÞ

yiðtÞ ¼ y0ðt − εiτÞ þ εiqðt − εiτÞ þOðε̂2Þ; ð5bÞ

ziðtÞ ¼ z0ðt − εiτÞ þ εirðt − εiτÞ þOðε̂2Þ; ð5cÞ

where εi ¼ μi=Dy denotes a nondimensional small param-
eter; τ is a constant; pðtÞ, qðtÞ, and rðtÞ are functions to be
determined; and ε̂ represents the typical magnitude of the
small parameter εi. We recall that x0ðtÞ is a periodic
function obeying the following relation for the food chain
model under consideration:

ẋ0 ¼ fxðx0; y0; z0Þ ¼ ða − ly0Þx0 − ax�: ð6Þ

In Eq. (5), waveform proportionality emerges in xiðtÞ if
pðtÞ ∝ x0ðtÞ is approximately true. As shown below, this is
true under some conditions. Substituting Eq. (5) into
Eq. (1) and extracting the OðεiÞ terms, we obtain

ṗ ¼ ða − ly0 −DxÞpþ gðtÞ; ð7Þ

where gðtÞ ¼ ðaDxτ − lDxτy0 − lqÞx0 − aDxτx�. Note
that Eqs. (6) and (7) are linear in terms of x0 and p,
respectively. Therefore, by assuming that other time-
dependent functions are provided, we can solve these
equations to obtain the expressions for x0 and p. As shown
in Supplemental Material [41], we obtain

x0ðtÞ ¼
ax�

f̄

�
AþO

�
f̄
ω

��
eδFðtÞ; ð8aÞ

pðtÞ ¼ −
1

f̄ −Dx

�
BþO

�
f̄ −Dx

ω

��
eδFðtÞ; ð8bÞ

where f̄ ¼ ha − ly0ðtÞit; δFðtÞ ¼
R
t
0 ½fðt0Þ − f̄�dt0; A ¼

he−δFðtÞit; B ¼ hgðtÞe−δFðtÞit. Therefore, pðtÞ becomes
approximately proportional to x0ðtÞ when the following
conditions are satisfied:

A ≫ O

�
f̄
ω

�
; B ≫ O

�
f̄ −Dx

ω

�
: ð9Þ

Thus, TL with exponent βt;s ¼ 2 should be observed in
good approximation when εi is sufficiently small.
Furthermore, substituting Eqs. (8a) and (8b) into Eq. (2),
and omitting the Oð·Þ terms, we obtain

αt ¼
V½eδF�t
E½eδF� 2t

; αs ¼
�

f̄

f̄ −Dx

B
ax�A

�
2

V½εi�i: ð10Þ

We expect that Eq. (9) can be generally satisfied when f̄ and
Dx are sufficiently smaller than ω. In the present example,
ω ≃ 2.18; f̄ ≃ 0.0327, and Dx ¼ 0, which confirm the
validity of our approximation. Indeed, the predicted βt;s
and log αt;s, shown using the black lines and dots in Fig. 3
and Fig. S1, are in excellent agreement with the simulation
results for large Dy. One might naively expect that wave-
form proportionality naturally arises for oscillators with
strong diffusive coupling because the waveforms become
virtually identical in the strong coupling limit. However,
note that convergence [pðtÞ → 0] does not imply waveform
proportionality, and the manner of convergence is crucial.
An interesting prediction, possibly opposing the naive
expectation, is that waveform proportionality is violated
when Dx is large because a large Dx will violate Eq. (9).
We numerically demonstrate this prediction in Fig. S6 by
considering the Dx > 0 case. In contrast, there is no
condition corresponding to Dz. Indeed, as shown in
Fig. S7, TL is observed for Dz > 0.
Next, we generalize our theory considering the following

