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Accuracy of a one-dimensional reduction of dynamical systems on networks
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Resilience is an ability of a system with which the system can adjust its activity to maintain its functionality
when it is perturbed. To study resilience of dynamics on networks, Gao et al. [Nature (London) 530, 307 (2016)]
proposed a theoretical framework to reduce dynamical systems on networks, which are high dimensional in
general, to one-dimensional dynamical systems. The accuracy of this one-dimensional reduction relies on three
approximations in addition to the assumption that the network has a negligible degree correlation. In the present
study, we analyze the accuracy of the one-dimensional reduction assuming networks without degree correlation.
We do so mainly through examining the validity of the individual assumptions underlying the method. Across
five dynamical system models, we find that the accuracy of the one-dimensional reduction hinges on the spread
of the equilibrium value of the state variable across the nodes in most cases. Specifically, the one-dimensional
reduction tends to be accurate when the dispersion of the node’s state is small. We also find that the correlation
between the node’s state and the node’s degree, which is common for various dynamical systems on networks,
is unrelated to the accuracy of the one-dimensional reduction.
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I. INTRODUCTION

A definition of resilience is the property of the system
to be able to adjust its activity to retain its functionality
when some error or failure occurs [1–4]. Ecology [5,6], hu-
man physiology [7], cell biology [8], food security [9,10],
finance [11,12], and psychopathology [13,14] are some of
the areas where the resilience of systems has been studied.
A loss of resilience may give rise to a catastrophic outcome
or breakdown, such as mass extinction in ecological systems
[15–17], blackouts in power grids [18,19], outbreaks of infec-
tious diseases [20,21], crashes in financial markets [11,12],
and mental disorders [13,22]. The occurrence of such critical
regime shifts bears some universality but depends on the type
of dynamics and perturbations applied. Quantitative anticipa-
tion of critical regime shifts in complex dynamical systems
has been actively studied [3,23–26].

Nonlinear dynamical systems on networks provide a use-
ful language with which to investigate resilience in complex
systems. In that framework, one assumes that dynamical ele-
ments occupy nodes and interact with adjacent nodes. If the
state of each node is a one-dimensional dynamical variable,
we typically examine the behavior of N coupled differential
equations, where N is the number of nodes in the network.
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Alternatively, we may be interested in the case in which each
node is a higher-dimensional dynamical system. In either
case, one asks whether perturbations applied to the states of
some nodes or removal of some edges, for example, cause
catastrophic outcomes, i.e., drastic changes in the equilibrium
of the entire N-dimensional dynamical system. For an ecosys-
tem, a drastic change is typically from a stable equilibrium
corresponding to the coexistence of various species to a mass
extinction of several species [27,28]. Crucially, the size of
the perturbation that a dynamical system on a network can
tolerate, which is an operational definition of the network
resilience [3], depends on the structure of the network. For
example, a change in the network structure induced by the
removal of a fraction of nodes and the associated edges may
decrease the resilience of the system [29–31].

Understanding and predicting the resilience of dynamical
systems on networks is a challenging task because of its
high dimensionality and possible complexity in the network
structure. One principled approach to the study of network
resilience is to reduce the N-dimensional dynamical system,
assuming that each of the N nodes has just one dynamical vari-
able, to a tractable low-dimensional dynamical system. Gao
et al. presented a theory to reduce any N-dimensional dynam-
ical system belonging to a certain class to a one-dimensional
dynamical system that approximates the dynamics of a linear
weighted average of the N state variables each of which is
associated with a node [30]. We refer to this method as the
Gao-Barzel-Barabási (GBB) reduction in the following text.
The derived one-dimensional dynamical system is analyti-
cally tractable and approximates the behavior of the original
N-dimensional dynamical system in terms of, for example,
the position of the stable equilibria. The GBB reduction is
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reasonably accurate when the number of nodes is larger than
a critical value [32]. The reduction can also be accurate
when the interaction matrix (i.e., the matrix whose entries
are the edge weight) is a mixture of positive and negative
weights [32]. In fact, the GBB reduction assumes uncorrelated
unipartite networks, whereas many ecosystems representing
mutualistic interaction correspond to bipartite interaction net-
works. For bipartite networks, reduction to a two-dimensional
dynamical system is a more accurate approach [33–35]. The
GBB reduction has also been extended to the case in which
the functional form of the individual node’s dynamics and that
of the influence of nodes on their adjacent nodes depend on
the node [36]. Furthermore, Thibeault et al. proposed a gen-
eralized technique that reduces high-dimensional dynamical
systems to low-dimensional ones by constructing the so-called
reduction matrix [37]. This reduction method is applicable to
more general classes of dynamical systems.

Despite these and other developments, the conditions un-
der which these reduction methods are accurate at describing
the original high-dimensional dynamics on networks are not
sufficiently clear. By restricting our focus to the GBB reduc-
tion, we investigate its applicability in quantitative terms in
the present study. In particular, the justification of the GBB
reduction hinges upon four assumptions, one of which is the
absence of degree correlation in the network. By assuming
uncorrelated networks, we investigate the impacts of the other
three sources of approximation error for five types of dynam-
ical systems. We investigate five dynamical systems because
the accuracy of the GBB reduction, as well as other reduc-
tion methods, may depend on the nodal intrinsic dynamics
and coupling functions. In this manner, we aim to compre-
hensively understand the conditions under which the GBB
reduction is sufficiently accurate.

II. DYNAMICAL SYSTEMS ON NETWORKS AND THEIR
ONE-DIMENSIONAL REDUCTION

We consider dynamical systems on networks considered in
Ref. [30], which are of the form

dxi

dt
= F (xi ) +

N∑
j=1

Ai jG(xi, x j ), (1)

where xi ∈ R represents the dynamical state of the ith node,
N is the number of nodes, F (xi ) represents the intrinsic dy-
namics of the node, G(xi, x j ) represents the influence of the
jth node on the ith node, and Ai j is the weight of the directed
edge ( j, i).

Here we briefly describe the GBB reduction of the N-
dimensional dynamics described by Eq. (1) [30]. We first
consider an arbitrary scalar quantity yi associated with the ith
node. To analyze Eq. (1), we set y j (xi ) = G(xi, x j ) and write

N∑
j=1

Ai jG(xi, x j ) = sin
i 〈y j (xi )〉 j nn of i, (2)

where sin
i = ∑N

j=1 Ai j is the weighted in-degree (also called
the in-strength) of the ith node, and 〈y j (xi )〉 j nn of i =∑N

j=1 Ai jG(xi, x j )/sin
i is the weighted average of G(xi, x j )

over the in-neighbors of the ith node, where the weight for the

averaging is given by Ai j . We use the heterogeneous mean-
field approximation for 〈y j (xi )〉 j nn of i as follows. Regardless
of node i, we assume that its in-neighbor is j with a proba-
bility proportional to j’s out-degree. Then, the corresponding
weighted average of y j (xi ) for any i is given by

〈y j (xi )〉HM =
1
N

∑N
j=1 sout

j y j (xi )
1
N

∑N
j=1 sout

j

, (3)

where sout
j = ∑N

i=1 Ai j is the weighted out-degree (also called
the out-strength) of node j. If the degree correlation of the
network given by A is small, then the neighborhood of all the
nodes is considered to be statistically identical. In this case,
one can write

〈y j (xi )〉 j nn of i ≈ 〈y j (xi )〉HM, (4)

for all i, where ≈ represents “approximately equal to.” Now,
to formalize the approximation, we define the operator L by

L(y) = 1�Ay
1�A1

=
∑N

i=1

∑N
j=1 Ai jy j∑N

i=1

∑N
j=1 Ai j

=
1
N

∑N
j=1 sout

j y j

1
N

∑N
j=1 sout

j

= 〈souty〉
〈sout〉 , (5)

where y = (y1, . . . , yN )�, 1 = (1, . . . , 1)�, � represents the
transposition, and 〈·〉 without a subscript represents the un-
weighted average over all nodes. Using Eqs. (2)–(5), one can
write Eq. (1) as

dxi

dt
≈ F (xi ) + sin

i L(G(xi, x)), (6)

where x = (x1, x2, . . . , xN )�, G(xi, x) =
(G(xi, x1), . . . , G(xi, xN ))�, and L(G(xi, x)) represents
the average input from the neighbors per unit edge weight
under the heterogeneous mean-field approximation. Under
the approximation L(G(xi, x)) ≈ G(xi,L(x)), we can write
Eq. (6) in vector form as

dx
dt

= F (x) + sin ◦ G(x,L(x)), (7)

where G(x,L(x)) = (G(x1,L(x)), . . . , G(xN ,L(x)))�, sin =
(sin

1 , . . . , sin
N )�, and ◦ is the Hadamard product. Because L is

a linear operator, we obtain

dL(x)

dt
= L(F (x) + sin ◦ G(x,L(x)))

= L(F (x)) + L(sin ◦ G(x,L(x)))

≈ F (L(x)) + L(sin )G(L(x),L(x)). (8)

To derive the last line in Eq. (8), we have assumed L(F (x)) ≈
F (L(x)) and L(sin ◦ G(x,L(x))) ≈ L(sin )G(L(x),L(x)).
Gao et al. defined the effective state of the dynamical system
by

xeff = 〈soutx〉
〈sout〉 , (9)
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which is the normalized weighted average of xi over all the
nodes with weight sout

i , and a control parameter

βeff = 〈sinsout〉
〈sout〉 . (10)

By substituting L(x) = xeff and L(sin ) = βeff into Eq. (8),
we obtain a one-dimensional reduction of the original N-
dimensional dynamical system:

dx

dt
= F (x) + βG(x, x), (11)

which is approximately satisfied by (x, β ) = (xeff , βeff ). If the
approximation is accurate, the equilibria and their stability of
the one-dimensional dynamical system given by Eq. (11) can
predict the resilience of the N-dimensional dynamical system
given by Eq. (1). We can find the stable equilibria of the
one-dimensional dynamical system given by Eq. (11), which
we denote by x∗(β ), by setting its right-hand side to zero
and excluding the unstable equilibria. The obtained x∗(β ) is
expected to approximate the effective state of the original N-
dimensional dynamical system in a stable equilibrium, which
we denote by x∗

eff .
For Eq. (11) to accurately approximate the dynam-

ics of xeff , the following approximations must hold
accurately:

Approximation (I) : L(F (x)) ≈ F (L(x)), (12)

Approximation (II) : L(G(xi, x)) ≈ G(xi,L(x)), (13)

Approximation (III) : L(sin ◦ G(x,L(x)))

≈ L(sin )G(L(x),L(x)) , (14)

and that (IV) the interaction network has negligible degree
correlation. For understanding when the GBB reduction is
accurate, we check the accuracy of approximations (I), (II),
and (III) for different dynamical systems in Sec. III, as-
suming networks that satisfy condition (IV). The validity
of approximations (I), (II), and (III) may depend on the
dynamical system as well as the network structure. For ex-
ample, Eq. (14) does not hold true for diffusive coupling for
the following reason. In the case of diffusive coupling, the
right-hand side of Eq. (14) is always equal to zero because
G(L(x),L(x)) = 0, whereas the left-hand side is not neces-
sarily equal to zero because L(x) 	= xi at least for some xi

in general.

III. ACCURACY OF THE GBB REDUCTION

In this section we consider five types of dynamical sys-
tems and test the accuracy of the GBB reduction and that of
each of the three approximations used for deriving the one-
dimensional reduction, i.e., (I), (II), and (III). We use these
dynamical systems because they were used in the previous
studies on dimension reduction approaches.

To understand the resilience of the dynamical systems, we
follow Ref. [30] to sequentially remove nodes in a uniformly
random order. After the removal of each node, we also discard
the nodes that do not belong to the largest connected com-
ponent and then compute βeff using Eq. (10) for the largest

connected component. We calculate the relative error given
by

Relative error =
∣∣∣∣x∗(βeff ) − x∗

eff

x∗(βeff )

∣∣∣∣ . (15)

We obtain x∗
eff from the stable equilibrium of the orig-

inal N-dimensional system. We calculate x∗
eff by running

Eq. (1) using the fourth-order Runge-Kutta method (with
MATLAB function ode45) until it converges and substitut-
ing the final values of xi (with i = 1, . . . , N), which we
denote by x∗

i , into Eq. (9). When there are multiple sta-
ble equilibria of Eq. (11), we calculate the relative error
with respect to the stable equilibrium x∗(βeff ) that is the
closest to x∗

eff .
To investigate the accuracy of approximations (I), (II), and

(III), we calculate the ratio of the right-hand side to the left-
hand side of Eqs. (12), (13), and (14), which we refer to as

R(1) =L(sin )G(L(x),L(x))

L(sin ◦ G(x,L(x)))
, (16)

R(2) =G(xi,L(x))

L(G(xi, x))
, (17)

and

R(3) =F (L(x))

L(F (x))
, (18)

respectively. The GBB reduction is exact for uncorrelated
networks if and only if all of R(1), R(2), and R(3) are equal
to 1. Therefore, even for large uncorrelated networks, a high
accuracy of the GBB reduction is not guaranteed; the accu-
racy depends on (i) the intrinsic dynamics of the considered
dynamical system and (ii) the coupling function.