situation. Suppose we have N oscillators, each of which
can be described by an M-dimensional dynamical system.
Let xiðtÞ ði ¼ 1;…; NÞ be the observables obeying
ẋi ¼ siðtÞxi þ uiðtÞ, where siðtÞ and uiðtÞ are periodic with
period ð2π=ωÞ. Assume siðtÞ ¼ sðtÞ þ εiδsðtÞ and uiðtÞ ¼
uðtÞ þ εiδuðtÞ to the lowest order in εi, where s; u; δs, and
δu are periodic. Then, the above analysis can similarly be
applied to this system. Accordingly, we conclude that
waveform proportionality occurs in xiðtÞ for small εi if
Eq. (9), wherein f̄ is replaced with hsðtÞit, is satisfied.
Essentially, the equation should be linear in terms of
observables and its intrinsic dynamics should be suffi-
ciently slow. When these assumptions are satisfied, the
approximation is effective, resulting in waveform propor-
tionality. Furthermore, we note that our theory can
approximately be extended to a class of chaotic oscil-
lators. Suppose that siðtÞ and uiðtÞ show chaotic oscil-
lations with characteristic period T. We assume that the
time averages of siðtÞ and uiðtÞ over 1 period T do not
strongly fluctuate from the long-time averages of siðtÞ and
uiðtÞ. Under this assumption, the above arguments hold
approximately true. Based on these observations, we
predict that TL can arise in a broad class of systems,
including various types of (i) chaotic oscillators, (ii) cou-
pling mechanisms, and (iii) dynamical systems. For
(i) chaotic oscillators, we demonstrate that the same food
chain model with another set of parameters that yields
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chaotic oscillations approximately shows waveform pro-
portionality and TL when the oscillators are synchronized
(Fig. S8). For (ii) coupling mechanisms, we demon-
strate that TL is observed in a pacemaker-driven system,
with Y ¼ y0 in Eq. (1) (Fig. S9). For (iii) dynamical
systems, as an example, we consider the following
Rössler system [40,42–46]: fx ¼ −ðω0 þ μiÞyi − zi; fy ¼
ðω0 þ μiÞxi þ ayi, and fz ¼ bþ ziðxi − cÞ in Eq. (1).
Note that the actual frequency, ω, is approximately equal
to ω0 in this system. We consider Dx ¼ Dy ¼ D > 0 and
Dz ¼ 0. The results of this system are shown in Fig. S10.
Here, we use parameters a ¼ 0.1, b ¼ 0.1, and c ¼ 0.7,
which indicate periodic oscillations because the typical
parameters a ¼ 0.2, b ¼ 0.2, and c ¼ 5.7, which indicate
chaotic behavior, violate condition Eq. (9). In this system,
TL is expected to be observed in variable zi when Eq. (9) is
satisfied wherein Dx and f̄ are replaced with 0 and
hx0ðtÞ − cit, respectively. Furthermore, we investigate
ω0 dependency with fixed D because the validity of
Eq. (9) can conveniently be controlled through ω0. As
expected, βt;s approaches 2 with large R2 values as ω0

increases (Fig. S11). Further, we analytically and numeri-
cally confirm the waveform proportionality and TL with
an exponent 2 in the coupled Lorenz system [47] and
coupled Brusselator [48], shown in Figs. S12 and S13,
respectively. Although our theory presented in this Letter
cannot be applied to the coupled Lorenz system, we have
been able to perform analytical calculations by construct-
ing another theory [49].
Discussion—In this study, we showed that temporal and

spatial TLs are induced by synchronization in a broad class
of periodic and chaotic oscillators. Specifically, we dem-
onstrated that as the degree of synchronization increases, the
correlation between log (mean) and log (variance) becomes
stronger. Moreover, we showed that in regions of strong
synchronization, waveform proportionality emerges, result-
ing in the derivation of temporal and spatial TLs with β ¼ 2.
In these synchronization-induced TLs, temporal and
spatial TLs arise in the same mechanism, i.e., waveform
proportionality. In contrast, owing to phase lag, which is
expressed by the εiτ terms in Eq. (5), spatial TL requires
stronger coupling than temporal TL. While several studies
explored the relationship between TL and synchronization
[20,21,24–27,30,37,50], most of them investigated the
correlation between the exponents of TL and the degree
of synchronization through numerical simulations. Reuman
et al. derived the analytical relationship between spatial TL
and synchronization [24]. In this study, we analytically
derived both temporal and spatial TLs with β ¼ 2 from the
synchronization state. Although other mechanisms are
known to exist for TL with β ¼ 2 [3,17,19,23,29,31–35],
we believe that our findings provide valuable insights into
the understanding of TL from the perspective of synchro-
nization as another universal phenomenon in ecosystems
[51]. Our results can help in inferring the existence of

synchronization solely from the relationship between mean
and variance [52]. This research also suggests that coupling
strength may be inferred by quantifying the similarity of
waveforms.
Parameter heterogeneity plays an essential role in this

study. For example, the range of temporal TL plots in Fig. 2
widens with parameter heterogeneity. However, for some
systems, increasing the heterogeneity may lead to diver-
gence or loss of synchronized oscillation, in which case
TL is lost; the range of the parameter heterogeneity that
causes TL is limited by the range over which synchronized
oscillation occurs.
Phenomena similar to waveform proportionality,

including the projective synchronization [53] and a type
of generalized synchronization [54] have been previously
proposed. These previously reported phenomena are
observed in a limited class of coupled oscillators. We
showed that waveform proportionality emerges in a broad
class of strongly synchronized coupled periodic and
chaotic oscillators. It is important to understand the
behavior of strongly coupled systems because there are
various systems that require strong coupling to ensure
stability, such as the heart [55], power grids [56], and next-
generation communications using chaotic synchronization
[57]. In this context, we clarified general properties that
appear in strongly coupled periodic and chaotic oscilla-
tors, namely, waveform proportionality and TL with an
exponent 2 resulting from it.
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