For numerical verification, we use two undirected and un-
weighted networks with N = 500 nodes, i.e., a regular random
graph with node’s degree 8 and a scale-free network of ap-
proximately the same average degree (i.e., 〈k〉 = 7.96). We
construct the scale-free network using the Barabási-Albert
model [38] with the number of edges per new node m = 4 and
the initial condition of the complete graph of four nodes. The
model produces the degree distribution P(k) ∝ k−3 for large
k. We use these networks because they do not have degree
correlation and therefore a high accuracy of approximation
(IV) is expected. If we use correlated networks, such as empir-
ical networks and model networks with community structure
or clustering, then we would not be able to dissociate the
reasons for the approximation error. This is because the error,
if non-negligible, may be due to the correlation in the network
structure or the approximations underlying the GBB reduction
that are not guaranteed to be accurate even for uncorrelated
networks.

A. Double-well system

We first consider a coupled double-well potential system
given by

dxi

dt
= −(xi − r1)(xi − r2)(xi − r3) + D

N∑
j=1

Ai jx j, (19)
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FIG. 1. GBB reduction for the double-well system. (a) Bifurca-
tion diagram for the regular random graph. (b) Bifurcation diagram
for the scale-free network. (c) Relative error for the regular random
graph. (d) Relative error for the scale-free network. The squares and
circles represent the numerically obtained equilibria when the initial
condition is xi = 0.01 for all i and xi = 10 for all i, respectively. At
each βeff value, we started the simulation of the original dynamical
system from each of these two initial conditions and obtained the
equilibria. The solid lines in (a) and (b) represent the stable equilibria
of the GBB reduction given by Eq. (20).

where xi is the state of the ith node, and D is the coupling
strength [39–41]. The model for a single node is called the
Schlögl model [42,43]. We assume r1 < r2 < r3 without loss
of generality. In the absence of the coupling term, this dynam-
ical system has two stable equilibria, x = r1 and x = r3. The
GBB reduction is given by

dx

dt
= −(x − r1)(x − r2)(x − r3) + Dβx . (20)

We show the relationship between x∗
eff and βeff for the regular

random graph and scale-free network in Figs. 1(a) and 1(b),
respectively, both for the original dynamical system [squares
and circles; Eq. (19)] and its one-dimensional reduction [solid
lines; x∗(βeff ) obtained from Eq. (20)]. We set r1 = 1, r2 = 2,
r3 = 5, and D = 0.1 in this and the following numerical sim-
ulations in this section. The relative error corresponding to
Figs. 1(a) and 1(b) is shown in Figs. 1(c) and 1(d), respec-
tively. The relative error is small except near the bifurcation
point. The GBB reduction is inaccurate at estimating the loca-
tion of the bifurcation point in terms of βeff.

For this dynamical system, we obtain F (xi ) = −(xi −
r1)(xi − r2)(xi − r3) and G(xi, x j ) = x j . Because G(xi, x j ) is
linear in terms of x j , we obtain R(2) = R(3) = 1. In other
words, Eqs. (13) and (14) hold true with equality. Therefore,
we only focus on examining the accuracy of the approxima-
tion given by Eq. (12).

We obtain

R(1) = F (L(x))

L(F (x))

=
( 〈soutx〉

〈sout〉 − r1
)( 〈soutx〉

〈sout〉 − r2
)( 〈soutx〉

〈sout〉 − r3
)

〈sout (x−r1 )(x−r2 )(x−r3 )〉
〈sout〉

= 〈soutx〉3 − (r1 + r2 + r3)〈soutx〉2〈sout〉 + (r1r2 + r2r3 + r3r1)〈soutx〉〈sout〉2 − r1r2r3〈sout〉3

〈sout〉2〈soutx3〉 − (r1 + r2 + r3)〈soutx2〉〈sout〉2 + (r1r2 + r2r3 + r3r1)〈soutx〉〈sout〉2 − r1r2r3〈sout〉3
. (21)

The last two terms in the numerator and denominator of
Eq. (21) are the same. Therefore, the inaccuracy of the GBB
reduction results from the discrepancy between the first two
terms of the numerator and those of the denominator. The ap-
proximation is exact for uncorrelated networks (i.e., R(1) = 1)
when all xi’s are the same such that 〈x2〉/〈x〉2 = 〈x3〉/〈x〉3 = 1
or when sout is independent of x.

To numerically examine these quantities, we plot the co-
efficient of variation (CV), which is the standard deviation
divided by the average of x∗

i (with i = 1, . . . , N), given by

CV =
√

1
N

(∑N
i=1(x∗

i − 〈x∗〉)2

〈x∗〉 (22)

for the regular random graph and scale-free network in
Figs. 2(a) and 2(b), respectively. We find that the CV is small
when the relative error [see Figs. 1(c) and 1(d)] is small, which
is consistent with the fact that there is no approximation error

when all the x∗
i values are the same (which is equivalent to

CV = 0). We plot the relative error as a function of the CV in
Fig. 2(c). Figure 2(c) shows that the relation between the CV
and the relative error is largely similar between the two net-
works and that the magnitude of the error increases as the CV
increases. These results are consistent with the observation
that, given the βeff value, the CV [see Figs. 2(a) and 2(b)] and
the relative error [see Figs. 1(c) and 1(d)] are generally smaller
for the regular random graph than the scale-free network.

Because the independence of x∗
i and ki(≡ sin

i = sout
i ),

where ki is the degree of the ith node, is another sufficient con-
dition for R(1) = 1, we also examine the Pearson correlation
coefficient between x∗

i and ki, denoted by r, for the scale-free
network. For the regular random graph, we do not calculate
r because all the nodes have the same ki value in the original
network and the dispersion of ki remains small after removals
of uniformly randomly selected nodes. The r values shown in
Fig. 2(d) indicate that the correlation is almost equal to 1 for
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FIG. 2. Exploring reasons for the accuracy of the GBB reduction
for the double-well system. (a) CV of {x∗

1 , . . . , x∗
N } as a function of

βeff for the regular random graph. (b) CV of {x∗
1 , . . . , x∗

N } as a func-
tion of βeff for the scale-free network. (c) Relative error as a function
of the CV for both networks. The squares and circles correspond to
the lower and higher initial conditions, respectively, for the regular
random graph. The triangles and inverted triangles correspond to the
lower and higher initial conditions, respectively, for the scale-free
network. (d) Pearson correlation coefficient, denoted by r, between
x∗

i and ki for the scale-free network. The inset shows the relationship
between the relative error and r. In (a), (b), and (d), the squares and
circles represent the lower and higher initial conditions, respectively.

any βeff in the case of the higher equilibrium. For the lower
equilibrium, the dependence of r on βeff is not consistent with
the dependence of the relative error on βeff [the squares in
Fig. 1(d); also see the inset]. Furthermore, the relative error is
negligible for the lower equilibrium anyway.

Therefore, we conclude that the CV of {x∗
1, . . . , x∗

N }, not the
correlation between x∗

i and ki, is a major determinant of the
accuracy of the GBB reduction for the double-well system.

B. SIS model

Next, we consider the deterministic approximation to the
stochastic susceptible-infectious-susceptible (SIS) dynamics,
which is also called the individual-based approximation [44].
It is given by

dxi

dt
= λ

N∑
j=1

Ai j (1 − xi )x j − μxi, (23)

where xi represents the probability that the ith node is infec-
tious at time t , λ is the infection rate, and μ is the recovery
rate. The first term on the right-hand side of Eq. (23) repre-
sents the rate at which the ith node is infected by one of its
neighbors. The second term represents the recovery. The GBB
reduction for Eq. (23) is given by

dx

dt
= λβ(1 − x)x − μx. (24)

FIG. 3. GBB reduction for the SIS model. (a) Bifurcation dia-
gram for the regular random graph. (b) Bifurcation diagram for the
scale-free network. (c) Relative error for the regular random graph.
(d) Relative error for the scale-free network. The circles represent the
numerically obtained equilibria with the initial condition xi = 10 for
all i. The solid curves in (a) and (b) represent the stable equilibria of
the GBB reduction. We set λ = 0.5 and μ = 1.

In Figs. 3(a) and 3(b), we show the relation between
x∗

eff and βeff for the regular random graph and scale-free
network, respectively, each for the original dynamical sys-
tem given by Eq. (23) and the GBB reduction given by
Eq. (24) [i.e., x∗(βeff )]. We set λ = 0.5 and μ = 1. We find
that the GBB reduction accurately estimates the location of
the epidemic threshold in terms of βeff for both networks.
We show the relative error of the GBB reduction for the
regular random graph and scale-free network in Figs. 3(c)
and 3(d), respectively. These figures indicate that the er-
ror is larger for the scale-free network than the regular
random graph.

For the SIS model, we have F (xi ) = −μxi and G(xi, x j ) =
λ(1 − xi )x j . Therefore, Eq. (12) holds with equality (i.e.,
R(1) = 1) for any x because F (xi ) is linear in xi.
Equation (13) also holds with equality (i.e., R(2) = 1)
because

L(G(xi, x)) = λL((1 − xi )x)

= λ(1 − xi )
〈soutx〉
〈sout〉

= G(xi,L(x)). (25)

For the third approximation [see Eq. (14)], we obtain

R(3) = L(sin )G(L(x),L(x))

L(sin ◦ G(x,L(x)))

=
〈sinsout〉
〈sout〉 λ

(
1 − 〈soutx〉

〈sout〉
) 〈soutx〉

〈sout〉
λ

(〈sinsout〉−〈sinsoutx〉)〈soutx〉
〈sout〉2
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FIG. 4. Exploring reasons for the accuracy of the GBB reduction
for the SIS model. (a) CV of {x∗

1 , . . . , x∗
N } for the regular random

graph. (b) CV of {x∗
1 , . . . , x∗

N } for the scale-free network. (c) Relative
error as a function of the CV for the two networks and two values
of λ, i.e., λ = 0.5 and λ = 2. (d) Pearson correlation coefficient
between the state variable and the out-degree, r, as a function of βeff

for the scale-free network. The inset shows the relationship between
the relative error and r. We set μ = 1. In (a), (b), and (d), we set
λ = 0.5.

=
〈sinsout〉(1 − 〈soutx〉

〈sout〉
)

〈sinsout〉 − 〈sinsoutx〉

=
1 − 〈soutx〉

〈sout〉
1 − 〈sinsoutx〉

〈sinsout〉
. (26)

Therefore, the GBB reduction is accurate if

〈soutx〉
〈sout〉 ≈ 〈sinsoutx〉

〈sinsout〉 . (27)

Equation (27) holds with equality when xi is independent
of i or xi is independent of sout

i and sin
i sout

i . In the case of the
regular random graph, sin

i and sout
i are the same for all the

nodes such that the second condition is satisfied. To exam-
ine the first possibility, we plot the CV of {x∗

1, . . . , x∗
N } as a

function of βeff in Figs. 4(a) and 4(b) for the regular random
graph and scale-free network, respectively. For both networks,
the CV largely decreases as βeff increases. In Fig. 4(c), we
show the relationships between the relative error and the CV
for the two networks and two values of λ (i.e., λ = 0.5 and
λ = 2). The figure indicates that, for both values of λ, the
relative error increases as the CV increases except at large
CV values. These results are consistent with the fact that the
approximation error is zero when the xi value is independent
of i. Furthermore, Fig. 4(c) indicates that the relation between
the relative error and the CV is quantitatively close, albeit not
the same, between the two networks given the λ value.

We show in Fig. 4(d) the Pearson correlation coefficient, r,
between x∗

i and ki as a function of βeff for the scale-free net-

FIG. 5. GBB reduction for the gene regulatory system. (a) Bifur-
cation diagram for the regular random graph. (b) Bifurcation diagram
for the scale-free network. (c) Relative error at the nontrivial equilib-
ria for the regular random graph. (d) Relative error at the nontrivial
equilibria for the scale-free network. The circles and squares repre-
sent the numerically obtained equilibria with the initial conditions
xi = 10 and xi = 0.01, respectively, for all i.

work. The correlation coefficient r is large (i.e., >0.75) across
the range of βeff including the values of βeff for which the
relative error is small [see Fig. 3(d)]. Furthermore, the relative
error and r are apparently unrelated [see the inset of Fig. 4(d)].
Therefore, we conclude that r is not a determinant of the
accuracy of GBB reduction and that the CV of {x∗

1, . . . , x∗
N }

heavily impacts the accuracy of the GBB reduction. These
conclusions are similar to those for the double-well system.

C. Gene regulatory system

In this section, we consider a model of a gene regula-
tory system governed by the Michaelis-Menten equation [30],
which is given by

dxi

dt
= −Bx f

i +
N∑

j=1

Ai j

xh
j

1 + xh
j

, (28)

where xi represents the expression level of gene i. The first
term on the right-hand side of Eq. (28) represents the degra-
dation. The second term represents the activation of gene i
by gene j. We use the same parameter values as those in
Ref. [30], i.e., B = 1, f = 1, and h = 2. The GBB reduction
corresponding to Eq. (28) is given by

dx

dt
= −Bx f + β

xh

1 + xh
. (29)

We show the bifurcation diagrams for the original dy-
namical system [i.e., Eq. (28)] and its GBB reduction [i.e.,
Eq. (29)] in Figs. 5(a) and 5(b) for the regular random graph
and scale-free network, respectively. We plot the relative error
of the GBB reduction at the nontrivial equilibria in Figs. 5(c)
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and 5(d) for the regular random graph and scale-free network,
respectively. For both networks, the relative error is small
except near the bifurcation point.

Equation (28) yields

F (xi ) = Bxi (30)

and

G(xi, x j ) = x2
j

1 + x2
j

. (31)

The approximation in Eq. (12) is exact for this dynamical
system (i.e., R(1) = 1) because F (xi ) is linear in xi. We then
obtain

R(2) = G(xi,L(x))

L(G(xi, x))

= 〈soutx〉2〈sout〉
(〈sout〉2 + 〈soutx〉2)〈sout x2

1+x2 〉
. (32)

Finally, the approximation given by Eq. (14) is exact (i.e.,
R(3) = 1) because

L
(
sin ◦ G(x,L(x))

) = L
(

sin ◦ (L(x))2

1 + (L(x))2

)

= (L(x))2

1 + (L(x))2 L(sin ◦ 1)

= L(sin )G(L(x),L(x)). (33)

Therefore, the inaccuracy of the GBB reduction in the case
of uncorrelated networks only originates from the deviation
of R(2) from 1. Equation (32) implies that the approximation
holds without error when xi is independent of i or sout

i is
independent of xi and x2

i /(1 + x2
i ).

We plot the CV of {x∗
1, . . . , x∗

N } as a function of βeff by
the circles in Figs. 6(a) and 6(b) for the regular random graph
and scale-free network, respectively. The CV of {x∗

1, . . . , x∗
N }

decreases with the increase in βeff for both networks. We plot
the relative error against the CV for the regular random graph
and scale-free network by the circles and triangles in Fig. 6(c),
respectively. The figure shows that, although the relative error
largely increases as the CV increases for both networks, the
two networks show considerably different relationships be-
tween the relative error and the CV. Therefore, we consider
that the CV of {x∗

1, . . . , x∗
N } does not explain the magnitude

of the relative error sufficiently well. Equation (28) with
h = 2 suggests that the interaction term saturates according
to x2

j /(1 + x2
j ) as x j increases. The squares in Figs. 6(a) and

6(b) represent the CV of {(x∗
1 )2/(1 + (x∗

1 )2), . . . , (x∗
N )2/(1 +

(x∗
N )2)} as a function of βeff for the regular random graph

and scale-free network, respectively. We find that the CV
decreases as βeff increases in both networks except at small
βeff values. We show the relative error as a function of the
CV of {(x∗

1 )2/(1 + (x∗
1 )2), . . . , (x∗

N )2/(1 + (x∗
N )2)} for the reg-

ular random graph and scale-free network by the squares
and inverted triangles, respectively, in Fig. 6(c). We find
that the dependence of the relative error on the CV is now
much more similar between the two networks than in the
case of the dependence of the relative error on the CV of
{x∗

1, . . . , x∗
N }. The Pearson correlation coefficient between xi
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FIG. 6. Accuracy of the GBB reduction for the gene reg-
ulatory system. (a) CV of {x∗

1 , . . . , x∗
N } and of {(x∗

1 )2/(1 +
(x∗

1 )2), . . . , (x∗
N )2/(1 + (x∗

N )2)} as a function of βeff for the reg-
ular random graph. (b) CV of {x∗

1 , . . . , x∗
N } and of {(x∗

1 )2/(1 +
(x∗

1 )2), . . . , (x∗
N )2/(1 + (x∗

N )2)} as a function of βeff for the scale-
free network. The circles and squares correspond to the CV of
{x∗

1 , . . . , x∗
N } and that of {(x∗

1 )2/(1 + (x∗
1 )2), . . . , (x∗

N )2/(1 + (x∗
N )2)},

respectively. (c) Relative error as a function of the CV for the
two networks. The circles and triangles correspond to the CV of
{x∗

1 , . . . , x∗
N } for the regular random graph and scale-free network,

respectively. The squares and inverted triangles correspond to the CV
of {(x∗

1 )2/(1 + (x∗
1 )2), . . . , (x∗

N )2/(1 + (x∗
N )2)} for the regular random

graph and scale-free network, respectively. (d) Pearson correlation
coefficient between x∗

i and ki, i.e., r, as a function of βeff for the
scale-free network. The inset shows the relationship between the
relative error and r.

and ki for the scale-free network, denoted by r, is shown in
Fig. 6(d). The figure shows that r is large regardless of the
βeff value and that the relative error decreases as r increases.
The latter result is difficult to reconcile because, as we stated
above, the independence between sout

i and xi (i.e., r = 0) is
part of a sufficient condition for the GBB reduction to be
exact, which would yield the zero relative error; the inset of
Fig. 6(d) shows an opposite tendency. Therefore, we conclude
that r does not explain the accuracy of the GBB reduction. In
sum, in the case of this gene regulatory system, the CV of
{(x∗

1 )2/(1 + (x∗
1 )2), . . . , (x∗

N )2/(1 + (x∗
N )2)}, rather than that

of {x∗
1, . . . , x∗

N } or the correlation between x∗
i and ki, explains

the accuracy of the GBB reduction.

D. Generalized Lotka-Volterra model

The generalized Lotka-Volterra (GLV) dynamics is given
by

dxi

dt
= αxi +

N∑
j=1

Ai jxix j, (34)

where xi represents the abundance of the ith species, α is the
intrinsic growth rate of the species, and N is the number of
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FIG. 7. GBB reduction for the generalized Lotka-Volterra model.
(a) Bifurcation diagram for the regular random graph. (b) Bifurcation
diagram for the scale-free network. (c) Relative error for the regular
random graph. (d) Relative error for the scale-free network. The
circles represent the numerically obtained equilibria for the initial
condition xi = 10 for all i. The solid curves in (a) and (b) represent
the stable equilibria of the GBB reduction.

species in the population [32]. The nontrivial equilibrium of
this dynamical system is given by x∗ = −A−1α, where the
N × N matrix A is given by A = (Ai j ). This equilibrium is
globally asymptotically stable if and only if A is negative
definite [17]. Therefore, we set Aii = −c, where c is a con-
stant that makes matrix A negative definite. For simplicity, we
set c = λmax + 1, where λmax is the largest eigenvalue of the
adjacency matrix of the network.

We rewrite Eq. (34) as

dxi

dt
= αxi − cx2

i +
N∑

j=1; j 	=i

Ai jxix j . (35)

The GBB reduction for Eq. (35) is given by

dx

dt
= αx + (β − c)x2. (36)

In Figs. 7(a) and 7(b), we plot the bifurcation diagrams for the
regular random graph and scale-free network, respectively, for
the dynamical system given by Eq. (35) and its GBB reduction
given by Eq. (36). The relative error of the GBB reduction
corresponding to Figs. 7(a) and 7(b) is plotted in Figs. 7(c)
and 7(d), respectively. We find that the GBB reduction is fairly
accurate across the examined range of βeff for the regular
random graph and that it is accurate when βeff is sufficiently
small in the case of the scale-free network.

For this dynamical system, we obtain F (xi ) = αxi − cx2
i

and G(xi, x j ) = xix j . We obtain

R(1) = F (L(x))

L(F (x))
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FIG. 8. Exploring reasons for the accuracy of the GBB reduction
for the generalized Lotka-Volterra model. (a) CV of {x∗

1 , . . . , x∗
N } for

the regular random graph. (b) CV of {x∗
1 , . . . , x∗

N } for the scale-free
network. (c) Relative error as a function of the CV for the two
networks. (d) Pearson correlation coefficient between x∗

i and ki, i.e.,
r, as a function of βeff for the scale-free network. The inset shows the
relationship between the relative error and r.

=
〈soutx〉
〈sout〉

(
α − c 〈soutx〉

〈sout〉
)

〈soutx(α−cx)〉
〈sout〉

= α〈soutx〉〈sout〉 − c〈soutx〉2

α〈soutx〉〈sout〉 − c〈soutx2〉〈sout〉 . (37)

Equation (13) holds with equality (i.e., R(2) = 1) because

L(G(xi, x)) = L(xix)

= xiL(x)

= G(xi,L(x)). (38)

For the third approximation [see Eq. (14)], we obtain

R(3) = L(sin )G(L(x),L(x))

L(sin ◦ G(x,L(x)))

=
〈sinsout〉
〈sout〉

( 〈soutx〉
〈sout〉

)2

〈sinsoutx〉〈soutx〉
〈sout〉2

=
〈soutx〉
〈sout〉

〈sinsoutx〉
〈sinsout〉

. (39)

Equations (37) and (39) imply that the GBB reduction is
exact for the uncorrelated networks if xi is the same for all
i. In Figs. 8(a) and 8(b), we plot the CV of {x∗

1, . . . , x∗
N } as a

function of βeff for the regular random graph and scale-free
network, respectively. The CV is not monotonic in the case of
the regular random graph. In contrast, the CV increases with
the increase in βeff for the scale-free network. We plot the rela-
tive error as a function of CV for the two networks in Fig. 8(c).
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We find that the relationship between the relative error and CV
is approximately monotone and quantitatively similar between
the two networks. The pattern of the correlation between xi

and ki for the scale-free network shown in Fig. 8(d) is similar
to that shown in Fig. 6(d) in that the correlation is large
regardless of βeff and that the relative error decreases as the
correlation increases. Therefore, the correlation between xi

and ki does not explain the accuracy of the GBB reduction.
We conclude that, as in the case of the double-well system
and the SIS model, the CV of {x∗

1, . . . , x∗
N } mainly determines

the accuracy of the GBB reduction.

E. Mutualistic dynamics

Finally, we consider the mutualistic interaction dynamics
among different species in ecological networks given by

dxi

dt
= Bi + xi

(
1 − xi

Ki

)( xi

Ci
− 1

)

+
N∑

j=1

Ai j
xix j

Di + Eixi + Hjx j
, (40)

where xi represents the abundance of the species i, and
Bi, Ci, Di, Ei, Hi, and Ki with i = 1, . . . , N are constants
[30]. The first term on the right-hand side of Eq. (40), i.e.,
Bi, represents the migration rate of the species i from outside
the ecosystem. The second term stands for the logistic growth
with the carrying capacity Ki, and Ci represents the Allee
constant. The third term represents the mutualistic interaction
term, i.e., the contribution of x j to xi. This term remains

bounded because the logistic growth (i.e., the second term)
does not allow xi to excessively grow beyond Ki.

Note that the present model is a nonlinear-interaction vari-
ant of the double-well system considered in Sec. III A. We
follow Ref. [30] to set Bi = B = 0.1, Ci = C = 1, Ki = K =
5, Di = D = 5, Ei = E = 0.9, and Hi = H = 0.1 for all i.
The GBB reduction is given by

dx

dt
= B + x

(
1 − x

K

)( x

C
− 1

)
+ βx2

D + Ex + Hx
. (41)

The bifurcation diagrams for the regular random graph
and the scale-free network are shown in Figs. 9(a) and 9(b),
respectively, for both the original dynamical system given by
Eq. (40) and its GBB reduction given by Eq. (41). The GBB
reduction is inaccurate at estimating the bifurcation point for
both networks, in particular for the scale-free network [see
Fig. 9(b)]. The relative error of the GBB reduction corre-
sponding to Figs. 9(a) and 9(b) is shown in Figs. 9(c) and 9(d),
respectively. We find that the relative error is small except near
the bifurcation point for both networks.

Equation (40) implies

F (xi ) = Bi + xi

(
1 − xi

Ki

)( xi

Ci
− 1

)
(42)

and

G(xi, x j ) = xix j

Di + Eixi + Hjx j
. (43)

Therefore, we obtain

R(1) = F (L(x))

L(F (x))

=
B + 〈soutx〉

〈sout〉
(
1 − 〈soutx〉

K〈sout〉
)( 〈soutx〉

C〈sout〉 − 1
)

〈sout (B+x(1− x
K )( x

C −1))〉
〈sout〉

= BKC〈sout〉3 − KC〈sout〉2〈soutx〉 + (K + C)〈sout〉〈soutx〉2 − 〈soutx〉3

BKC〈sout〉3 − KC〈sout〉2〈soutx〉 + (K + C)〈sout〉2〈soutx2〉 − 〈sout〉2〈soutx3〉 , (44)

R(2) = G(xi,L(x))

L(G(xi, x)

= 〈soutx〉(
D + Exi + H 〈soutx〉

〈sout〉
)(〈

sout x
D+Exi+Hx

〉) , (45)

and

R(3) = L(sin )G(L(x),L(x))

L(sin ◦ G(x,L(x)))

=
〈sinsout〉 〈sout x〉2

〈sout 〉2

〈sout〉(D+E 〈sout x〉
〈sout 〉 +H 〈sout x〉

〈sout 〉 )〈
sinsout x 〈sout x〉

〈sout 〉
D+Ex+H 〈sout x〉

〈sout 〉

〉

〈sout〉

= 〈sinsout〉〈soutx〉
D〈sout〉 + E〈soutx〉 + H〈soutx〉

1〈
sinsoutx

D+Ex+H 〈sout x〉
〈sout 〉

〉 . (46)
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FIG. 9. GBB reduction for the mutualistic system. (a) Bifurca-
tion diagram for the regular random graph. (b) Bifurcation diagram
of the scale-free network. (c) Relative error for the regular random
graph. (d) Relative error for the scale-free network. The squares
and circles correspond to the numerically obtained equilibria when
the initial condition is xi = 0.01 or xi = 10, respectively, with i =
1, . . . , N . The solid lines in (a) and (b) represent the stable equilibria
of the GBB reduction given by Eq. (40).

In the case of the mutualistic dynamics, none of the three ap-
proximations holds with equality without a further condition.
Equations (44), (45), and (46) imply that all the approxima-
tions are exact for uncorrelated networks when all xi’s are the
same. In Figs. 10(a) and 10(b), we plot the CV of {x∗

1, . . . , x∗
N }

as a function of βeff for the regular random graph and
scale-free network, respectively. The squares and the circles
correspond to the lower and higher equilibria, respectively.
The CV is small (i.e., less than 0.18) for both networks. We
plot the relative error against the CV for the two networks in
Fig. 10(c). The figure shows that the magnitude of the relative
error is strongly correlated with the CV of {x∗

1, . . . , x∗
N }. This

result is consistent with the observation that the magnitude
of the relative error is smaller for the regular random graph
than the scale-free network [compare Figs. 9(c) and 9(d)]. We
also confirm that the Pearson correlation coefficient between
x∗

i and ki, shown in Fig. 10(d), is large irrespective of the βeff

value and that the relative error is negatively rather than posi-
tively related with the correlation coefficient. These results are
qualitatively the same as those shown in Figs. 6(d) and 8(d).
Therefore, we conclude that the correlation between xi and
ki does not explain the accuracy of the GBB reduction and
that the CV of {x∗

1, . . . , x∗
N } mainly determines the accuracy

of the GBB reduction for the mutualistic dynamics given by
Eq. (40).

IV. DISCUSSION

In this paper, we examined when the GBB reduction of N-
dimensional dynamical systems on networks [30] is accurate.
The high accuracy of the approximation clearly hinges upon

FIG. 10. Exploring reasons for the accuracy of the GBB reduc-
tion for the mutualistic system. (a) CV of {x∗

1 , . . . , x∗
N } for the regular

random graph. (b) CV of {x∗
1 , . . . , x∗

N } for the scale-free network.
(c) Relative error as a function of the CV for the two networks.
(d) Pearson correlation coefficient between x∗

i and ki, i.e., r, for
the scale-free network as a function of βeff . The inset shows the
relationship between the relative error and r.

the assumption of uncorrelated networks, similar to the case of
heterogeneous mean-field approximations for percolation and
various dynamics on networks. We showed that, apart from
that, a main determinant of the accuracy of the GBB reduction
is the CV of the relevant dynamical variable, which depends
on the considered dynamical system, in the equilibrium. In
four out of the five dynamical systems, i.e., the double-well
system, SIS model, GLV model, and mutualistic system, the
CV of {x∗

1, . . . , x∗
n} was positively correlated with the ap-

proximation error. For the gene regulatory system, the CV of
{(x∗

1 )2/(1 + (x∗
1 )2), . . . , (x∗

N )2/(1 + (x∗
N )2)} was a better pre-

dictor of the accuracy of the approximation than the CV of
{x∗

1, . . . , x∗
N }. We suggest that, given the dynamical system on

networks, one should look at the dependence of the interaction
term on the state variables to determine the node-dependent
quantity of which the CV is to be considered. We also found
that the accuracy of the GBB reduction was generally higher
for the regular random graph than the scale-free network for
all five dynamical systems. This result is consistent with the
dependence of the accuracy of the GBB reduction on the
CV because the state variable in the equilibrium tends to be
more homogeneous for the regular random graph than for the
scale-free network. Moreover, we also showed that the high
correlation between the state variable and the node’s degree,
which was present in all five dynamical systems, did not affect
the accuracy of the GBB reduction. We summarize our main
results in Table I.

Laurence and co-authors proposed a generalized dimen-
sion reduction method for dynamical systems on networks
given in the form of Eq. (1), with which the effective state
is a general linear weighted sum of the nodes’ states, i.e.,
x = ∑N

i=1 aixi for constants ai [34]. The GBB reduction is
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TABLE I. Summary of the results for the five dynamical systems.

Accuracy of
Dynamical GBB depends
system on the CV of R(1) = 1 R(2) = 1 R(3) = 1

Double well x No Yes Yes
SIS x Yes Yes No
Gene regulatory x2

1+x2 Yes No Yes
GLV x No Yes No
Mutualistic x No No No

a special case of this generalized reduction. The general-
ized reduction is optimal when (a1, . . . , aN ) is the dominant
eigenvector of the adjacency matrix of the network [34]. We
refer to the one-dimensional reduction x = ∑N

i=1 aixi with
this particular (a1, . . . , aN ) as the spectral method. The GBB
reduction coincides with the spectral method for uncorrelated
networks. We have numerically examined the accuracy of
the spectral method for the five dynamical systems in the
Appendix. We find that the relative error obtained with the
spectral method depends on the dynamical system. The rel-
ative error is smaller for the spectral method than the GBB
reduction for the double-well, gene regulatory, and mutualistic
systems, whereas the opposite is the case for the SIS and GLV
models. Another observation is that the spectral method does
not accurately locate the bifurcation point for some dynamical
systems. It does locate the bifurcation point at a higher accu-
racy than the GBB reduction in the case of the mutualistic
dynamics. However, the spectral method does not accurately
locate the bifurcation point in the case of the double-well
system, similar to the GBB reduction. For SIS and gene
regulatory systems both GBB and the spectral method ac-
curately locate the bifurcation point. (The GLV model does
not show a bifurcation.) We also remark that the two reduc-
tion methods are similar in that they are accurate when the
CV of {x∗

1, . . . , x∗
n} (or of {(x∗

1 )2/(1 + (x∗
1 )2), . . . , (x∗

N )2/(1 +
(x∗

N )2)} in the case of the gene regulatory dynamics) is small.
To conclude, we cannot say that the spectral method is uni-
formly better than the GBB reduction. Further developing
low-dimensional reduction methods that accurately predict
the bifurcation point for wider classes of dynamical systems
remains an open question.

The GBB and the spectral method require that neither the
intrinsic node’s dynamics (i.e., function F ) nor the coupling
term (i.e., function G) depends on the node. In a recent study,
Tu et al. proposed a dimension reduction technique that is
applicable to cases in which F or G depends on nodes [36].
While this new approach accommodates realistic scenarios
such as the case in which external input is injected to a subset
of nodes [45,46], the validity of this approach requires that
the degree distribution of the network is not highly heteroge-
neous, the CV of the state variable is small, and the parameters
of F and G are not too heterogeneous [36]. Developing low-
dimensional reductions that remove any of these restrictions
warrants future work.

In the case of the GLV model, the negative definiteness of
the interaction matrix, A, is a necessary and sufficient con-
dition for the stability of the nontrivial equilibrium [17,32].

In Ref. [32], the authors assumed that (Ai j , Aji) with i 	=
j is chosen from a bivariate distribution with the mean of
each variable equal to μ, standard deviation of each variable
equal to σ , and correlation coefficient between Ai j and Aji

equal to ρ. To carry out analytical calculations, the authors
also assumed that Aii = −d � −dc for all i ∈ {1, . . . , N},
where dc = σ

√
2N (1 + ρ) − μ when μ � 0 and dc = (N −

1)μ when μ > 0. This choice renders A negative definite.
Then, they assumed that the Ai jG(xi, x j ) terms for all i and
j enter the coupling function G in the GBB reduction. In
contrast, we proposed that, in the GBB reduction, the self-
interaction term, AiiG(xi, xi ), should enter function F , which
describes the inherent dynamics of the node, rather than G.
Therefore, we needed to assume that Aii is independent of i,
which is a condition for the validity of the GBB reduction.
Although this assumption coincides with Aii = −d assumed
in Ref. [32], the reason for assuming this is different between
their work and ours. It should be noted that this limitation
has been removed in their subsequent work, where the authors
developed a reduction method that allows node-dependent F
and G [36].

The GBB reduction is not applicable to the case of diffusive
coupling. This is because the right-hand side of Eq. (14) van-
ishes for diffusive coupling, whereas the left-hand side does
not in general. However, there is a huge demand of under-
standing dynamical systems in which the nodes are diffusively
coupled in networks. For example, the Kuramoto model of
coupled oscillators often assumes diffusive coupling between
oscillators, and its network versions have been broadly in-
vestigated [47,48]. While dimension reduction techniques for
coupled oscillator systems on networks are available [48–52],
they typically reduce the original dynamics to lower yet high-
dimensional dynamical systems; for example, the dimension
of the reduced dynamical system is equal to the number of
distinct values of the node’s degree. A recently proposed
dimension reduction method called the dynamics approxi-
mate reduction technique (DART) is applicable to dynamical
systems with diffusive coupling functions as well [37]. Fur-
ther developing dimension reduction methods, such as DART,
that are applicable to general dynamics on networks with
diffusive coupling and assessing their accuracy for various
dynamical systems and network structure remain an open
challenge.
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APPENDIX: LAURENCE’S ONE-DIMENSIONAL
REDUCTION

The method proposed by Laurence and colleagues [34]
reduces the N-dimensional dynamical system considered in
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FIG. 11. The spectral method for the double-well system. (a) Bi-
furcation diagram for the regular random graph. (c) Bifurcation
diagram for the scale-free network. (c) Relative error for the regular
random graph. (d) Relative error for the scale-free network. The
squares and circles represent the numerically obtained equilibria
when the initial condition is xi = 0.01 or xi = 10, respectively, for
all i. At each αev value, we started the simulation of the original
dynamical system from each of these two initial conditions and
obtained the equilibria. The solid lines in (a) and (b) represent the
stable equilibria of the one-dimensional reduction given by Eq. (A1)
for the double-well system [i.e., Eq. (19)].

FIG. 12. The spectral method for the SIS model. (a) Bifurcation
diagram for the regular random graph. (b) Bifurcation diagram for
the scale-free network. (c) Relative error for the regular random
graph. (d) Relative error for the scale-free network. The circles rep-
resent the numerically obtained equilibria with the initial condition
xi = 10 for all i. The solid curves in (a) and (b) represent the stable
equilibria of the one-dimensional reduction given by Eq. (A1) for the
SIS model [i.e., Eq. (23)].

FIG. 13. The spectral method for the gene regulatory system.
(a) Bifurcation diagram for the regular random graph. (b) Bifurcation
diagram for the scale-free network. (c) Relative error at the nontrivial
equilibria for the regular random graph. (d) Relative error at the
nontrivial equilibria for the scale-free network. The solid curves in
(a) and (b) represent the stable equilibria of the one-dimensional
reduction given by Eq. (A1) for the gene regulatory system [i.e.,
Eq. (28)].

FIG. 14. The spectral method for the generalized Lotka-Volterra
model. (a) Bifurcation diagram for the regular random graph. (b) Bi-
furcation diagram for the scale-free network. (c) Relative error for
the regular random graph. (d) Relative error for the scale-free net-
work. The circles represent the numerically obtained equilibria for
the initial condition xi = 10 for all i. The solid curves in (a) and
(b) represent the stable equilibria of the one-dimensional reduction
given by Eq. (A1) for the GLV model [i.e., Eq. (35)].
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FIG. 15. The spectral method for the mutualistic system. (a) Bi-
furcation diagram for the regular random graph. (b) Bifurcation
diagram of the scale-free network. (c) Relative error for the regular
random graph. (d) Relative error for the scale-free network. The
squares and circles correspond to the numerically obtained equilibria
when the initial condition is xi = 0.01 or xi = 10, respectively, for
all i. The solid lines in (a) and (b) represent the stable equilibria of
the one-dimensional reduction given by Eq. (A1) for the mutualistic
system [i.e., Eq. (40)].

Eq. (1) to a one-dimensional dynamical system given by

ẋ = F (x) + αevG(βspx, x), (A1)

where αev is the dominant eigenvalue of the adjacency
matrix of the network in terms of the modulus. We as-

sume that the dominant eigenvalue is reasonably larger than
the second largest eigenvalue in terms of modulus. One
assumes that

x =
N∑
i

bixi = b�x, (A2)

where b is the eigenvector corresponding to αev and normal-
ized as

∑N
i=1 bi = 1�b = 1. The parameter βsp only depends

on the network structure and is given by

βsp = b�Kb
αevb�b

, (A3)

where K = (Ki j ) is the N × N diagonal matrix with
Kii = kin

i . In the case of uncorrelated random networks,
we obtain

αev ≈
∑N

i=1 kout
i kin

i∑N
i=1 kout

i

= βeff , (A4)

and βsp ≈ 1, with which Eq. (A1) coincides with the GBB
reduction [34].

We test the accuracy of the spectral method on the five
dynamical systems that we considered in the main text. The
bifurcation diagrams in terms of the effective state and the
relative error, both as a function of αev, are shown in Figs. 11–
15. For the double-well system, gene regulatory system, and
mutualistic system, the relative error with the spectral method
is smaller than with the GBB reduction, as shown in Figs. 11,
13, 15, respectively. In contrast, the opposite result holds true
for the SIS and GLV models, as shown in Figs. 12 and 14,
respectively.
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